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Abstract: The Fixed Point Iteration-based Adaptive Control design methodology is an alternative to
the Lyapunov function-based technology. It contains higher-order feedback terms than the standard
resolved acceleration rate control. This design approach strictly separates the kinematic and dynamic
issues. At first, a purely kinematic prescription is formulated for driving the components of the
tracking error to zero. Then an available approximate dynamic model is used to calculate the
approximated necessary control forces. Before exerting on the controlled system, these forces are
adaptively deformed in order to precisely obtain the prescribed kinematic behavior. The necessary
deformation is iteratively found by the use of a contractive map that results in a sequence that
converges to the unique fixed point of this map. In the case of underactuated systems, when the
relative order of the control task also increases, the highest-order time-derivative depends on the
lower-order ones according to the dynamic model of the system. This makes it impossible to realize
the arbitrarily constructed kinematic design. In the paper, a resolution to this discrepancy is proposed.
The method is demonstrated using two non-linear paradigms, a three-degree-of-freedom robot arm,
and a two-degree-of-freedom system, i.e., two coupled non-linear springs. The operation of the
method was investigated via simulations made by the use of Julia language and simple sequential
programs. It was found that the suggested solution could be considered as a new variant of the fixed
point iteration-based model reference adaptive control that is applicable for underactuated systems
even if the relative order of the task is increased.

Keywords: adaptive control; fixed point iteration-based adaptive control; adaptivity by abstract
rotations; Banach’s fixed point theorem; model reference adaptive control

1. Introduction

Using the humble capacities of the available electronic devices, in the 1980s, as a
“model-based approach”, the idea of “Computed Torque Control (CTC)” was developed for
robots [1,2]. To remove the mathematical complexities of the “Model Predictive Control (MPC)”
that generally uses the dynamic model in the constraint terms of a complicated optimization
task that worked well for slow chemical processes (e.g., [3–5]), in this approach the dynamic
model is directly used for computing the necessary control torque or force components.

However, it became clear very early that, practically, it is impossible to develop precise
enough dynamic models for robots (e.g., [6]). A reasonable control quality can be achieved
by developing adaptive controllers that, based on real-time observations, compensate for
the consequences of the imprecise models. A group of adaptive controllers tried to “learn
the parameters of the exact models” (the appropriate prototypes are the “Slotine-Li Adaptive
Robot Controller” and the “Adaptive Inverse Dynamics Controller (AIDC)” [7]). Instead of
parameter tuning, the ”Model Reference Adaptive Controller (MRAC)” approach introduced
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fast feedback signals into the controlled system in order to make its dynamic behavior
similar to that of a linear time-invariant “reference system” because it is easy to control such
systems (early examples are, e.g., [8,9]). In the relatively fresh book chapter [10], it is stated
that “Lyapunov’s direct method is introduced as an indispensable tool for analyzing the stability
of nonlinear systems.” Really, the mainstream of designing adaptive controllers goes back
to Lyapunov’s second method he elaborated in his Ph.D. dissertation in 1892 [11], which
became well-known by the Western world only in the 1960s [12]. It is generally used in
various adaptive solutions (e.g., [13,14]).

The Lyapunov function-based technique is prevalent, but it has some drawbacks.

1. The Lyapunov function-based design is not a simple algorithm that can be learned.
It requires creative, mathematically well-educated designers. From the failure to
find the appropriate Lyapunov function, no conclusions can be drawn regarding the
solvability of the given problem, though for a large class of problems, appropriate
Lyapunov function candidates are suggested for use (e.g., [15]).

2. It usually guarantees normal or asymptotic convergence of a scalar norm made
of various error components that individually have physical interpretations and
significance and should be driven to zero monotonically. However, the various
components of this composite norm do not converge to zero monotonically, even if
this norm itself monotonically vanishes.

3. Normally, complicated model terms must be precisely computed or at least estimated
when this method is used.

In 2009, an alternative adaptive approach was initiated to tackle the above prob-
lems [16]. It can also be referred to as “Fixed Point Iteration-based Adaptive Control (FPIAC)”.
Finding the appropriate control signal was transformed into iteratively computing the
fixed point of the controlled system’s “Response Function”. This fixed point iteration-based
approach individually keeps control of the selected error components by realizing some
kinematically prescribed time-dependence for them.

In control technology, besides the lack of precise dynamic models, underactuation often
causes practical problems. In a comprehensive survey of the underactuated mechanical
systems [17], underactuation is defined as “An underactuated mechanical system (UMS) is
a system which has fewer independent control actuators than degrees of freedom to be controlled.”
(This concept, naturally, can be applied to a wider set of physical systems than Classical
Mechanical ones). In addition to providing typical mechanical examples, this review
classifies the underactuated systems according to the reasons for underactuation and
system constraints (e.g., it considers holonomic and non-holonomic systems) by certain
configuration characteristics and according to the related control problems. According to
the state of the art at the time, the article mentioned the following methods which intended
to control UMSs, including “Partial Feedback Linearization (PFL)” [18]; “Collocated PFL” [19];
“Non-collocated PFL” [20]; “Passivity-based Control (PBC)”, that is mainly used for setpoint
regulation that is a narrow range of applications (e.g., for two-link manipulators [21], Furuta
pendulum [22], and the so called TORA system [23]), its variants as “Interconnection and
Damping Assignment Passivity-based Control (IDA-PBC)” [24], and the “Controlled Lagrangian”
method [25]; “Backstepping Control’ [26]; and “Sliding Mode Control” (e.g., [27], “Fuzzy
Control” [28]). Due to its complexity, optimal control examples are not mentioned in our
paper. A similar survey in 2018 concentrated on second-order underactuated systems [29],
and extended the set of control methods with neural networks-based controllers [30].

The great majority of the above examples do not contain adaptive control. However,
the adaptive ones as [28,31] are based on Lyapunov’s technique. To improve this situation,
the possibility of using fixed point iteration-based adaptivity for underactuated systems
was investigated in the earlier works and is further developed in this paper by revealing
and tackling certain modeling inconsistencies that formerly were not considered. The main
benefit of this approach is that by the use of quite primitive “approximate system models”,
that may be realized by the use of simple embedded systems, quite complicated control
tasks may be solved.
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The paper is structured as follows: In Section 2, the closely related works are discussed.
Section 3 contains the mathematically detailed problem formulation in two subsections
depending on the existence of the need for developing a higher-order control approach in
the control of the underactuated system. The simulation results and their noise sensitivity
investigations are presented immediately after the description of the models. Section 4
summarizes the conclusions.

