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Abstract: Reducing the deviation effect from the specified machining conditions on the quality of
the process in real time is the desired result of the intelligent spindle control system. To implement
such a control system, a dynamic interaction model of the technological machining system with
the cutting process was developed. The transfer matrix method of a multibody system was used
in the development of the dynamic model. The physical closure condition of the technological
machining system for using the transient matrix method is implemented in the developed model
by introducing into this model an additional elastic coupling of the contact between the tool and
the machined workpiece. The model is presented as a dynamic model of the elastic system “spindle
unit-workpiece/tool—cutting process—tool/workpiece”. To develop the dynamic model, the system
decomposition was performed with an analytical description of the joint deformation conditions
of the subsystems and the use of the transient matrix method to calculate the harmonic influence
coefficients of these subsystems. The proposed approach is used to calculate the native vibration
frequencies of the spindle with the workpiece fixed in the chuck and supported with the tool. The
calculation results correspond to the experimental ones and quite accurately represent their trends

for different contact interaction conditions.
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1. Introduction

The development of automated production is based on the operation of cyber—
physical systems, which allow to observe and control the physical production process
based on the results of virtual simulation using digital twins [1]. Digital twins combine
real physical systems with an appropriate virtual representation and serve primarily
to model and optimize production processes [2]. At the same time, the main effort in
the development of digital twins of machining processes is aimed at reducing the gap
between virtual simulation and real physical processes [3,4]. Machining equipment with
the ability to monitor and control multiple process modules is called “smart machine
tools” or “intelligent machine tools” [5]. The spindle units of these machines are called
“intelligent spindles” [6]. Intelligent spindle development is based on research in six
main areas, including tool state monitoring and control, vibration, spindle damage,
temperature/thermal error, spindle balancing, and spindle durability. The basis of the
smart spindle control strategy is to reduce or exclude the impact deviations from the
set machining conditions on real-time machining quality. In this case, processing error
compensation methods are based on measurements and models.

A critical review of the historical development, main problems, and trends in the
design and functioning of the spindle unit as an integral quality assurance system is pre-
sented in a study by Abele et al. [7]. The modeling and analysis goal of spindle units are
defined according to the authors as a simulation of spindle operation and optimization of

Machines 2023, 11, 582. https:/ /doi.org/10.3390/machines11060582

https:/ /www.mdpi.com/journal/machines


https://doi.org/10.3390/machines11060582
https://doi.org/10.3390/machines11060582
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-6603-1710
https://orcid.org/0000-0002-5993-8779
https://doi.org/10.3390/machines11060582
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11060582?type=check_update&version=2

Machines 2023, 11, 582

2 0f 33

its design parameters. This is performed at the design stage to maximize dynamic stiff-
ness and increase the material removal capacity with minimal size and minimum power
consumption. This simulation is supposed to determine the dynamic characteristics of the
mechanical system of the spindle unit. The spindle design and the factors associated with
its configuration, installation, and operating conditions must be taken into account. Altintas
and Cao considered spindle assemblies as an integral element of the mechanical part of
the machine tool dynamic system [8]. Therefore, their dynamic characteristics depend on
the character of mechanical connections with other system elements. Bach [9] and Zhang
with colleagues [10] considered spindle assemblies carrying a workpiece or tool as complex
mechanical oscillating systems with periodically changing mass—inertial characteristics
and, accordingly, changing dynamic characteristics. In this case, the effect of different
workpieces and mandrels with different tools were investigated. Hentati et al. [11] and
Hu et al. [12] found a direct dependence on the machining accuracy of the spindle bear-
ing system, which directly affects the dynamic characteristics of the machining system.
Further studies in this field have established the existence of several zones of local res-
onances in the operating frequency range of spindle units [13,14]. The authors associate
this with the proximity of the natural and forced vibrations caused by the cutting process
dynamics. In addition, it has been found that this phenomenon is also caused by bearing
defects [15]. When selecting the spindle unit design scheme and optimizing the spindle
constructive parameters at the design stage, the spindle unit is usually represented as
a “spindle-bearings” system, and its dynamic model is represented as a set of spindle
dynamic models and bearings [16,17]. The finite element method (FEM) is most commonly
used to build a dynamic spindle model. In this case, the spindle is represented as an elastic
axisymmetric shaft with a distributed mass, modeled by Euler-Bernoulli, Rayleigh, or
Timoshenko beam elements [16,18]. Using FEM allows to obtain the most accurate simula-
tion results, but the creation of the model is associated with significant time consumption
and complexity.

