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Abstract: An experimental study of the process of friction between a steel spherical indenter and a
soft elastic elastomer, with a strongly pronounced adhesive interaction between the surfaces of the
contacting bodies, is presented. We consider sliding of the indenter at low speed (quasi-static contact)
for different indentation depths. The forces, displacements and contact configuration as functions of
time were recorded. The most important finding is that under conditions of uni-lateral continuous
sliding, the tangential stress in the contact area remains constant and independent on the indentation
depth and details of loading. We suggest a simple numerical model in which the elastic substrate is
considered as a simple elastic layer (thus reminding a two-dimensional elastic foundation), although
with in-plane elastic interactions. It is found that this model leads to the dynamic scenarios which
qualitatively resemble the experimentally observed behavior of the considered system.
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1. Introduction

Adhesion plays an important role in the physics of contact interaction. There are
a number of areas in which adhesion finds practical application, including soldering,
painting, granulation, packaging of fertilizers, mechanical manipulation by macroscopic
and microscopic objects, etc. [1,2]. Adhesive interaction is used by biological organisms
for moving and attaching to surfaces: from microscopic bacteria [3,4] to amphibians and
reptiles [5,6]. Recently, adhesive contacts have been the object of intensive experimental
(e.g., [7-9]), theoretical [9,10] and numerical [8,11-13] studies.

The first rigorous theory of adhesion was JKR theory [10], proposed in 1971. It
describes a quasi-static normal contact between a solid indenter with a parabolic profile
and an elastic half-space under the assumption of vanishing friction at the contact interface.
In reality, there is always strong friction in the interface, and the contact force generally
has both normal and tangential components. Although there exist several experiments
and theories describing the movement of the indenter at an angle to the interface [14], the
problem of tangentially loaded adhesive contacts remains the less understood aspect of
adhesive contacts. It was observed previously that tangential loading makes the initially
axially symmetrical contact more and more asymmetric [14,15]. Its area also changes
(usually decreases) due to tangential loading. Reducing the contact area leads to a decrease
in contact adhesive strength. In [16], the adhesive contact was studied during tangential
shear of bodies that do not have axial symmetry. One example of current interest is a contact
between a human finger and a glass plate which attracted interest due to the extensive
use of touch screens [17]. Experimental studies clearly show that in both situations of
symmetric and asymmetric bodies, tangential loading leads to a decrease in the contact
area. In the present study, it is experimentally demonstrated that tangential movement may
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also lead to an increase in the contact area which occurs under specific loading scenarios.
The effect of the increase in the area has previously been observed by us [18]. Another
important problem associated with tangential motion is the transition between so-called
static and kinetic modes of motion [19], which becomes much more complicated in the
presence of strong adhesive interaction.

Even in the case of pure normal contact (indentation in vertical direction without
tangential motion), there are a number of unresolved problems. As a matter of fact, all
experiments show a behavior that is not described by classical theories such as JKR or
DMT [10,20,21]. For example, a hysteresis of the adhesive force is always observed in
experiments, when the direction of indentation changes [22,23], while such a hysteresis
is absent in JKR (DMT). The JKR (DMT) theory shows instantaneous breakdown of an
adhesive contact when the indentation depth reaches the critical value. In contrast to this,
in experiments under “fixed grips” (controlled displacement) conditions (for example,
motion of the indenter with constant velocity), adhesive force and contact area almost al-
ways disappear monotonically [24]. However, under “fixed load” conditions (for example,
pull-off of the indenter from the substrate with the help of a soft spring), contact is lost
abruptly both in experiments and in theory [25]. There are many other experimentally
discovered effects that contradict the classical theories. Tangential contact in the presence
of adhesion has been investigated even less often. An interesting fact is that the classic
work of Shallamach [26], describing experimental observations of friction between rubber
and a rigid indenter, was published in the same year as the classical theory of adhesion
JKR [10], which later became very widespread in describing adhesion of soft materials.
Various palliative modifications of JKR are used for the description of tangential contacts
(see, for example, [27,28]). However, JKR describes a quasi-static contact and is therefore
unable to describe the complex dynamic processes of contact restructuring and propaga-
tion of elastic waves (so called Shallamach waves) observable in the stationary mode of
tangential shear [26]. Despite this, the JKR theory is still widely used, even in application
to tangential contact.

In the present paper, we describe the results of experiments in which the sliding of a
steel spherical indenter over an elastomer is studied in the presence of an adhesive inter-
action between the contacting bodies. Special attention is paid to the peculiarities of the
stationary slip process and contact restructuring. In the second part of the paper, a numeri-
cal model of the sliding process is described. Despite its relative simplicity, it qualitatively
reproduces many experimentally observed features of the system under consideration.

2. Methodology of Investigations
2.1. Experimental Technique

Figure 1 shows the experimental setup used to carry out all experiments described in
this manuscript. The left-hand side of the figure shows a general view of the experimental
setup, while the right-hand side panel shows an enlarged contact area (for a detailed
description of the setup, see [29]). Indentation and tangential loading of the indenter was
carried out using PI M-403.2DG drives (1) and (2) connected to each other, controlled by
PI C-863 controllers. Contact force measurement was carried out using a three-axis force
sensor ME K3D40 (3), which works in the interval of forces £10 N. The electric signal
from the force sensor was amplified by a GSV-1A4 SubD37/2 amplifier. The amplifier
was interfaced with the computer via a 16-bit NI USB-6211 ADC. Due to the fact that
transparent rubber TARNAC CRG N3005 was used as a substrate (5) in the experiment,
direct observation of the contact area was possible, which was carried out using a Conrad
USB digital camera with a physical resolution of 1600 x 1200 pixels (located at the position
(7)). Number (6) in the left panel of figure shows the tilt mechanism, which allowed us to
change substrate orientation; this is important for experiments with a tangential motion
of indenter.
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Figure 1. (left panel) experimental setup; (right panel) close view of the contact area between the
steel indenter (4), which is connected with a force sensor (3), and the transparent elastomer sheet
(5) with all-round LED illumination (8).