2. Related Work

In the previous works, the shortcomings of the Lyapunov function-based approach
listed in Section 1 were addressed. For illustrating Shortcoming 1, i.e., mathematical com-
plexity, which is a simple structural issue, the following paper provides a good example.
In [32], a relatively simple system of the form of ẋ = Ax(t) + bu(t) + b f (x(t), t) with state
vector x ∈ Rn, constant matrices with unknown elements A ∈ Rn×n, b ∈ Rn×1, and an
unknown bounded function f (x, t) that represents the system non-linearities, model uncer-
tainties, and the external disturbances was controlled. The authors provided a Lyapunov
function-based solution using three special assumptions, five remarks, and two theorems,
the mathematical details of which were expressed over pages 976–984 (approximately along
9 pages), and only the rest contained simulation results for a simple 2-degree-of-freedom
system. Different Lyapunov functions were added in the complicated proof, which is a
typical technique. The paper also serves as an example that normally, “observers” have to
be developed for a Lyapunov function-based approach (Shortcoming 3).

In contrast to that, the fixed point iteration-based approach utilizes the fact that in a
linear, normed, complete metric space (i.e., a Banach space) B, the sequence generated by a
contractive map F : B 7→ B so that {x1; x2 = F(x1); . . . ; xi+1 = F(xi); . . .} converges to the
unique fixed point of this function xi → x? = F(x?) as i → ∞. The proof consists of a few
simple lines.

By definition F(x) is contractive if there exists 0 ≤ K < 1 so that ∀x, y ∈ B ‖F(x)−
F(y)‖ ≤ K‖x− y‖. Since ∀N ∈ N

‖xn+N − xn‖ = ‖F(xn−1+N)− F(xn−1)‖ ≤ K‖xn−1+N − xn−1‖ ≤ . . .

≤ Kn−1‖x1+N − x1‖ → 0 as n→ ∞ .
(1)

By definition {xn} is a Cauchy sequence that in a complete space converges to a limit
value x? ∈ B. It is very easy to show that x? is the fixed point of F(x):

‖F(x?)− x?‖ = ‖F(x?)− xn + xn − x?‖ ≤ ‖F(x?)− xn‖+ ‖xn − x?‖ ≤
≤ K‖x? − xn−1‖+ ‖xn − x?‖ → 0 as n→ ∞ since xn → x?.

(2)

Finally, the uniqueness of x? can be easily proved by the indirect manner. Assume
that two different fixed points of function F(x) exist as y? 6= x? so that F(y?) = y? and
F(x?) = x?. From this it follows that

‖y? − x?‖ = ‖F(y?)− F(x?)‖ ≤ K‖y? − x?‖ (3)

That is a contradiction if ‖y? − x?‖ > 0. The only contradiction-free solution is
y? = x?.

In the control applications, the solutions occur in the vicinity of the fixed point;
therefore, it is enough if the contractivity is valid in this restricted region.

Regarding Shortcoming 2, the following can be said. In control technology, often
quadratic Lyapunov functions are constructed from the individual error components in the
form V(t) = ‖e(t)‖2 = e(t)T Pe(t) where P is a constant symmetric positive definite matrix.
It evidently may happen that V(t) can decrease while certain components of the error
e(t) increase in absolute value at the cost of the decrease in other components. Since the
Lyapunov function-based technique concentrates on asymptotically driving V(t) to zero,
this property has significance in the “initial transient phase” of the control when V(t) is big;
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consequently, there may be large error components whose further growth is undesirable.
Evading this problem in the fixed point iteration-based solution again is a simple structural
issue. Instead of prescribing the behavior of some function V(t) ∈ R, the time-dependence
of certain components ei(t) is directly controlled. (There is no need for using and computing
any Lyapunov function).

In general, a monotonic decrease in the individual error components can be prescribed
kinematically in various manners. The typical PID-type feedback results in fluctuation with
decreasing amplitude, while various fractional order calculus-based techniques realize a
monotonic decrease with the given sign of the error components. These techniques are
prevalent in robotics (e.g., [33,34]). In [35], an excellent review can be found on the history
of fractional order calculus. In [36], fractional order calculus inspired sequences were
combined with the fixed point iteration-based technique. Furthermore, in [37], a simple
approach was suggested to simulate lower order control strategies for higher order systems
to evade non-monotonic fluctuation of the error terms; a simple proportional error decay
rate was simulated for a second order system. A control technology-based tackling of
treating patients suffering from type 1 diabetes mellitus, an early version of this adaptive
control, was investigated via simulations [38].

For evading the full state estimation that normally is necessary for the Lyapunov
function-based design (Shortcoming 3), the FPI-based technique was applied to adaptively
control a two-degree-of-freedom system in [39]. This system consisted of a wheel and
a mass-point. The wheel’s rotational position was the observed and controlled variable.
The system contained some coupled “parasite dynamics”; along one of the spokes of the
wheel, a mass point placed between two springs was able to move. However, its position
(i.e., the directly not controlled variable) and velocity were not observable. The suggested
method was able to control the wheel’s rotational motion between certain physically
determined limits without complete state estimation. The appropriate details of the present
simulation are discussed as the properties of the dynamic models used in this paper.

As a heuristic method, MPC is still popular because it can be combined with different
approximations. To evade the use of complicated non-linear solvers in vehicle lateral
control in [40], the dynamic model of the system was removed from the cost function. Only
the limitations of these kinematic terms were deduced from the dynamic model that, in
fact, was used only in an inner loop. This structure is similar to the FPI-based approach
that also separates the kinematic and dynamic terms. It can be expected that this method,
later, can be combined with the FPI-based adaptive technique.

In the following sections, the problem formulation and the FPI-based design structure
are detailed.

3. Problem Formulation and Development of the Design Structure

Mathematically, the method worked based on Banach’s Fixed Point Theorem [41],
which was briefly summarized in Section 2. The structure of this controller is described in
Figure 1 for a system in which the “order ∈ N” time derivatives of the controlled coordinates
the control force can instantaneously set. The method is designed for digital controllers in
which the delay corresponds to the duration of the control cycle. In the “Kinematic Block”,
various ideas can be applied that produce a “desired” q(order)des time-derivative that should
be realized in order to drive the selected error components to zero.