Among other ways to describe the spindle unit dynamics is to use the transfer matrix
method [19]. The general approach to the application of TMM for determining the modes
of bending and torsion of beams is presented in [20]. This method is based on solving the
problem of bending eigenmodes of a beam element with a constant cross-section and a
uniformly distributed mass. Compared to FEM, TMM has a few advantages. In particular,
the direct characteristics of the model are involved in the TMM calculations [21]. These
include stiffness and damping coefficients. These coefficients can be determined experimen-
tally or from reference data. In addition, using the TMM method does not require solving
a large equation system with a substantial number of beam model elements. The main
advantage of using TMM is the simplicity of creating a computational dynamic model for
the spindle unit with a sufficiently high calculation accuracy. However, the known models
of spindle units [21-23] built using TMM are structurally limited to describing only the
“spindle-bearings” system.

The representation of the spindle unit as a constituent element of the mechanical
part from the machine tool dynamic system can be solved using the TMM method for
a multibody system [24]. The main idea of the transfer matrix method of multibody
systems (MSTMM) is the initial decomposition of a complex system into elements with
simple dynamic characteristics [25]. For systems consisting of elastic and rigid components,
the MSTMM reduces the dynamics problem to a general transfer equation [26,27]. This
equation includes only the boundary state vectors. There is no need to repeatedly output
most of the transfer matrices with simple elements, since the most common matrices are
provided in the transfer matrix library [28].

A further development of the MSTMM method for controlled multibody systems is
the discrete time transfer matrix method for controlled multibody systems (CMS) [29]. The
method’s peculiarity is the boundary state vectors forming by taking into account the
control and back-coupling parameters on the results of actuator motion parameters tracking.



Machines 2023, 11, 582

30f33

The main task of controlling machining processes on metal cutting machines is to
ensure the stability of the cutting process by limiting the maximum cutting depth. Boundary
cutting modes are determined by modeling the dynamic interaction between the cutting
process and the machine structure [14,30,31]. The cutting process is mainly described by
single-mass models with one (SDOF) or two (25DOF) degrees of freedom [13,30]. However,
there are known applications of models with a larger number of degrees of freedom [32]. The
simulation results of the cutting process are presented in the form of a stability lobes
diagram (SLD) used to select the vibration-free machining modes (see, e.g., [25]). Depending
on the relative stiffness of the workpiece and cutting tool, three different dynamic models
of the technological system (TS) are usually proposed. These models take into account
either the tool compliance [30], the workpiece compliance [33,34], or the compliance of the
tool-workpiece pair [14]. The authors determined the generalized dynamic characteristics
of the tool-workpiece system, only taking into account their coordinate relationship. In
this case, the dynamic interaction between the two multiple elastic systems of the machine
was not taken into account. Sun and colleagues presented the milling process of a thin-
walled plate with an end milling cutter for three dynamic models: an elastic tool, an elastic
tool-workpiece pair, and an elastic workpiece model [31]. The model form is determined
by the character of the workpiece stiffness change during material removal relative to
the tool stiffness. The dynamic model is based only on the vibration responses of the
cutter, dynamic parameters, and cutting forces. Similar studies on the stability models for
turning cutting processes were considered in [35-37]. Thus, only in dynamic models of a
pliable tool-workpiece pair is the cutting process an organic part of the interaction process
between the tool and workpiece, which determines the coupling of their vibrations. In other
cases, the authors determined the generalized dynamic characteristic of the tool-workpiece
system by only taking into account their coordinate coupling, i.e., without taking into
account the vibrations coupling.