All experiments described below were performed in a similar way. First, an indenter
made of steel with a radius R = 22 mm was pressed into the elastomer to a depth dmayx in
the normal direction. After this, it was shifted in the tangential direction by a distance
x =5 mm. The direction of tangential motion was then changed to the opposite until the
indenter returned to the initial position x = 0 mm. Finally, the indenter was pulled out
of the elastomer in the normal direction until the contact was completely destroyed. In
all phases of the indenter’s motion, displacement-controlled (fixed grips) conditions were
applied. The indenter was moved in both (normal and tangential) directions with the same
constant velocities v = 1 um/s with the help of connected motorized linear stages (see
left panel of Figure 1). The thickness of the elastomer used was h = 25 mm (5 layers of
TARNAC CRG N3005 rubber stacked together, with a thickness of 5 mm each). As has been
experimentally found in our previous work [30], this type of rubber has an elastic modulus
E ~ 0.324 MPa and a Poisson ratio v ~ 0.48. The indenter was made from steel with a
significantly larger elastic modulus E ~ 2 x 10° MPa. This means that, during interpretation
of the experimental results, the indenter can be assumed as an absolutely rigid body, and
only the elastomer (rubber layer) deforms during indentation. During the movement of the
indenter, the values of all three components of the contact force were stored with an interval
of At =1s, and photographs of the contact area were recorded. It should be noted that the
roughness of the indenter’s surface plays a significant role in adhesive contacts; roughness
can increase as well as decrease the adhesive properties (strength) of the contact [31]. In the
below experiments, an artificial roughness with a small amplitude was specially created on
the indenter surface. In this case, due to diffuse scattering of light from the illumination
system, the contact area can be visualized as a distinct spot, which makes it possible to
determine the size of the contact area using a specially designed computer program [31].
Roughness on the indenter surface was created by hand with the help of sandpaper P800
(averaged grain size about 21.8 um according to standard classification). In [31], it was
found that after scratching of the indenter surface with P800 sandpaper, a roughness with
RMS amplitude from 2 to 7 um is realized, depending on the indenter’s material (before
scratching, the indenter was polished and had a surface with reflective properties). In this
study, we did not measure parameters of the indenter’s roughness, because investigations
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of influence of roughness was not the aim of the current work, and in all experiments the
same indenter with the same roughness was used.

2.2. Numerical Model

To simulate dynamic behavior of the system under consideration, we considered a
numerically generated elastic substrate and a movable hard ball with appropriately defined
repulsion and attraction interactions between them. Different ways to construct an elastic
substrate are possible. For example, to keep a fixed distance between the particles in
the nodes of either a one-dimensional chain, a 2D or 3D mesh of any nature with higher
dimensionality 4th order potential with 2 minimums U = (x]- — jil)z[a — (x]- — ]-il)z /2]/2
can be used (see for example the works [32-38]). An analogous result can be achieved
by using a quadratic 2-valley potential U = (x; — xj+1 =+ a)?/2, which is treated as a
mathematical procedure where every node is attracted according to Hook’s law to a local
minimum formed by its neighbors at the distances (x; — x;+1) = + 4 [36]. Below, we will
use Hook’s law for the nearest and the next neighbors to minimize a number of additional
assumptions.

For each node with the indices j, k at mutual displacement of nearest neighbors
j £ 1, k, along an arbitrary direction x, can be written as dxy j = (xj — xj+1x — a). For
the next neighbors, one can write, respectively: dx; jx = (xjx — Xj+1k+1 — 4)- These rela-
tive displacements produce forces f 1jk = kadxy j and fz,jk = kpdxy jx, respectively, where
ko = k1 /2. Below, we apply the normalized dimensionless variables for the numerical model
in which initial (unperturbed) lattice constant a = 1 and elastic constant k; = 1.

Direct summation over the neighbors gives the complete force:

N N,
fie =2 flp+ X f @
n=1 n=1

where, for the cubic lattice, the numbers of the first- and second-type neighbors are Ny = 6,
Nj =12, respectively, and for the square lattice Ny = N, = 4. The dynamic equations of the
system with the forces defined by Equation (1) can be written as follows:

62x ik azy ik azz ik
Jk . K _ gy, x _
m—at2 = f]’]‘(, m 52 = fjk' m T f]‘zk (2)

These equations have to be completed by the boundary conditions:
x —fx . gy —_fY . sz — £z
fjk|boundury - fjk,ext’ f]‘klboundary - fjk,ext’ f]’k‘boundary - fjk,ext' (3)

The notation f;;y ’Z|hound,y means a component of the force acting on the boundary

node, which is formally calculated from a side of the node which is located outside the
. . . X,Y,2 .

system, and coincides with the corresponding component of an external force fjk, ot aCting
on the substrate. For some (open) boundaries these forces are equal to zero. In other cases,
these forces are caused either by the interactions of the elastic substrate with the hard
adhesive ball, or by an interaction with the solid background, which does not allow the
elastic substrate to fall down under the pressure of the ball. Let us note additionally, that
the simplicity of Equations (1)-(3) is illusory and they in fact suppose a summation at each
time step over all the possible (or even absent) neighbors along each direction of the lattice.