It is evident that if the block “Adaptive Deformation” is removed from Figure 1, we arrive
at the original CTC control. In the lack of the possession of a precise model, some available
approximate dynamic models were used for calculating the necessary control force Q(t)
that is exerted on the controlled system, the response of which is the realized time-derivative
q(order)(t). The function of the block called “Adaptive Deformation” is deforming the input
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of the “Approximate Model” (denoted by M̃) to achieve the case q(order)des = q(order). This
equation can be approximated as

Q = M̃(q, q̇, . . . , q(order−1), q(order)des) (4a)

q(order) =M−1(q, q̇, . . . , q(order−1), Q) leading to (4b)

q(order) uM−1(M̃(q(order)des)) = f (q(order)des) , (4c)

  

Kinematic
Block

Nominal 
Trajectory

q(order )des(t )
Adaptive

Deformation

Delay

Approximate
Dynamic Model

Delay
q(order )(t )

∫d t ∫d t…

The FPI-based  Adaptive Controller 

q(order )def(t )

Controlled
System

Q (t)

Realized 
Trajectory

Exerted 
Force

Realized 
Response

Desired 
Response

Deformed 
Signal

qN (t)

q (t )

Figure 1. The structure of the higher order Fixed Point Iteration-based Adaptive Controller for fully
actuated system (after [16]).

It was taken into account that while the control force can immediately modify q(order),
the other coordinate derivatives vary relatively slowly. In this manner, the response function
f (q(order)des) was introduced as an approximation. In practical applications, the approximate
dynamic model M̃ is known, but the exact inverse modelM−1 is unknown. We should like to
achieve the value f (q(order)des). Assume we are near x? that yields f (x?) = xdes, and let α
be some real number. Try to use the iteration

xi+1 = xi + α
(

xdes − f (xi)
)

,

f (xi) = f (x? + xi − x?) u xdes +
∂ f
∂x

(xi − x?) from which it follows that

xi+1 − x? u
[

I − α
∂ f
∂x

∣∣∣∣
x?

]
(xi − x?) .

(5)

Evidently, if the matrix
[

I − α
∂ f
∂x

∣∣∣
x?

]
is contractive, the xi → x? convergence can be

guaranteed. Consider the variation of the norm of a transformed array w as

‖[I − αM]w‖2 = ‖w‖2 − αwT(M + MT)w + α2wT MT Mw (6)

in which for small α the quadratic term can be neglected, so the second term must give a neg-
ative contribution. With the analogy of the monotonic function, the function f : Rn 7→ Rn

can be regarded as approximately differentially direction keeping if for all ∆x

∆xT∆ f = ∆xT( f (x + ∆x)− f (x)) u ∆xT ∂ f
∂x

∆x > 0, (7)
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that is, the angle between the vectors ∆x and ∆ f is acute. Since any matrix, in our case ∂ f
∂x ,

can be decomposed into a symmetric and a skew symmetric part, and the latter does not
give a contribution to ∆xT∆ f in Equation (7), it can be understood that in many applications
convergence can be achieved if such a sequence is realized, e.g., in the box “Adaptive
Deformation” with the inputs as follows, the actual desired value xdes ≡ q(order)des; the
deformed value in the previous control cycle q(order)de f ; and the the response obtained
for the previously applied control input q(order) that are available in the given time instant
due to the delay. Because, in general, it is difficult to determine the appropriate value of
parameter α, various constructions were suggested for the deformation in [16,42,43]. They
have various parameters by the setting of which the convergence of the iteration can be
guaranteed if the system model allows it mathematically.

The most straightforward solution was announced in [44], which tries to move the
response f (xi) toward xdes

i+1 in the following manner. At first, it augments the dimension
of these vectors with additional physically not interpreted components so that the aug-
mented vectors have the same Frobenius norm. It then constructs a rotation operator in
the augmented space that rotates the augmented f (xi) into the augmented xdes

i+1 by leaving
the vectors in their orthogonal subspace (this corresponds to a higher dimensional rota-
tional axis) invariant. The similarly augmented version of xi is created and rotated with
a fragment of the original rotation angle around the same rotational axis. Consequently,
the physically interpreted projection of the rotated vector moves toward the desired di-
rection, and, in this case, the interpolation factor λa can be placed in the interval [0, 1].
Figure 2 intuitively describes the method. In [45], the original version published in [16]
was combined with a genetic algorithm in order to optimize its parameters.

  

b

y

Not interpreted dimension

x

a

A

B

Axis of 
rotation

original

original

augmented

augmented

~B rotated

~b transformed

x , y are interpreted dimensions .
Figure 2. Symbolic description of the abstract rotations in the adaptive deformation (after [44]).

In [46], it was realized that if the adaptive iterative deformation is moved from the
space of the derivatives to that of the generalized forces, a novel, “Fixed Point Iteration-
based Adaptive MRAC controller (FPI-based MRAC)” can be developed for fully actuated
systems as it is indicated in Figure 3. The purely kinematic design in the “Kinematic Block”
continues the calculation with the dynamic data of the reference model. If the iteration
converges in the space of the generalized forces, it has the illusion that the controlled
system’s dynamics is identical to that of the reference model. This latter can be a generally
non-linear model, in contrast to the linear time-invariant reference model of the Lyapunov
function-based design. For convergence, the same argumentation can be applied as in the
case of the previous controller. The already systematically investigated applications of the
above methods were made for fully actuated systems; however, in practice often can be
found underactuated systems, the control of which is an exciting issue. The investigations
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summarized in the sequel are the first systematic studies that reveal not only modeling
imprecisions but also modeling and kinematic inconsistencies concerning the application
of the fixed point iteration-based adaptive control for underactuated systems. These
problems are revealed and tackled in the sequel.

  

Kinematic
Block

Nominal 
Trajectory

q(order )des(t )
Reference

Model
Adaptive

Deformation

Qref (t)

Delay
Qdef(t )

Controlled
System

Reference
Model

Delay

q(order )(t )

Qrealized (t )

∫d t∫d t ∫d t…

The FPI-based Model Reference Adaptive Controller for Full Actuation 

qN (t)

q (t ) Realized 
Trajectory

Deformed 
Force

Realized 
Response

Reference 
Force

(The integrations are done by the physics of the controlled system.) 

Desired Time-
derivative

Realized Time-
derivative

Figure 3. The scheme of the Fixed Point Iteration-based MRAC controller for fully actuated systems
(after [46]).