When using MSTMM to describe the interaction of elastic machine systems through
the cutting process, Rui et al. [27] also proposed to consider the contact between the tool
and the workpiece in the cutting zone only by a coordinate coupling equation in the
form of the joint strain equation in the contact zone. The dynamic vibration coupling
of the elements interacting through the cutting process is not taken into account in this
case. The kinematics and kinetics consideration principle of mechanics in terms of the
MSTMM method was considered by Chen and colleagues in the example of modeling a
beam with mountings [26]. They proposed to take into account the coupling between the
contacting bodies through the introduction of an additional elastic coupling between them.
This is the approach characterized by the receiving communication substructure analysis
(RCSA) method. This method was first applied by Schmitz and colleagues to predict tool
tip susceptibility during milling using a frequency response function (FRF) [38]. They
established the main advantages of the RCSA method [39]. In particular, these advantages
are the ability to analytically predict the tool tip FREF, the ability to combine the model
and measure the assembly components, and the ability to account for all measured or
simulated vibration waveforms within the desired bandwidth without computational
cost. Schmitz and Donalson presented an analytical formulation for free tool FRFs when
describing the tool as a cantilever beam with distributed mass [40]. Thus, the FRF of
individual substructures of the spindle-mandrel-tool system can be calculated analytically
or obtained experimentally, and the parameters of their connection are taken into account
when obtaining the FRF of the complete assembly [41]. Honeycutt and Schmitz proposed
using the RCSA method to predict the frequency response functions when milling a
thin-walled plate represented as a beam with varying free end thicknesses [42]. Such
an application of the RCSA method to determine the frequency response functions of
composite structures allows to extend its application and, also, to describe the dynamic
interaction of the workpiece and tool in the cutting process.
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2. Materials and Methods

The developed model describes the dynamic interaction of the workpiece and tool in
the cutting process and ensures the numerical characteristics determination for the coupled
vibrations of the machine structure’s conjugated elements. The following basic principles
were used to develop a dynamic model of a metal-cutting machine tool:

e  The interaction of the cutting process with the elastic system of the machine tool is
represented by a closed dynamic model;

The elastic system of a machine tool is a set of coupled mechanical partial subsystems;
In the closed dynamic model of the machine tool, the cutting process is taken into
account as an elastic connection between the subsystems of the workpiece and tool;

e  The elastic coupling is given with the stiffness coefficient equal to the ratio of the
change in cutting force to the change in depth of cut;

e  The coordinate relation between the workpiece and tool subsystems is defined by
the condition of joint elastic deformations at the place of their contact. The dynamic
vibrations coupling of the workpiece and tool is determined by the stiffness of the
elastic coupling between them.

The developed dynamic model was verified by the dynamic identification method [43]. The
natural vibration frequencies of a mechanical system are the main dynamic characteristics of
this system and provide an opportunity to evaluate the effect of applying dynamic loads of var-
ious kinds. Therefore, the experimental verification of the developed dynamic model is carried
out through the comparison of the measured and calculated values of natural frequencies of
the “spindle-workpiece-tool” subsystem [44]. The workpiece shape, its clamping, and loading
parameters were selected so as to ensure a significant effect of these parameters on the change
in the natural vibration frequency of the “spindle-workpiece-tool” subsystem. Therefore, solid
and tubular workpieces were chosen for the experimental study. Such workpieces differed
significantly in mass and insignificantly in stiffness. The different stiffnesses of the workpieces
were ensured by the value of their overhang and the point coordinate of the workpiece pressure
with the tool [45,46].

2.1. Materials

Experimental studies were carried out on Gear Head Lathe GH1230 (Warren Machine
Tools Ltd., Guildford, UK, “Warco”, 2013 production) in two stages. In the first stage,
measurements of the cutting forces during the quasi-orthogonal cutting process were
performed. In the second stage, free damping vibrations of the workpiece clamped in the
three-cam chuck of the machine were measured. The setup for the experimental studies is
shown in Figure 1. Cylindrical rods manufactured from heat-treated AISI 1045 structural
steel were used as the workpieces. The mechanical and thermal properties of this material
are listed in Table 1.