In the general case, mechanical energy is supplied into the elastic system by two
different sources. First of all, it is produced due to the mechanical work performed by the
ridged sphere interacting with the elastic substrate. Additionally, at nonzero temperature
T, the boundaries of the system contact to the thermostats, so the boundary conditions
have to be completed by a J-correlated Langevin source (t, x, z), defined according
to the fluctuation-dissipative theorem with zero expected value ((t,x,y,z)) = 0 and
autocorrelation function (&(t,x,y,z)¢(¥,x',y',2")) = Dé(t — )d(x — x')é(y — v')6(z — 2'),



Machines 2023, 11, 583

50f21

where D = 2kgT and kg is the Boltzmann constant. It leads to the following equations of
motion for the elastic subsystem:

92x; ox; 2y, oy
ko ex 7k . Yik _ gy _ %k .
m—=n = ik Y5 +¢; m w2 = fjk Y5 +¢
’ )
o ij oz aij

Mz = fi— 7% +6

Below we will ignore temperature sources of energy ¢ — 0. However, taking into
account that the kinetic energy (elastic oscillations and waves) is still generated in course of
the ball motion, the nonzero dissipative constant y > 0 is still needed and will be conserved
in the equations of motion. In turn, this constant determines a characteristic relaxation
time in the system T ejox = 1/ and can be used as a natural time scale of the model. It is
convenient to normalize on it all the time points. Together with two other scales, the lattice
constant a = 1 and elastic constant k1 = 1, corresponding to characteristic distance and force,
respectively, it defines a set of dimensional units for the problem, which we will use below.

The motion of the ball can be incorporated into the study using the frames of the
Prandtl-Tomlinson model [36]. To do this, the original system of the equations of mo-
tion must be completed by equations describing the ball’s external force acting on the
elastic substrate: ,

MZX = LE+ K(Vit — (X = Xi=0)) — 1V

2
M%T{ = %F,f +K(Yizo = Y) —7Vy; (5)
MBE = DF 4 K(Vat = (Z = Zmg) =7V

Here, F);, = K(Vit — (X — X¢=0)) and F;; = K(Vzt — (Z — Z;—¢)) are the components
of external force in horizontal and vertical directions, respectively, with a new elastic
coefficient K, and are applied to the ball of mass M. As the external “spring” is rigid and
the ball is heavy (K >>1 and M >> 1), the first of these forces produces a horizontal motion
in the ball with a practically constant velocity V.

Motion in the vertical direction is also conserved in the equations, because it allows
us to smoothly adjust the system numerically to any arbitrary value chosen by us for
initial indentation d. For this goal, we move it vertically during the relatively fast (but
still continuing nonzero time fy) initial process. So, at every value of d the velocity V, is
defined by the condition V, = —d/tj. The indentation depth d is measured in the units of a.
To obtain a quite realistic configuration of the model setup, we take the radius of the ball
Rsphere >> a much larger than a (for definiteness, Ryppere = 804), while varied typical values
of the indentation d will be comparable to a.

The forces %Flf Y% in Equation (5) describe total interaction between the ball and

segments of the elastic substrate. Each particular interaction here is a combination of
the repulsion of an elastic segment from the hard “wall” of the ball’s surface and short-
range (adhesive) attraction to the ball in close proximity of its surface. It is convenient to
simulate them numerically with the sufficiently sharp, but still continuous potentials. For
definiteness, we use strong exponential repulsion:

Urepuls = USEP eXP[_(” - Rsphere)/Rrepuls} (6)
and short-range attraction in a narrow spherical belt around the surface:
adh 2
Upan = Uy eXP{_[(r - Rsphere)/Radh} ). @)

Here, Usep > 0 and Ugdh < 0, while both characteristic distances are much smaller
than the radius Rgppere of the spherical ball Repuis << Rspheres Ragn << Rsphere- To simulate the
effect of adhesion realistically, one has to complete the equations of motion with a condition
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which specifies when a segment of the substrate follows the ball, being practically glued
to it by the adhesion force. Such a condition is supposed to satisfy at least two important
features of the adhesion:

It has to attach a given segment of the substrate to the spherical surface | R(x,y,z) —
Rsphere | < ORcyiy when the distance between them is small enough;

It has to detach the segment from the ball when its deviation from an unperturbed

- = . .\
state exceeds a threshold k(|7 — rg|) > feit, corresponding to some critical force at a
given elastic constant.
Analytically it can be written as a product of two formal conditions:

.. — —
Condition = 0(|R(x,,2) — Rphere] < OReyit)0(k| 7 — 70| < ferit), ®)

where 0 is the Heaviside step-function, defined by the relations:
1, x>0
G(x)_{ 0, x<0. ©)

Of course, the formally written conditions (8) and (9) only appear to be extremely
simple ones. In the real numerical procedure, they have to be checked each time-moment for
every force and distance, instantly joining each segment of the substrate with its projection
to the ball surface. Moreover, it should be treated in the frames of the numerical procedure,
which either solves a set of dynamic equations for the particular segment (if threshold
conditions are not satisfied), or shifts it together with the ball, moving according to its own
Equation (5).

3. Results and Discussion
3.1. Experimental Results

In Figure 2, the measured time dependences of the normal Fy and tangential Fy
contact force components, as well as the contact area A (panels (a)-(c)) are shown. For more
detailed analysis of the friction processes, we calculated the time dependences of such
characteristics as the average contact pressure p = Fyy /A, average shear stress T = Fy/A and
formally defined “friction coefficient” u = | Fx | /Fy (even in cases when tangential force
is not proportional to the normal force, and the friction coefficient has no direct physical
sense). These quantities are shown as functions of time in panels (d)—(f) of Figure 2.

Note that in the case dy = 0 mm, the experiment was performed as follows: the indenter
was pressed in the elastomer to a depth of d = 0.2 mm, after which it was raised to the
level dy = 0 mm, and only then a tangential shift was performed. This was done to ensure
good contact due to adhesion before the tangential shift. This was necessary due to the fact
that at the stage of indentation (an increase in the contact area), the adhesive interaction
manifests itself rather weakly, while in the phase of detachment, adhesion plays a decisive
role. These features are well observed in experiments on normal indentation [18,39].

In each test at initial indentation to the depth dy, there is no tangential motion. At this
stage, tangential force F, and stresses T are equal to zero, but normal force Fy increases
monotonically. As seen from the subplot Figure 2e, at the beginning of the tangential shear,
the value of tangential stresses T = Fy/A increases over the entire contact area. However,
when the value of T reaches a certain critical value 7, the stationary sliding mode is realized
and the stresses remain constant T = 7y. Moreover, the value of T is practically not affected
by the value of the indentation depth d, with an increase in which, however, the friction
force Fy increases significantly (see Figure 2b). In the case of constant 7 in the contact zone,
the friction force is determined as (ignoring friction at the contact boundary [18]):

Fy = A. (10
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Note that, in each experiment, at around 100 min tangential force and stresses are
reduced to zero values, after which these quantities increase again, but with a negative sign.
This happens due to the change in direction of the indenter motion.