3.1. Suggested Controller Structures for Underactuated Systems without and with Increased
Relative Order

Underactuation generally means that the number of independent control signals is
smaller than that of the degree of freedom of the controlled system. Consequently, in this
case, it is impossible to control the motion of each axle; specific axles will move as they
want. However, the motion of a given directly not actuated axis can be controlled by the
control force/torque exerted on a given directly actuated axis. It depends on the nature
of the particular task if this solution will increase or not increase the control task’s relative
order. In this paper, both cases are investigated using two simple paradigms. The first is a
robot arm in which the driver of one of the axles is corrupted and allows the appropriate
axis to rotate freely. In this case, the relative order of the control is not increased. The other
example consists of two linearly moving, dynamically coupled springs with mass points so
that on the second (lower) mass point, no direct control force can be exerted. Its motion can
be influenced by the force term directly acting on the first (upper) mass point, the motion of
which is coupled to that of the lower mass point via viscous friction. In this case, the relative
order of the control is increased from 2 to 3. This simple model represents a class of similar
problems, e.g., in the “Pneumatic Artificial Muscle (PAM)” actuator, similar components are
present that may cause oscillations (e.g., [47,48]). In [48], a method similar to the CTC control
was applied for position control. If several pieces of the lower spring and mass systems are
connected to the upper one so that, as parasite dynamics, they perturb its motion, the
model of a multi-cantilever-mass mechanism can be developed. In [49], only linear springs
were considered, and the main point was vibration suppression.

3.2. Control of a Corrupted 3D Puma-Type Robot Arm (Problem without Increasing the Relative
Order of the Controller)

The dynamic model of the first three axles of a PUMA-type robot was investigated
in [50], in this paper a relatively simple, corrupted version of this model will be used. Its
kinematic structure is described in Figure 4.
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“Home position” of the 3 degree-of-freedom robot arm

Cartesian Workshop Frame

Tool Center Point

L1

L2 L3

X1

X 2

X3
e1

e2 e3

q3
q2

q1

Link 1

Link 2 Link 3
e1 e2 e3 Rotary axles (unit vectors)

q1q2q3 Rotational angles

Figure 4. The kinematic structure of the 3D robot arm in the “home position” (after [50]).

It is assumed that the motion of the axles q1 and q2 can be directly controlled by the
torque values Q1 and Q2, but the drive of the link of length L3 is corrupted, therefore
Q3 ≡ 0. The following control compromise is applied, a nominal trajectory to be tracked
is defined as q̇N

1 ≡ const., and qN
3 (t) ≡ const. motion. The suggested control structure

seems to be the modification of the FPI-based MRAC controller in which the available
approximate model takes the role of the reference model (Figure 5). By the use of the Q3 ≡ 0
equation for the approximate model q̈des

2 can be computed and after that can be utilized
for the calculation of Qappr

1 and Qappr
2 . The dynamic and kinematic parameters of the robot

arm are given in Table 1, the equations of motion (after [50]) are given in Equation (8).

  

Kinematic
Block

Nominal 
Trajectory

Approximate
Model

Adaptive
Deformation

Q1
appr(t )

Delay
Q1

def(t ) ,Q2
def(t )

Controlled
System

Approximate
Model

Delay

q̈1(t ) , q̈3(t )

∫d t∫d t ∫d t…

The FPI-based Underactuated Adaptive Controller 

q̇1
N (t) q3

N (t)
q̈1

des(t)

q̈3
des(t) Q2

appr(t )

Q1
resp(t ) ,Q2

resp(t )

The measured q1(t ) ,q2(t ) ,q3(t ) , q̇1(t ) , q̇2(t ) , q̇3(t) values are used in the models.

q̈1(t ) , q̈2(t ) , q̈3(t )

Figure 5. The control structure for the corrupted 3D robot arm.
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Table 1. The kinematic and dynamic parameters of the robot arm (after [50]).

Parameter Measurement Unit Exact Value Approx. Value

Length of Link 2: L2 [m] 1.0 1.0
Length of link 3: L3 [m] 2.0 2.0
Mass of link 2: m2 [kg] 10.0 15.0

Mass of link 3: [kg] 20.0 25.0
Gravitational acceleration g

[
m · s−2] 9.81 9.81

Moment of inertia of link 1: Θ
[
kg ·m2] 50.0 60.0

H(q)q̈ + h(q, q̇) = Q , leading to (8a)

Q1 =

[
Θ1 +

1
4

m2L2
2c2

2 +
1
4

m3L2
3c2

23 + m3L2
2c2

2 +
1
2

m3L2L3c23c2

]
q̈1+[

−1
2

m2L2
2c2s2q̇2 −

1
2

m3L2
3c23s23(q̇2 + q̇3)− 2m3L2

2c2s2q̇2

−1
2

m3L2L3s23c2(q̇2 + q̇3)−
1
2

m3L2L3c23s2q̇2

]
q̇1 , (8b)

Q2 =

[
1
4

m2L2
2 +

1
4

m3L2
3 + m3L2

2 +
1
2

m3L3L2c3

]
q̈2 −

1
2

m3L3L2s3q̇3q̇2

+

[
1
4

m3L2
3 +

1
4

m3L3L2c3

]
q̈3 −

1
4

m3L3L2s3q̇2
3

+

[
1
4

m2L2
2c2s2 +

1
4

m3L2
3c23s23 + m3L2

2c2s2 +
1
4

m3L2L3s23c2 +
1
4

m3L2L3c23s2

]
q̇2

1

+
1
2

m2L2gc2 + m3gL2c2 +
1
2

m3L3gc23 , (8c)

Q3 =

[
1
4

m3L2
3 +

1
4

m3L3L2c3

]
q̈2 +

1
4

m3L2
3q̈3+[

1
4

m3L2
3c23s23 +

1
4

m3L3L2s23c2

]
q̇2

1

+
1
4

m3L3L2s3q̇2
2 +

1
2

m3gL3c23 . (8d)

It has to be noted that not only the definition of the “home position of the robot” is
different to that of [1], but the mass distribution of the components is different, too. Faitli
used a simple “rod model” in which the masses were concentrated at half length of the
rods. This model lead to H12 = H21 = 0, H13 = H31 = 0, and considerable H11, H22,
and H23 = H32 terms. Due to the more realistic mass distribution used, in [1] relatively
little H12 = H21 and H13 = H31 terms occur, too. This difference does not concern the logic
of the controller design.

For the kinematic block, if the tracking error is e(t) := qN(t)− q(t), and eint(t) :=∫ t
t0

e(ξ)dξ, the following tracking properties can be described with the positive constants Λ1
and Λ3:(

Λ1 +
d
dt

)
ė1(t) ≡ 0 yielding q̈des

1 (t) = Λ1 ė1(t) + q̈N
1 (t), (9a)(

Λ3 +
d
dt

)3
eint3 ≡ 0 yielding q̈des

3 (t) = Λ3
3eint3(t) + 3Λ2

3e(t) + 3λ3 ė(t) + q̈N
3 (t). (9b)

The same iteration happens as in the case of the FPI-based MRAC controller. Physically
it can be expected that via some fluctuation of q2(t), the axis q3(t) can be kept fluctuating
around the constant nominal value prescribed for it. Due to the presence of gravity the
existence of “static solution” cannot be expected.
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To tackle the problem of measurement noises occurring in measuring the joint coordi-
nates q1, q2, q3, in the calculation of the control force, a simple low pass filter was used (even
in the case of the noise-free simulations, too) in the following manner. The measured/observed
noisy value of the exact coordinate q(t) was qo(t) = q(t) +N (t), in which the additional
noise term corresponded to a random Gaussian noise of zero mean and σ = 10−5 rad
standard deviation. Instead of qo(t) and its numerical derivatives, the smoothed value qs(t)
was utilized that satisfied the differential equation(

λs +
d
dt

)3
qs

i (t) = λ3
s qo

i (t) (10)

with the initial conditions qs
i (t0) = qi(t0) = 0, q̇s

i (t0) = q̇i(t0) = 0, and q̈s
i (t0) = q̈i(t0) =

0 with λs = 103 [s−1]. Such a filtering may cause some delay even in the lack of the
measurement noises.