The solid and tubular workpieces were used for the experiments. The initial diameter
of the workpiece was & 32 mm, and the inner diameter of the tubular workpiece was
@ 24 £ 0.15 mm. After cutting the workpieces to the required length, they were pre-
machined using a longitudinal turning along the outside diameter to the size of J 30 mm.
The workpiece length during the measurement of the cutting forces and natural frequencies
was 180 mm. Before the experimental studies, the workpieces were annealed to ensure a
homogeneous material structure and the absence of residual stresses. The hardness of the
workpieces after annealing was 180 HB. To measure the free damping vibrations of the
workpiece and to implement the orthogonal cutting process, shoulder grooves were formed
on the workpiece by plunge turning. Grooving was performed using a cut-off tool with
an insert width of 3 mm. The shoulder width was 3 mm (see Figure 1). To implement the
process of quasi-orthogonal cutting when measuring cutting forces, a cutting tool equipped
with a T15K8 carbide plate from the two-carbide-titanium—tungsten material group of the
TC-WC—Co system (material analog: MC111 Sandvik Coromant, Sandviken, Sweden) was
used. The T15K8 carbide plate was brazed onto the cutter body. The width of the carbide
plate was 5 mm to ensure free orthogonal cutting. The tool rake angle was ¢y = 0°, the
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clearance angle was a = 8°, and the curvature radius of the cutting edge was p = 20 um.
The cutting speed was V¢ = 160 m/min, and the cutting feed was f = 0.2 mm/rev. When
measuring cutting forces, the cutting process was repeated at least 10 times. The results
of measuring the cutting forces were averaged over these repetitions. The maximum
uncertainty in measuring the cutting forces was not more than 10%.

Piezoelectric sensor|
type PCB 353815 £

/ : .
q ‘ 3-component
7 | S dynamometer

Figure 1. Experimental setup for measuring free damped vibrations.

Table 1. Mechanical and thermal properties of the steel AISI 1045.

ng%%;h Elastic Elongation Hardness Poisson’s Specific Heat Thermal Thermal
Modulus (%) (HB) Ratio (J/kg-K) Expansion Conductivity
Tensile Yield (GPa) (um/m - °C) (W/m-K)
690 620 206 12 180 0.29 486 14 49.8

During preliminary workpiece machining along the outside diameter by longitudinal
turning, as well as during the formation of shoulder grooves and measuring the cutting
forces during free orthogonal cutting, the workpiece was pressed by the machine’s tail-
stock due to its significant overhang. During the experimental studies to determine the
natural frequencies, measurements were carried out on a cantilevered workpiece. This
workpiece clamping increased the effect of changing the load application point from the
tool. The workpiece shape for implementing the free orthogonal cutting process and for
free vibrations measurements was identical.

Before measuring the free damping vibrations, the workpiece was clamped in a three-
jaw chuck. The cantilevered clamping of the workpiece enables the best experimental
conditions for evaluating the dynamic characteristics of the lathe [47,48]. The length of
the console part (overhang) of the workpieces when clamped in the chuck was 122 mm.
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Before the measurements, the workpiece was pressed with a cutting tool in the area of
the prefabricated shoulder at different distances from the chuck edge to the tool position
coordinate. This tool point coordinate varied on five levels in steps of 20 mm, which were
L1 =122 mm, L, =102 mm, L3 = 82 mm, L4 = 62 mm, and L5 = 42 mm (see Figure 1). The
pressure force of the cutting tool was set by the signal of the dynamometer. The value of
the pressure force corresponded to the value of the thrust force Fr. This value was set either
from the measured values of the cutting forces or according to its value determined using
an analytical cutting model or using a numerical simulation. Free damping vibrations were
excited by impulse loading of the workpiece through a directed impact with an impact
hammer. The vibrations were measured using a PCB 353B15 piezoelectric sensor mounted
on the corresponding shoulder of the workpiece. The analog sensor signal was amplified
by the PCB 480E09 preamplifier and transferred to the NI USB-9215 measurement card
equipped with an analog-to-digital converter. The resulting digital signal was saved and
processed on a PC using MATLAB software. A measurement scheme of the workpiece’s
free damping vibrations is shown in Figure 2.