(a) d
( . 0@
] 2
2t / < 20
ST =
1 -‘F / X I 10
O 1 | f ! | 1 | \|\ = 0
0 50 100 150 ¢ min
(b)
4 0
£ 40T 0.2 mm
2 2 9 0.4 mm
Zn < L 0.6 mm
o 0 ER 0 i (1) (% mm
2 " _20 —_ mm
P —
_4 6()I 8On 100| 1 | 1 -40 L 1 1 1 1 1 l 1
0 50 100 150 ¢, min 0 50 100 150 ¢ min
C
100 (©) 3 (H
80 I i
o~ - el Léz 2 -
E 60 [- J\_/ =
g - / SR
< 40 i / ]:|L 1
20 W I
0 A } 1 ""“’*L“‘“"‘.‘“—L 0 1 | 1 1 | 1
0 50 100 150 ¢, min 0 50 100 150 ¢, min

Figure 2. Dependences of the normal force Fy (a), tangential force Fy (b), observed contact area
A (c), average contact pressure p (d), nominal tangential stresses 7 (e) and formally defined friction
coefficient y (f). The insets to panel (b) show enlarged parts of the dependences for the minimum
and maximum values of the indentation depth dy. Each panel of the figure shows 6 dependences,
which correspond to the indentation depths dg = 0.0, 0.2, 0.4, 0.6, 0.8, and 1 mm (except for the panel
(f), where there is no dependence for dy = 0 mm); the direction of increasing depth dj is shown in the
panels by arrows (except for the panel (e)) (see also Videos S1-56).

After the change in the indenter’s direction of motion, the system needs some time to
establish stationary motion mode again, in which F, and T are (approximately) constants.
It can be observed in Figure 2 that, for motion of the indenter in the opposite direction, the
same stationary mode is realized, which indicates good repeatability of experiments. In the
case under consideration, the friction coefficient 4 = | Fy | /Fy, determined in a standard
way, loses its original meaning, since it becomes dependent on the indentation depth dj (see
Figure 2f). Such a sliding regime with constant stresses is well known and typical for soft
adhesive materials [18,40-42]. Under the assumptions of the half-space approximation and
Hertz contact (in normal direction), the friction coefficient y = F,/Fy at constant tangential
stresses T during tangential shear in the case of positive values of indentation depth d

can be estimated as [40]
3n(1 —1v?)1 | R



Machines 2023, 11, 583

8 of 21

The approximation (11) is only valid in the cases in which the adhesive component of
normal force is much smaller than the reaction force of the elastomer, i.e., if the total normal
force Fy > 0 N. From (11) it follows that at small indentation depth dy we have a very large
“friction coefficient”, up to infinite values at dy ~ 0 mm. This appears contradictory, but it
is a usual situation, because in the presence of adhesion there is always tangential force
during the shear, even at zero normal force. Such a friction mode in adhesive contacts
was experimentally observed more than 70 years ago [43]. Note that the formally defined
friction coefficient st = F/Fy can have negative values in adhesive contacts due to negative
normal adhesive force at small indentation depths [44].

Let us discuss separately the case with the indentation depth dy = 0 mm. In this
case, the contact exists only due to adhesion, and a stationary stick-slip motion mode
is realized (see Figure 2b). The mechanism of such a regime is as follows: the contact
area A monotonically decreases during shearing to a certain critical value due to the
destruction of the contact at its leading edge. In this case, the tangential force Fy also
decreases according to the prediction of Equation (10). With a further shift, a critical
moment comes when the contact area increases sharply due to the abrupt entry into contact
with the elastomer at the leading edge. These newly contacted areas do not contribute to the
friction force immediately after the onset of contact, since there are no tangential stresses in
them. However, with further movement, the “fresh” contact areas are loaded and cause an
increase in the friction force. As soon as the tangential stresses in the “fresh areas” of the
contact exceed the critical value, the decrease in the contact area at the leading edge begins
again, and the process repeats itself. In this stick-slip mode, only contact area A varies
abruptly (see the lower curve in Figure 2c), while the friction force Fy varies monotonically.

The behavior described above for the case dy = 0 mm is also observed at a certain
range of small indentation depths dy > 0 mm and can be traced in detail using the video
file attached to this manuscript (Video S1). If the indentation depth is sufficiently large,
the pronounced stick-slip mode disappears. Instead, stationary slip is established with a
friction force fluctuating around some constant value given by Equation (10). However,
the above-described features of the rearrangement of the contact area during shear are
preserved at any value of indentation depth d. In the case of large indentation depths,
the contact areas in which the elastomer detaches from the plate and comes into contact
again are more pronounced at the front and back contact boundaries (most often at the
front). In this case, the oscillations of the contact area become small compared to its mean
value (see the corresponding dependences A(t) in Figure 2c). Such small variations in the
contact size A cannot significantly change the friction force F, given by Equation (10),
therefore, after establishment of the stationary regime, it remains close to a constant
(Figure 2b). For all experiments shown in Figure 2, Supplementary Videos are attached
which allow detailed tracing of the evolution of contact forces, as well as contact configura-
tions (Videos S1-56).