The computation of the Qappr
1 and Qappr

2 force components in the block “Approximate
Model” of Figure 5 happens in the following manner. Consider Equation (8) and

1. Fill it in with the parameters of the available approximate model and the actually measured
(noise-filtered) values of the variables qs

1, qs
2, qs

3, and q̇s
1, q̇s

2, q̇s
3;

2. Substitute Q3 = 0 and q̈des
3 into Equation (8d) and calculate q̈des

2 ;
3. Substitute q̈des

2 and q̈des
3 into Equation (8c) and calculate Qappr

2 ;
4. Substitute q̈des

1 into Equation (8b) and calculate Qappr
1 .

The lower “Approximate Model” block works in similar manner.
For the simulations the following data given in Table 2 were used:

Table 2. Controller and simulation data for the robot arm.

Parameter Measurement Unit Value

Digital time resolution: δt [s] 10−3

Noise filtering parameter λs
[
s−1] 103

Adaptive interpolation parameter λa [nondimensional] 0.9
Trajectory tracking parameter Λ1

[
s−1] 4.0 and 8.0

Trajectory tracking parameter Λ3
[
s−1] 4.0 and 8.0

Norm of augmented vectors Ra [N ·m] 104

σ of Gaussian noise [rad] 0 and 10−5

3.2.1. Simulations without Measurement Noise

The initial transient part during which the initially zero q̇1 and q3 approach their
nominal values as well as the fluctuations with which they are kept near the prescribed
nominal value depends on the parameters Λ1 and Λ3. These phases can be well identified
in Figure 6. The common norm of the augmented vectors was Ra = 104 [N ·m], and the in-
terpolation factor of the adaptivity was λa = 0.9. The time resolution of the simulations
(i.e., assumed cycle time of the digital controller) was δt = 10−3 s, and the simplest Euler
integration was applied.

Figure 7 reveals the control forces, the motion of the controlled axle q2, and the angle of
the adaptive deformation ϕ. Evidently, considerable adaptive deformation was necessary
to compensate for the effects of the modeling errors.
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Figure 6. The nominal and realized motion for Λ1 = Λ3 = 4.0 s−1: (a) Settling q̇1(t). (b) Small
fluctuations in q̇1(t). (c) Settling q3(t). (d) Small fluctuations in q3(t).
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Figure 7. Results for Λ1 = Λ3 = 4.0 s−1: (a) The control force Q1(t). (b) The control force Q2(t).
(c) The motion of axle q2(t). (d) Angle of the adaptive abstract rotation.

The counterparts of the above figures for Λ1 = Λ3 = 8.0 s−1 are Figures 8 and 9. They
well exemplify the role of the parameters Λ1 and Λ3.

In these simulations, adaptivity had a key role; without adaptive deformation the
controller diverged.
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Figure 8. The nominal and realized motion for Λ1 = Λ3 = 8.0 s−1: (a) Settling q̇1(t). (b) Small
fluctuations in q̇1(t). (c) Settling q3(t). (d) Small fluctuations in q3(t).
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Figure 9. Results for Λ1 = Λ3 = 8.0 s−1: (a) The control force Q1(t). (b) The control force Q2(t).
(c) The motion of axle q2(t). (d) Angle of the adaptive abstract rotation.

3.2.2. Simulations with Measurement Noise

In Figures 10 and 11 the same task is considered as in Section 3.2.1, but in the measure-
ment a Gaussian noise of zero mean and σ = 10−5 rad standard deviation was assumed for
each axle.
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Figure 10. The nominal and realized motion under measurement noises: (a) Settling q̇1(t). (b) Small
fluctuations in q̇1(t). (c) Settling q3(t). (d) Small fluctuations in q3(t).
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Figure 11. (a) The control force Q1(t). (b) The control force Q2(t). (c) The motion of axle q2(t).
(d) Angle of the adaptive abstract rotation.

It can be concluded that the method was able to tolerate such an order of magni-
tude noise.

3.3. Control of Coupled Non-Linear Springs Increased to Relative Order 3

The system to be controlled is outlined in Figure 12.
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q

g

q1≿L1

q2≿q1+L2

0

Q1 Control Forcem1

m2

Spring 1 with parameters L1 , k1 , b1

Spring 2 with parameters L2 ,k 2 , b2

UNDERACTUATED HIGHER ORDER SYSTEM

used for controlling q2

Equations of Motion
m1 q̈1=m1g+F1(q1 , q̇1)−F2(q2−q1 , q̇2−q̇1)+Q1

m2 q̈2=m2g+F2(q2−q1 , q̇2−q̇1)

m1 q̈1=m1g+F1(q1 , q̇1)−F2(q2−q1 , q̇2−q̇1)+Q1

Underactuation: 
Neither q2 nor q̇2nor q̈2 depends onQ1.

Figure 12. The kinematic structure of the coupled springs.

It is assumed that the springs have strongly non-linear model in the sense that they
remain “soft” for pulling but strongly harden for compression; furthermore, they have
considerable viscous friction in their motion as in Equation (11)

F(x, ẋ)
de f
=

{
−k(x− L)− bẋ if x ≥ L ,
−kL ln

( x
L
)
− bẋ if 0 < x < L .

(11)

This spring strongly hardens as its length, x, approaches 0. Later, we need the partial
derivatives of this function, which are denoted as

Fx(x)
de f
=

∂F
∂x

=

{
−k if x ≥ L ,
− kL

x if 0 < x < L

Fy
de f
=

∂F
∂ẋ

= −b = const.