Engine lathe

PCB 353B15

NI

USB-9215

Figure 2. Scheme for measuring the free damped vibrations of the workpiece.

2.2. Methods

The model of the spindle unit is developed as part of a closed dynamic machine
system. The following assumptions are applied when forming a computational model of a
spindle unit using TMM [21]:

e  The spindle unit is considered a linear dynamic system with distributed and concen-
trated parameters;

e  The spindle bearings have radial, axial, and angular stiffness, with linear stiffness and
damping characteristics;

e  The elastic-inertial and damping properties of the spindle and its bearings do not
change with the rotation angle, i.e., are isotropic in the plane perpendicular to the
spindle rotation axis (axisymmetric problem).
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2.2.1. Model of the Spindle Unit System

Taking into account these assumptions, the machine tool spindle in the calculation
model is represented in the form of a stepped beam mounted on elastic bearings with
viscous damping. Large parts mounted on the spindle (pulleys, gears, etc.) are represented
as concentrated masses. The spindle body is divided into several sections (beam elements),
separated by an abrupt change in the diameter or by the presence in the spindle section of a
concentrated mass, a bearing, or an external concentrated load. Each section is characterized
by a constant distributed mass and bending stiffness. The spindle transfer matrix, which
relates the stress—strain state parameters at its ends, is the result of the transient matrices
product from its sections. The spindle unit dynamic model is represented as an elastic
axisymmetric shaft with a distributed mass, modeled by Euler-Bernoulli beam elements.
This modeling method is based on the problem solution of natural bending vibrations of
a beam element (a beam section) with constant cross-section and a uniformly distributed
mass [49]:

oy (x,t %y (x,t
ET ya(x4 ) 4 m ya(tz ) _o, (1)
where y(x,t)—transverse displacement of the beam section; x—axial coordinate of the beam
section; E-I—bending stiffness of the beam section; m—unit length mass of the beam section;
t—time.

Representing the transverse displacement of a beam section with abscissa x as
y(x,t) = y(x)-sin(w-t), where y(x) is the amplitude of transverse displacement, and w
is the circular frequency of the natural vibrations, Equation (1) will be obtained as an
ordinary homogeneous differential equation of the fourth order:

o4
@y(x) +puty(x) =0, @)
where y is the frequency parameter of the natural vibrations: y = 1 '”E'f‘fz .
The solution of Equation (2) will be found in the form:
Y =) + L5+ MR+ ot o
7 u2-E-1 u3-E-1 ’

where 1, 69, My, and Qp are the transverse displacement amplitudes, rotation angle,
bending moment, and shear force in the initial intersection of the beam section (x = 0); [ is
the length of the beam section; and P(x), S(x), R(x), and T(x) are functions of the forms:

-(coshp-1 +cosp-l); S
(coshpy-l —cospu-l); T

-(sinhp-l +sinp-1);

P=
R = -(sinhy-I — sin p-1).

N\ »—nN\»—‘

—1
-2
=1
-2

Successive differentiations of Equation (3) provide parameters for the rotation angle
amplitudes 6(x), bending moments M(x), and shear forces Q(x) in the section of the beam
with abscissa x: ; 2y -

ay _ Yy
6 = I , M= Eld—z,Q —_— E~I-@,

These parameters in the initial section and in the section with abscissa x are related

with a vector expression:

(Y} = [Tul-{Y}o, @)
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where {Y}, and {Y}, are vectors of parameters in the corresponding sections of the beam
section, and [T,/] is the transfer matrix of a beam element (beam section) with distributed
mass [49]:

P S R T
U yZ;SE-I y3j§5-1
.T P _S
[Ty] = # wEIL  p2E1| (5)

E-
py*E-I-R wEIT P :

wE-1-.S w?>E-ILR wT P
For an unloaded beam consisting of u sections, the matrix equation connecting the
parameters at the fore end {Y} (the 0-th section) and the back end {Y},, (the u-th section) of
the beam has the form:

{Y}, = [TI-{Y}o, (6)

where {Y}g = {0, 60, Mo, Qo)T and (Y},= {yu, 6, My, Q.7 are vectors of transverse displace-
ment amplitudes y, rotation angles 6, bending moments M, and shear forces Q at the beam
ends, and [T] is the beam transfer matrix equal to the product of the transfer matrices [T];
sections in order from the end of the beam to its beginning.