Let us mention a few points common to all experiments. All dependences Fy(t) for
dp > 0 mm have a pronounced peak at the beginning of the tangential motion, after which
F, reaches a stationary value. We can call such a peak on Fy(t) the “stiction spike”; this is a
well-known phenomenon, in which the height of the peak increases with increasing rest
time of the system before the start of tangential motion [45,46], and it may be related to
the aging of the contact [47]. The dependences of the contact area A(t) in Figure 2c also
show a number of common patterns. In the indentation phase, the area increases linearly
up to a certain value. This behavior has a simple explanation; the half-space approximation
A = ma?® =~ ntRd. Since the indentation is performed with a constant speed v, the area A
increases linearly with the indentation depth d during the indentation stage. It is seen
in Figure 2¢, where all the curves confirm that, at the beginning, the tangential motion
leads to the gradual decrease in the area A. It is confirmed also by other experimental
works [14,15]. However, a stationary sliding mode is then established, in which the con-
tact boundary is constantly rebuilt. It is clearly seen in the videos attached to the article
(Videos 51-56). However, immediately after the reversion of the sliding direction (approxi-
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mately at the time # = 100 min), the contact area increases for some time. It increases to a
certain maximum value Amax, which is slightly larger even than the area corresponding to
the beginning of the tangential shift of the indenter (except for the curve at dy = 0 mm).

The increase in the area A with a change in the direction of movement may be associ-
ated with the presence of a secondary adhesive hysteresis, which can be easily explained in
cases of normal indentation. Namely, during normal indentation, the contact propagates
almost without adhesion, but upon subsequent detachment, the adhesion resists to the
point of destruction of the contact. With tangential motion, a similar situation occurs. New
areas of rubber on the leading edge come into contact almost without adhesion, and zero
tangential stresses are initially realized in these areas. At the same time, for separating
rubber from the indenter at the trailing edge, the stresses T must exceed the critical value
To. When the direction of motion changes, the tangential stresses first decrease to zero,
then change their sign until they exceed the critical 7. The contact is maintained now on
the trailing edge. Let us remember that before the change in motion direction it was at the
front. While the indenter is moving, the new regions come into contact at the leading edge.
This leads to the observed increase in the contact area each time the direction of indenter
motion is changed. In general, the motion of the indenter in both directions demonstrates
the same contact properties, and some peculiarities exist only at changes of the sliding
direction where the transient mode appears.

From the above explanations, one can conclude that an increase in the contact area A
during tangential movement is possible, but this requires a specific loading history: the
indenter must move in different directions in the horizontal plane, but always move from a
certain coordinate by no further than a limited distance Ax. In this case, the contact area
should first increase with increasing Ax, and then decrease if Ax becomes higher than the
critical value. It is known that, with an increase in the area, the adhesive strength of the
contact also increases. One can conclude that the adhesive strength of the contact can be
increased due to the action of vibrations with a small amplitude on the contact. However,
this assumption has to be checked experimentally. We plan to perform this experiment in
our future studies.

Figure 3 shows enlarged parts of the dependences of tangential force Fy, contact area
A and calculated average tangential stresses T = F, /A as functions of time t from Figure 2
for the indentation depth d = 0.2 mm. On all dependencies, Figure 3 contains three vertical
dashed lines (1, 2, 3) separating the contact propagation phases that we have identified.

In the vicinity of the dashed line 1, the tangential force Fy is at minimum and the
contact propagates with increasing area (points 14). For comparison, the left column of
right-hand panel of the figure shows screenshots of the contact area where color marks
the areas coming into contact. Such marks are absent in the initial picture 1, with which
the comparison is made. All the experiments show that the contact propagation happens
abruptly after addition of the relatively large sections at the leading edge. As a rule,
the friction force Fy at the moment of the next contact jump obtains a local minimum
determined by the relation Fy ~ T9A (10), because the area before every new propagation
of the contact is minimal. Furthermore, after the attachment of new sections of contact,
the friction force Fy starts to increase monotonically. This takes place in the range between
vertical lines 1 and 2. This is because, immediately after attachment, new sections on the
leading edge do not contribute to the friction force, since tangential stresses are absent.
However, during the motion, new sections become loaded with tangential stresses, so the
friction force increases.

The partial destruction occurs simultaneously with the contact loading. This happens
at stages 4-7, which are reproduced in the pictures with corresponding numbers in the right-
hand side panel of the figure. The contact area A starts to decrease almost immediately after
the moment when its size reaches the maximum value (stage 4), and continues decreasing
up to the moment when the friction force reaches its maximum (point 5). After that, Fy
begins to decrease (the area between straight lines 2 and 3) due to a decrease in the contact
area. The tangential stress jumps shown in Figure 3c are a kind of non-physical artifact,
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because Figure 3c shows the average value of stresses T = Fy/A. The formally calculated
value T always sharply decreases when new contact areas attach due to an increase in the
area A. There are no tangential stresses in the “new” areas immediately generated after
instant contact propagation. To determine the exact behavior of 7, one has to determine
its distribution over the contact zone, which is difficult to implement experimentally.
Therefore, for a better understanding of the processes of contact propagation, it is necessary
to apply either analytical theoretical models or computer simulation, which is presented in
the next section of this paper.

| 1

48 50 52t, min

Figure 3. (Left panel) Enlarged parts of dependences of tangential force Fy (a), contact area A (b) and
tangential stresses T (c) on time ¢, corresponding to the indentation depth d = 0.2 mm (coincides with
the dependences shown in Figure 2, see also Video S2); (right panel)—photographs of the contact
area corresponding to points 1-7 on the dependencies in the left panel of the figure. In photos 24,
the areas of contact change are shown in color compared to photo 1; in photographs 5-7, the areas of
contact change are shown in color compared to photograph 4. The areas that come into contact are
shown in red, and those leaving the contact are shown in blue. Photo 4 is shown twice: at the bottom
of the panel with an illustration of changing contact area, and at the top of the panel without it.

From the above description, the following conclusion can be drawn. The friction force
is more or less determined by the relation Fx = TA, and the stresses T are constant values
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in the stationary sliding mode. However, this is not valid for the relation between the
dependences Fy(t) and A(t) in the sense that, in the sliding mode, the friction force is in
fact not strictly proportional to the area. In particular, the maxima and minima of Fy(t) and
A(t) in Figure 3 do not coincide. For example, point 5 corresponds to the maximum
friction force Fy, but the contact area A continues to decrease at this point. The reason
for such behavior lies in the inhomogeneous distribution of tangential stresses T over the
contact area. During the shear at the leading edge, new elastomer sections constantly come
into contact and the contact area A increases. Sharp changes in the area do not affect the
friction force Fy, because T = 0 in the “fresh” contact areas. Further shift causes a monotonous
increase in the stresses T in such “fresh” sections, and new sections may come into
contact, etc.