(12)

Evidently, due to the viscous friction of Spring 2, m2
...
q 2 will contain q̈1 that is connected

to Q1 by the first equation:

m2
...
q 2 = F2x(q̇2 − q̇1) + F2y · (q̈2 − q̈1) , (13)

into which Q1 can be substituted from the first equation of motion. Therefore, as a starting
point of this task, the following three equations can be considered:

q̈1 = g +
1

m1
F1(q1, q̇1)−

1
m1

F2(q2 − q1, q̇2 − q̇1) +
1

m1
Q1 , (14a)

q̈2 = g +
1

m2
F2(q2 − q1, q̇2 − q̇1) , (14b)

...
q 2 = 1

m2
F2x(q2 − q1) · (q̇2 − q̇1) +

1
m2

F2y ·
(

q̈2 − g− 1
m1

F1(q1, q̇1)+

+ 1
m1

F2(q2 − q1, q̇2 − q̇1)− 1
m1

Q1

)
.

(14c)

From this, it follows that the relative order of our control task is 3, because the value of...
q 2(t) can be instantaneously controlled by the control force Q1(t). However, this task is
different to a normal order 3 control, since in the normal case

...
q 2(t) can be set independently

of q2(t), q̇2(t), and q̈2(t). In our case
...
q 2(t) cannot be set independently of these values:

the system’s dynamic model determines
...
q 2(t) by its lower order derivatives, and by Q1.

This easily may lead to inconsistent kinematic requirements if the model parameters
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are not exactly known and, e.g., the stiffness of the non-linear spring in our case can
be divergent function of the spring’s length. Because of this, the controller’s structure
outlined in Figure 13 is suggested to tackle this problem.

  

q2
N (t )not realistic

Kinematic 
Block of
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Simple
Affine
Model

q⃛2
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Q1
aff (t ) Controlled
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q̈1,2
real(t )

Q1
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q̇1,2(t 0)+∫
t0

t

q̈1,2(ξ)d ξq1,2(t 0)+∫
t0

t

q̇1,2(ξ)d ξ

q̈1
real(t )

q̈2
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q̇2
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q2
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q̈1,2
real(t)

Figure 13. The control structure of the underactuated coupled springs.

In Figure 13, instead of the complicated inverse of Equation (14c) the simple affine
model is used for the calculation of the reference force Qa f f

1 (t) in the box “Simple Affine
Model” as

Qa f f
1 (t) ≈ A

...
q des

2 (t) +B (15)

with the parameters A and B, the effect of which, together with that of the kinematic
inconsistencies, can be compensated by the adaptivity of the controller. Since Qde f

1 (t),
i.e., the actually applied control force, immediately determines q̈1(t) according to the exact
dynamic model parameters, the adaptation can be closed in the green loop related to Qresp

1
and q̈1 according to Equation (14a) using the available approximate dynamic parameters
in the box “Approximate Reference Model”. This will produce a realizable motion for q1(t)
that is influenced by the not completely realistic

...
q des

2 (t) requirement. As a result the not
realistic prescription will be well approximated by a realistic one. In the simulations,
Euler integration happens according to Equations (14a) and (14b) using the exact dynamic
model parameters.

For the kinematic prescription to vanish the tracking error, assume that we have posi-
tive constants λk > Λ, and to obtain

...
q 2(t) prescribe in the box “Kinematic Block of order 3”

Equation (16) as (
λk +

d
dt

)3(
Λ +

d
dt

)
eint ≡ 0 (16)

Since the solution of
(

λk +
d
dt

)
g(t) = 0 is g(t) = exp(−λk(t− t0))g(t0) → 0 as

t → ∞, if this strategy is realized due to adaptivity, after a while the system arrives at(
Λ + d

dt

)
eint ≡ 0 that yields a monotonic reduction in the integrated error.

For this system of relative order 3 the following order 4 noise filtering was applied
(Equation (17)): (

λs +
d
dt

)4
qs

i (t) = λ4
s qo

i (t) (17)
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with the initial conditions qs
i (t0) = qi(t0) = 0, q̇s

i (t0) = q̇i(t0) = 0, and q̈s
i (t0) = q̈i(t0) = 0,...

q s
i (t0) =

...
q i(t0) = 0 with λs = 103 [s−1]. For modeling measurement noises Gaussian

noise of zero mean and σ = 10−5 m was assumed.
In the simulations, the model data given in Table 3 were used.

Table 3. The kinematic and dynamic parameters of the coupled springs.

Parameter Measurement Unit Exact Value Approx. Value

Length of spring 1: L1 [m] 1.0 0.8
Length of spring 2: L2 [m] 1.5 1.3

Mass of point 1: m1 [kg] 1.5 2.0
Mass of point 2: m2 [kg] 2.0 2.5
Spring stiffness 1: k1

[
N ·m−1] 100.0 90.0

Spring stiffness 2: k2
[
N ·m−1] 200.0 190.0

Gravitational acceleration: g
[
m · s−2] 9.81 9.81

Viscous damping 1: b1
[
N · s ·m−1] 2.5 2.0

Viscous damping 2: b2
[
N · s ·m−1] 3.0 2.5

Affine parameter 1: A
[
N · s3 ·m−1] Not applicable various

Affine parameter 2: B [N] Not applicable −15.0
For setting the parameters it was assumed that the gravitational acceleration is known, but the other model
data should have considerable approximation errors as underestimated “zero force lengths” for the springs,
overestimated masses, underestimated spring stiffness values, and viscous friction terms.

For the spring system, the numerical data given in Table 4 were used with a deformed
and shifted sinusoidal nominal trajectory determined by Equation (18) as

qN
2 (t) = tanh

(
t
T

)
Ao tanh(Ai sin Ωt) + S (18)

In this manner, more complex motions can be considered than the simple sinusoidal
ones. Furthermore, the “rule” that it is not expedient to apply an initial shock to a non-
linear system is taken into consideration too. (Since linear time-invariant systems have
only additional transients, in their case arbitrary initial shocks, such as abrupt jumps in the
nominal trajectory to be tracked, can be applied without significant consequences). For the
simulations the data given in Table 4 were used.

Table 4. Controller and simulation data for the coupled springs.

Parameter Measurement Unit Value

Digital time resolution: δt [s] 10−3

Noise filtering parameter λs
[
s−1] 103

Adaptive interp. param. λa [nondimensional] 0.9, 0.05
affine, complex

Trajectory tracking parameter Λ
[
s−1] 4.0

Trajectory tracking parameter λk
[
s−1] 12.0

Norm of augmented vectors Ra [N] 10−6

σ of Gaussian noise [m] 0 and 10−6

Nominal trajectory rise time T [s] 3.0
Nominal trajectory amplitude Ao [m] 0.2 · (L1 + L2) (exact)

Nominal trajectory deformation factor Ai [nondimensional] 2.0
Nominal trajectory circular frequency Ω

[
s−1] 2.0

Nominal trajectory shift S [m] (L1 + L2) (exact)
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3.3.1. Simulations for the Affine Model without Measurement Noise

At first, the role of the adaptive deformation in using the simple affine model is
illustrated. In Figure 14, it can be observed that without the adaptation a long-lasting
fluctuation in the control force and in the motion of coordinate q1 was generated.
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Figure 14. Control of the affine model with A = 7.0
[
N · s3 ·m−1] without adaptivity: (a) Trajectory

tracking. (b) Trajectory tracking error. (c) The motion of mass point 1. (d) The control force.

On the basis of Figures 14–17 the following observations can be performed:

1. While the tracking error remained in the same range, the illusion of the MRAC control,
i.e., that on the basis of the kinematic prescriptions the dynamics of the affine model was
controlled was well provided by the solution. The affine model was used by the
external kinematic loop for the computation of the necessary control force, and precise
trajectory tracking was achieved. The affine model’s force need was approximately in
the range [−120,−30]N following the transient phase, while the actual control force
varied within the range [−120, 5]N.

2. Due to the adaptivity the duration of the initial “transient swinging phase” of the
control force was considerably reduced.

3. The duration of the initial transient swinging in the position of mass point 1 was
considerably reduced due to the adaptivity.

4. Furthermore, the application of adaptivity considerably reduced the amplitude of the
control force in the initial transient phase of the motion from the range [−4000, 4500]N
to [−3000, 2500]N.
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Figure 15. Comparison of the motion of q1 for the adaptive and the non-adaptive control for
A = 7.0

[
N · s3 ·m−1]. (a) Non-adaptive motion of q1 in the first second. (b) Non-adaptive motion of

q1 in the rest of the trajectory. (c) Adaptive motion of q1 in the first second. (d) Adaptive motion of q1

in the rest of the trajectory.
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Figure 16. Comparison of the control force Q1 for the adaptive and the non-adaptive control for
A = 7.0

[
N · s3 ·m−1]. (a) Non-adaptive motion in the first second. (b) Non-adaptive motion in

the rest of the trajectory. (c) Adaptive motion in the first second. (d) Adaptive motion in the rest of
the trajectory.
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Figure 17. Control of the affine model with A = 7.0
[
N · s3 ·m−1] and adaptivity: (a) Trajectory

tracking. (b) Trajectory tracking error.

The next figures (Figures 18–20) reveal the results for the A = 5.0
[
N · s3 ·m−1] affine

parameter. The same observations can be made in the case of these results as in the case of
the set belonging to A = 7.0

[
N · s3 ·m−1].
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Figure 18. Comparison of the motion of q1 for the adaptive and the non-adaptive control for
A = 5.0

[
N · s3 ·m−1]. (a) Non-adaptive motion of q1 in the first second. (b) Non-adaptive motion of

q1 in the rest of the trajectory. (c) Adaptive motion of q1 in the first second. (d) Adaptive motion of q1

in the rest of the trajectory.
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Figure 19. Comparison of the control force Q1 for the adaptive and the non-adaptive control for
A = 5.0

[
N · s3 ·m−1]. (a) Non-adaptive motion in the first second. (b) Non-adaptive motion in

the rest of the trajectory. (c) Adaptive motion in the first second. (d) Adaptive motion in the rest of
the trajectory.
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Figure 20. Control of the affine model with A = 5.0
[
N · s3 ·m−1] (a) Non-adaptive trajectory

tracking. (b) Non-adaptive trajectory tracking error. (c) Adaptive trajectory tracking. (d) Adaptive
trajectory tracking error.

In the following section, the effects of an extremely low value, A = 0.4 s3 ·m−1 are
investigated. Figures 21–23 reveal that in this case, when very drastic inconsistency is
present between the affine model and the realistic one, the adaptive controller produces
more hectic variation of coordinate q1(t) and in the control force. However, the MRAC
illusion is well maintained, since the affine and the response forces are very close to each
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other, and considerably differ from the actual control (i.e., the deformed) forces. In this case
the precision of the trajectory tracking is a little bit improved.
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Figure 21. Comparison of the motion of q1 for the adaptive and the non-adaptive control for
A = 0.4

[
N · s3 ·m−1] (a) Non-adaptive motion of q1 in the first two seconds. (b) Non-adaptive mo-

tion of q1 in the rest of the trajectory. (c) Adaptive motion of q1 in the first three seconds. (d) Adaptive
motion of q1 in the rest of the trajectory.
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Figure 22. Comparison of the control force Q1 for the adaptive and the non-adaptive control for
A = 0.4

[
N · s3 ·m−1] (a) Non-adaptive motion in the first two seconds. (b) Non-adaptive motion in

the rest of the trajectory. (c) Adaptive motion in the first two seconds. (d) Adaptive motion in the rest
of the trajectory.
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Figure 23. Control of the affine model with A = 0.4
[
N · s3 ·m−1] (a) Non-adaptive trajectory

tracking. (b) Non-adaptive trajectory tracking error. (c) Adaptive trajectory tracking. (d) Adaptive
trajectory tracking error.

As it can be expected from the dynamic model, the necessary control forces mainly
depend on the amplitude of the nominal motion that directly concerns the spring dilata-
tion/compression values, and the time-derivatives of the coordinates that generate the
friction forces. The affine parameter A mainly determines the duration of the initial oscillat-
ing phase. It can be noted, too, that in harmony with the expectation for the “approximately
differentially direction keeping” response function, for A < 0 and too small A > 0 the adaptive
controller became divergent.

3.3.2. Simulations for the Affine Model with Measurement Noise

In this case, non-adaptive and adaptive simulations were made for A = 7.0
[
N · s3 ·m−1].

Figures 24 and 25 reveal the chaotic fluctuation in the control force that does not completely
destroy adaptivity.
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Figure 24. Control of the affine model with A = 7.0
[
N · s3 ·m−1] without adaptivity under measure-

ment noises: (a) Trajectory tracking. (b) Trajectory tracking error. (c) The motion of mass point 1.
(d) The control force (zoomed in excerpt).
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Figure 25. Control of the affine model with A = 7.0
[
N · s3 ·m−1]with adaptivity under measurement

noises: (a) Trajectory tracking. (b) Trajectory tracking error. (c) The motion of mass point 1. (d) The
control force (zoomed in excerpt).

3.3.3. Simulations for the Complex Order 3 Model without Measurement Noise

For comparison the original version of the FPI-based MRAC controller for fully ac-
tuated systems (Figure 3) has been modified for the order 3 underactuated version in
Figure 26. In this case, the inverse of Equation (14c), i.e., Equation (19) is used in the boxes

“Complex Reference Model” with the available approximate model parameters.
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Figure 26. The control structure of the underactuated coupled springs using the complex order
3 model: the input of the “Complex Reference Model” corresponds to the function in Equation (19).
For the sake of clarity the figure does not contain each input.
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+
1
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}]
.