All this leads to a non-uniform distribution of stresses over the contact plane (x, y)
and a different contribution of contact areas to the friction force Fy(x, y) = T(x, y)AA. As
the indentation depth d increases, the effect of the inhomogeneous distribution Fx(x, v)
decreases as well. This happens since the “new” contact areas become negligible compared
to the total contact size. In this case, the measured friction force Fy(t) in the stationary
sliding mode becomes close to a certain constant value. However, if 4 is small enough,
then the boundary areas of the contact become decisive, and the friction force Fy(t) takes
a sawtooth form corresponding to a classic stick-slip mode (see inset to Figure 2b at
d = 0.0 mm and Video S51). However, in contrast to the classical stick-slip mode, the
friction force Fy(t) does not experience abrupt changes, since there is no fast slip of the
indenter, because in our experiment it always moves at a constant velocity v =1 um/s. The
attachment of new contact areas does not lead to a change in the friction force, but means
that the process of reducing the friction force F, due to a decrease in the contact area A
is replaced by a stage of Fy increase due to the loading of the newly contacted areas (see
Video S1). Such a behavior has already been discussed by us earlier [18].

The above analysis is based on the concept of a quasi-static contact, i.e., the contact
propagation process is considered rather slow. Partially, such conditions are created due to
the very low shear rate v of the indenter (in our experiments, this v =1 pm/s). However,
despite the low shear rate, fast processes still occur in the contact zone, which cannot be
described in terms of a quasi-static contact. The mentioned processes are associated with
the restructuring of the contact, namely, with the attachment of new areas, the separation
of rubber from the indenter at the trailing edge, and local slippage in the contact areas in
which the tangential stress T(x, i) exceeds the critical value. Together, all these processes
combine to propagate elastic waves in the contact zone, which can be observed with the
naked eye. The propagation of elastic waves in the contact zone of a soft elastomer (rubber)
and a rigid indenter during tangential motion was observed experimentally more than
50 years ago, and such waves were called Shallamach waves [26]. However, despite the
sufficient number of both experimental and theoretical works devoted to study of elastic
wave propagation (see, for example, [48-51]), there is still no complete understanding of
this process. This is primarily due to the complexity of the process, which consists of a
series of local slips.

In the Videos S1-56, it is difficult to see the propagation of waves in the contact zone,
since a very low indenter velocity was chosen, and the specific work of adhesion was rela-
tively small. However, the waves are well visualized in Video S3 from the Supplementary
Materials of our recent work [29]. The only difference between the experimental conditions
described in [29] and the present study is that in [29] the surface of the indenter before the
experiment was briefly treated with an aqueous solution of ferric chloride FeCls. In this
case, a thin layer was formed on the surface of the indenter, which provides a significant
increase in the specific work of adhesion (of more than 10 times). Therefore, in the case
of tangential shear, to ensure the conditions for the onset of slippage, it is necessary to
achieve higher values of shear stresses and associated strains. Therefore, in the sliding
mode, complex dynamic processes of the propagation of elastic waves are clearly observed.
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3.2. Numerical Results

A conceptual image of the numerical model is reproduced in Figure 4. The ball is
represented here by a transparent sphere properly positioned on the substrate. The image
gives a general impression of the mutual relations between the radius of the ball, indentation
depth and contact region used in setup of the numerical model. The deformations of the
surface are visualized by the transformable horizontal grid lines plotted over the surface.
Bright contours outline a region of sufficiently small distance between the ball and substrate
with strong adhesion. This area, which is seen through the transparent sphere inside the
contour, is depicted by a dark grey-blue color.

Figure 4. Conceptual image of the numerical model. The rigid ball is shown by a transparent
sphere contacting the substrate. The deformations of the surface are visualized by the transformable
horizontal grid lines plotted over the surface. Bright contours outline a region of sufficiently small
distance between the ball and substrate with almost perfect adhesion. The corresponding area inside
the contour has a dark grey-blue color.

The same configuration for a longer substrate is reproduced in the dynamics in the
Supplementary Video S7. This video demonstrates all the effects mentioned in the main
text. In particular, quasi-periodic deformations of the surface are clearly seen with the
help of the transformable horizontal grid plotted over the surface. To mark a region of
sufficiently small distance between the ball and substrate (colored by dark grey-blue)
we use a bright contour curve which outlines with almost perfect adhesion. One can
notice how this contour varies at the periods when the surface strongly deforms, following
the ball due to adhesion and slowly returning back to an almost unperturbed surface
between them.

A small square following the contact region is magnified in Figure 5. This figure
reproduces the typical instant distribution of the distance between the surface and ball
using a standard MatLab “jet” colormap with red and blue colors corresponding to large
and small local values of the spatially distributed variables, respectively. The subplot (a)
here shows the instant distribution of the distance, found using a fast-scattered procedure.
The second subplot (b) reproduces the same map interpolated into the regular equidis-
tant grid, corresponding to the expected (physically measurable) distance. The curves
plotted over the colormap in the second subplot illustrate the mutual relation between
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the elastic deformations of the surface and the distributions visualized in the numerically
fast procedure.

Distance Distance

90 90
80 80
70 70
60 60
> 50 > 50
40 40
30 30
20 20
10 10
60 80 100 120 60 80 100 120
X X

Figure 5. Typical instant distribution of the distance between the surface and ball shown through
fast (scattered) map and the same distance interpolated into the regular equidistant grid (subplots
(a) and (b), respectively). The standard “jet” colormap from MatLab is used, where the largest and
smallest values correspond to deep red and blue colors, respectively, and all intermediate ones are
distributed around the yellow-green part of the spectrum. The curves plotted over the colormap
in the second subplot demonstrate a correlation between physical deformations of the surface and
distance distribution visualized using a fast numerical procedure.

Instant spatial distributions of different physically interesting values are summarized
in Figure 6. In particular, the local velocity, vertical coordinates, adhesion condition and
formally calculated local friction coefficient y(x, y) are simultaneously displayed in the
subplots (a) and (b) as well as (e) and (f), respectively. Two internal subplots, (c) and (d),
mutually combine the information presented in different colormaps because they present
specially colorized central one-dimensional cross-sections of the velocity and vertical
coordinate. In particular, the colorized curves show how strong local adhesion influences
the effective friction coefficient and local horizontal velocity in the corresponding region.

It is important to note that, in the frames of the model, the ball is forced “to be hung”
at an almost fixed height Z ~ Z;. Adhesive attraction locally lifts the substrate segments
z(x, y) from their equilibrium positions zy(x, y) and formally calculated combination of the
local pressure, and such a lifting (vertical component of the force acting on the substrate)
becomes negative. As a result, the formally calculated friction coefficient y(x, y) in such
lifted regions becomes negative as well.

The time dependencies of the integral values of tangential F, and vertical Fy forces and
total contact area A are shown in Figure 7. These values are reproduced in the subplots (b),
(d) and (a), respectively. Additionally, the mutual relation between the integral values of
tangential force and adhesion area is reproduced in the subplot (c). This subplot reproduces
the physically important difference in the behavior of systems with small indentation (and
the relatively important impact of the adhesion on the total friction) and the systems under
deeper indentation where friction is mainly controlled by the “ordinary” deformations of
the substrate by the moving ball in both vertical and horizontal directions.
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Figure 6. Instant spatial distributions of the local velocity (a), vertical coordinate (b), adhesion

condition (e) and formally calculated local friction coefficient (f). In two internal subplots, central

cross-sections of the velocity v(x) (c) and vertical coordinate z(x) (d) are plotted. They illustrate mutual

correlation between all the values shown in this figure. In particular, the colorized curves show how

strong local adhesion influences the effective friction coefficient and local horizontal velocity in the

corresponding region.
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Figure 7. Time dependencies of the integral values of tangential Fy (b) and vertical Fy (d) forces
and total contact area A (a). The mutual relation between the integral values of tangential force and
contact area T = Fy/A is reproduced in subplot (c). This plot reproduces the physically important
difference in the behavior of the systems with small indentation and relatively large impact of the
adhesion into the total friction and systems with deeper indentation, where the adhesion is less
important and friction is mainly controlled by the deformation of the substrate by the moving ball.

To visually separate the curves from these two limiting cases, they are shown by colors
from red and blue parts of the spectrum, respectively. The intermediate situation where
adhesive and ordinary impacts on the friction force are comparable is reproduced by the
green curves.

Starting from some (sufficiently strong) indentation, the role of the adhesion becomes
practically negligible and normalized to the blue adhesion area curves in subplot (a),
which completely deviate one from another. It is expected that in this region the friction
coefficient y = Fy/Fy should become constant, and completely cease to depend on the
indentation [43]. To confirm this, as well as to calculate the stationary friction in all other
regimes, it is interesting to determine an effective friction coefficient, formally calculated
as an asymptotic f — oo relation between the total tangential and normal forces for all the
indentation values.

The time-dependent total friction coefficient obtained at different indentations is
shown in Figure 8. In subplot (a) of this figure, three qualitatively different characteristic
values of the indentation: weak, intermediate and strong, represented by red, green and
blue curves, respectively. The final results, obtained for these regions for the stationary
limits of the friction coefficient, are also marked by the colored rectangles in subplot (b).
It is seen that, for some intermediate indentation dy where total vertical and horizontal
forces approximately equilibrate one another, the time-dependent integral coefficient p(t)
passes through an instability and globally changes its sign. One can note also that, at
strong indentation, the final friction coefficient y (at t — o) does not practically depend on
indentation depth d (see plot (b)).
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Figure 8. Time-dependent total friction coefficient obtained at different indentations dy. Characteristic
values of the indentation—weak, intermediate and strong—are plotted by the red, green and blue
curves, respectively (a), as well as marked by the colored rectangles in the subplot (b). It is seen
that, for some intermediate indentation dy, when total vertical and horizontal forces approximately
equilibrate one another, the formally calculated integral coefficient y(t) = [, u(t; x,y)dxdy passes
through an instability at d = d. ~ 0.7945 during a short-time run and its limit at {—co changes its sign.

Supplementary Video S8 reproduces in dynamics the simultaneous evolution of all the
physically interesting spatial distributions shown in the previous Figures 4-8 at different
indentation depths. The correlation between the variations of the densities shown by the
artificial colors (in the standard MatLab “jet” colormap), integral parameter values and
measurable forces is seen directly. As in Figure 6 above, for a convenient comparison,
the lines reproducing cross-sections along the central axis of the velocity and vertical
coordinates are colorized by the same colors as the local values of the adhesion and friction
coefficient, respectively.

The value of the friction coefficient averaged over whole the system, found as an
asymptotic result of a stationary process, is accumulated step by step in the final subplot
during the increase in the indentation depth. Quite clear mutual correspondence between
different dynamic behaviors of the spatially distributed values, time dependencies and
final results for the friction coefficient u(t — o) can be observed in Video S8.

Depending on the relations between substrate elasticity, adhesion and damping con-
stants, as well as indentation depth, the fine structure of the processes shown in Figures 4-6
and the corresponding video can be more or less pronounced. In particular, under appro-
priate conditions (as well as the experimental ones described above), the visual contact area
determined by the adhesion conditions can demonstrate strong fluctuations at either the
front or back boundary, or even both simultaneously.