(19)
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In the simulations for the input of Equation (19) the noise-filtered estimations of q1, q2,
q̇1, q̇2, and q̈2 are used. The Julia language code excerpt of this function is given below

function Q_3rdOrdModel(q2_pppDes,q1,q2,q1_p,q2_p,q2_pp)
local casual
casual=m2a*q2_pppDes-F2xa(q2-q1)*(q2_p-q1_p)
casual-=F2ya*(q2_pp-ga-F1a(q1,q1_p)/m1a+F2a(q2-q1,q2_p-q1_p)/m1a)
return -m1a*casual/F2ya

end

in which q1 and q2 stand for q1 and q2, q1_p and q2_p is in the role of q̇1 and q̇2, and q2_pp
represents q̈2, m1a, m2a, and ga denote the approximate parameter values of m1, m2, and g,
F2xa and F2ya correspond to the functions F2x and F2y in Equation (12) with the approxi-
mate model parameters. In a similar manner, the functions F1a and F2a are the counterparts
of the functions in Equation (11).

The following conclusions can be made regarding the results of the noise-free simulations:

1. The tracking precision for the simple affine reference model with A = 7.0
[
N · s3 ·m−1]

is in the same range as in the case of the complicated order 3 model (compare
Figures 14, 17 and 27).

2. The actually exerted forces are essentially the same that is determined by the desired
motion, observable differences appear only in the “MRAC illusions” provided by the
different solutions (compare Figures 16 and 28).

3. By the use of the affine model the initial transients were successfully reduced (compare
Figures 15 and 29).

0 2 4 6 8 10

Time [s]

2.0

2.2

2.4

2.6

2.8

3.0

[m
]

The Trajectory Tracking
qNom

2 (t)

q2(t)

qSmoothed
2 (t)

(a)

0 2 4 6 8 10

Time [s]

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

[m
]

Trajectory Tracking Error
For q2

For qSmoothed
2

(b)

(c) (d)

Figure 27. Control of the complex model without measurement noises: (a) Non-adaptive trajectory
tracking. (b) Non-adaptive trajectory tracking error. (c) Adaptive trajectory tracking. (d) Adaptive
trajectory tracking error.
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Figure 28. Comparison of the control force Q1 for the adaptive and the non-adaptive control for the
complex model without measurement noises. (a) Non-adaptive motion in the first second. (b) Non-
adaptive motion in the rest of the trajectory. (c) Adaptive motion in the first second. (d) Adaptive
motion in the rest of the trajectory.
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Figure 29. Comparison of the motion of q1 for the adaptive and the non-adaptive control for the
complex model without measurement noises (a) Non-adaptive motion of q1 in the first second.
(b) Non-adaptive motion of q1 in the rest of the trajectory. (c) Adaptive motion of q1 in the first second.
(d) Adaptive motion of q1 in the rest of the trajectory.

3.3.4. Simulations for the Complex Order 3 Model with Measurement Noise

Certain results with measurement noises are given in Figure 30. The comparison
with Figure 25 reveals that the attempt of feeding back high order derivatives and using
them in the adaptive iteration makes the method very noise-sensitive. Though the exerted
(deformed) control forces are not too high, in the case of the complex model using various
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derivatives as the input does not provide some clear “MRAC illusion”, since the “response
force” has huge noise. However, in the case of the simple affine model with lower order
adaptive feedback this function can be identified in the computational results.
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Figure 30. Control of the complex model with adaptivity under measurement noises: (a) Trajectory
tracking. (b) Trajectory tracking error. (c) The motion of mass point 1. (d) The control force (zoomed
in excerpt).

3.4. Summary of the Innovation

In this paper, the history of the formation of the here suggested control method was
outlined step-by-step. It was shown how the FPIAC controller had been transformed into
the FPI-based MRAC controller for controlling fully actuated systems. The present innovation
is the modification of this latter method to control underactuated systems by the application
of the adaptive deformation algorithm to only a reduced number of the generalized coordinates
of the controlled system.

Furthermore, the increased relative order task allowed the use of a simple primitive
affine model with lower order adaptive feedback instead of the calculation of the com-
plicated model terms on the basis of approximate model parameters. In this manner, the
method produced shortened initial swinging and considerably reduced noise sensitivity in
comparison with the original higher order approach.

The primitive affine model is so simple that it can be realized in an embedded system.
Together with the approximate model parameters used in the computations it provided
a fictive “reference system” by which the inconsistencies between the high relative order
kinematic design and the dynamic properties of the model were eliminated or evaded.

4. Conclusions

This paper systematically investigated the FPIAC method to adaptively control ap-
proximately modeled underactuated systems. In the suggested solution, the iteration that
yielded the appropriate control signal was moved from the space of the time-derivatives
of the generalized coordinates to the space of the generalized forces as in the case of the
FPI-based MRAC controllers developed for fully actuated systems. However, the loop
of adaptive deformation was applied only for the generalized coordinates that played
independent roles in the control of the underactuated systems.
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It was shown that when the underactuation causes an increase in the relative order
of the control, the kinematic specifications separated from the dynamic model may be
incompatible with the physical capabilities of the controlled system. This discrepancy was
resolved by the application of further convenient simplification. Instead, making an attempt
to estimate the higher order derivative of interest by the use of Lie derivatives and the avail-
able approximate system model a simple affine model part was introduced. The integrated
effects of these approximations were compensated by the adaptive deformation.

Two typical examples were investigated by Julia language-based simulations, when the
underactuation was not accompanied by an increase in the relative order of the controller
and when the relative order was increased. For the first case, the dynamic model of a
3-degree-of-freedom robot arm was considered with a corrupted drive. For the second case,
dynamically coupled strongly non-linear springs were modeled.

Though it can be expected that due to the “not conventional feedback terms”, the sys-
tem must be noise sensitive, it has been shown by the simulations that simple low pass
filters can be incorporated into the controller so that it remains convergent under lit-
tle standard deviation of the noise that appears in the measurement of the generalized
coordinates’ values.

In addition to potential noise sensitivity, the main drawback of the method is that
during one digital control step only one step of the adaptive deformation can be completed.
Since the speed of convergence depends on the model and the actual systems parameters
according to Equation (4), on the parameter α in Equation (9) or the interpolation parameter
λa used in [44], the general possibility to improve accuracy is the reduction in digital
cycle time. In this manner, the number of the iterative steps made during unit time can
be increased.
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