One example of such a case is recorded by us in Video S7; strong fluctuations in
the back front are visible. The fine structure of the small area surrounding the con-
tact, as well as the physically measured values, were also studied by us and recorded in
Video S9. This video simultaneously records a sequence of instant configurations shown
in Figure 9, and time dependencies of the physically measurable values reproduced in
Figure 10. The distributions of the distance between the ball and surface around the con-
tact region shown in Figure 9 were accumulated for the equal time intervals At starting
from the initial moment ¢* chosen after a transient adjustment of the given indentation
was self-consistently finished. One can note that this sequence closely resembles typical
experimentally observed configurations.
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Figure 9. Sequence of instant configurations of the contact region accumulated for the equal time
intervals At = 11.25 starting from an initial moment " =11.7 close to the end of indentation in the
normal direction. The first interval t* + At = 22.95 shows the initial adaptation of the surface to the

tangential motion. The third snapshot at t* + 2At = 34.2 is approximately close to the beginning of a
stationary process.
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Figure 10. Time dependencies of the tangential force Fx (a), normal force FN (b) and normalized
contact area A (c) corresponding to the sequence of instant configurations of the contact region
presented in the previous figure. The starting moment t = t* = 11.7 in each subplot is marked by the
first (red) vertical line. The second (blue) vertical line at t = t* + 2At = 34.2 marks a moment when the
initial transient process is finished and the system starts its quasiperiodic oscillations. One can note
also the obvious correlation between such oscillations of the friction and vertical forces, as well as the
corresponding variations in contact area.

Corresponding time dependencies of the physically measurable values are plotted
in parallel to this simulation. A static presentation of these results is given in Figure 10.
The moment in time when the process becomes stationary is marked by the vertical blue
line in each subplot of the right panel in Video S9. This is the moment when the transient
adjustment at a given indentation has just been finished. Watching the video, one can note
also an obvious correlation between the periodic oscillations of friction and vertical forces
which self-consistently follow a variation in the area of strong adhesion. It should be noted
that Video S9 clearly shows the propagation of elastic waves in the contact area (Shallamach
waves [26]) in the stationary mode of tangential shear.

4. Conclusions

To conclude, we combined experimental results and a numerical model, which repro-
duces some features of the processes experimentally observed during motion of an adhesive
ball along an elastic substrate, while we considered a system which can be characterized
more as a two-dimensional elastic foundation rather than an elastic half-space or elastic
layer. The experimental study of the process of friction between a steel spherical indenter
and a soft elastic elastomer, with a strongly pronounced adhesive interaction between the
surfaces of contacting bodies, is presented. It is shown that, under conditions of uni-lateral
sliding, it is the interface stress which characterizes the contact rather than the coefficient
of friction, which loses its meaning. A numerical model is proposed that satisfactorily
describes the experimentally observed effects, despite its simplicity and the essential dif-
ference in the properties of the considered elastic layer from those used experimentally. It
was found that the 3-dimensional model leads to dynamic scenarios which qualitatively
reproduce the correct behavior of the physical system. Qualitatively correct images of
the processes in the system are accompanied by quite reasonable results for the experi-
mentally measurable values. Numerical experiments in the frame of this model can be
used to accompany or sometimes precede time-consuming experimental studies to obtain
better preliminary understanding of the adhesive processes, which underlines our physical
expectations and are confirmed by visual observations. This means that the experimentally
observed behavior can be qualitatively described, even with a simple model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/machines11060583/s1, Videos S1-S6: Development of contact config-
uration, normal and tangential contact forces after normal indentation and subsequent tangential
motion. A rough steel spherical indenter with radius of curvature R = 22 mm was indented to the
substrate layer of soft transparent rubber TARNAC CRG N3005 with thickness of 1 = 25 mm. Firstly,
the indenter was indented to the depth dy. After that, the indenter was moved in tangential direction
to the distance x = 5 mm. Subsequently, it was moved in the opposite direction to the initial coordinate
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x = 0 mm. Finally, the indenter was lifted up until the contact was completely destroyed. The velocity
of the indenter movement both in normal and tangential directions was v = 1 um/s. The videos
present the normal and tangential forces, the averaged contact pressure, the nominal tangential
stress, and the formally calculated friction coefficient (for dyg = 0 mm there is no panel with friction
coefficient) vs. time (hours) as well as evolution of contact area. The full contact area and the contact
areas to the left and to the right from the vertical dashed line are shown. The dashed vertical line
corresponds to the center of the contact, obtained during normal indentation, this line moves together
with the indenter during its tangential motion. Videos S1-56 correspond to different indentation
depth dy =0.0,0.2, 04, 0.6, 0.8, and 1 mm. For dy = 0 mm, the indenter was immersed in the elastomer
to a depth of 4 = 0.2 mm at the beginning, after which it was raised to the level dy = 0 mm, and later it
was shifted in the tangential direction. Video S7: Conceptual reproduction of the dynamic process.
The ball is shown by a transparent sphere which moves along the substrate at typical (intermediate)
values of the damping, adhesion and indentation, at which all the effects mentioned in the main text
are presented. Quasi-periodic time-dependent deformations of the surface are clearly seen due to
the transformable horizontal gridlines plotted over the surface. Bright contours outline a region of
sufficiently small distance between the ball and substrate (colored by dark grey-blue) with almost
perfect adhesion. Video S8: Simultaneous evolution of all physically interesting spatial distributions
shown by the artificial colors of standard MatLab “jet” colormap, integral parameter values and
measurable forces. For convenient comparison, the lines reproducing cross-sections along central
axis of the velocity and vertical coordinate are colorized by the same colors as the local values of
the adhesion and friction coefficient, respectively. The value of the friction coefficient averaged over
whole the system, found in asymptotical stationary process, is accumulated in the final subplot as a
function of the indentation depth. Video S9: Time evolution of the close view of contact region shown
in the “jet” colormap. Horizontal grid plotted over the surface and white contour, which outlines a
region of strong adhesion, visualize corresponding spatial distributions in dynamics. “Frozen” static
configurations of the contact region are recorded in different subplots (periodically recorded after
fixed time intervals At between them). The right panel shows time dependencies of the mutually
correlated integral tangential and vertical forces, accompanied by the variations in contact area.
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