In general, the transfer matrix is represented by the following expression:

[T] = [T}, = H[T]if )

In turn, the transfer matrix [T]; of each section is composed by taking into account the
presence of a concentrated load or bearing in its end section. In general terms, the transfer
matrix of the i-th section is described by the expression:

[T]; = [Tp];+[To]i-[Tul;, (8)

where [T,]; is the mass—inertial matrix of a concentrated load; [T]; is the matrix of an
elastic bearing with damping [21,22]:

1 0 0 0
0 1 0 0

Tl="1" 0 ktin 1 0| ©)
ke—ihy 0 0 1

where k; and k,—radial and angular bearing stiffnesses; /i, and h,—coefficients characteriz-
ing the damping properties of the bearing; i = v/ —1;

1 0 00
0 1 0 0

Tl=1 0 _re2 1 ol (10)
M-w? 0 01

where M is the load mass, and | is the inertia moment of the load relative to the horizontal
axis perpendicular to the beam axis.

The transfer matrix [T]y of the O-th section is determined only by the presence of
a concentrated load or bearing in the 0-th section: [T], = [T}],:[Ts],. In their absence,
[T], = diag(1,1,1,1), and therefore, in determining the transfer matrix [T], the transfer
matrix [T]p may not be taken into account.

2.2.2. Analytical Method

For the determination of forces in the orthogonal cutting process with the analytical
method, the previously developed analytical cutting model was used. To develop a model
for determining the kinetic characteristics of the cutting process, the variational princi-
ples of plasticity theory—in particular, the principle of minimum potential energy—are
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used [50-52]. This principle was taken as a starting point in creating a model of orthogo-
nal cutting with a single shear plane, in which the velocity field of the plastic flow of the
machined material is discontinuous. The model was developed for orthogonal cutting
of plastic materials, such as structural and alloyed heat-treated steels, as well as alloys,
during the machining of which, mainly, the flow chips are formed (Figure 3) [52]. For
the application of the minimum energy principle, three energies are considered: chip
formation energy in the primary cutting zone—W(y, friction energy in the secondary
cutting zone—WFpg, and friction energy in the tertiary cutting zone—Wrpr.

Workpiece

Specific shear plane

Figure 3. The layout of chip formation for the orthogonal cutting process. The following symbols are
used in the figure: V—cutting speed; V-,—chip speed; ac;—chip thickness; cs—normal stress,.

By using the applied variational principle, the sum of the considered energies W
should tend toward a minimum. Thus, the following cutting power balance equation can
be postulated [52]:

n n
¥{P} kEIl {Wk S P} = We= Wey + Wgs + Wpr = Zwk = 0, (11)
= k=1

where Y—is the existence space of the cutting process states (conditions); P—is the cutting
process state; k and n—are indices.

Expanding Equation (11) by determining the specified energies according to the
considered cutting characteristics, the contact characteristics of the tool with the machined
material, and the tool geometry parameters and performing the necessary transformations
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with the variables substituted provides an equation system for determining the cutting
force and thrust force during orthogonal cutting:

Fe = cos(¢7'y)ri.}ls.?sm(¢77) “(cosy + fr-sin v)+ g ‘w-fr

, (12)

Fr= COS((P—V)-[EJ[?S?SiH((P—’Y) “(siny + fr-cosy) +qp-h1-w
where Fc and Fr are the cutting and thrust force s accordingly; Ts is the shear yield point of
the machined material; a is the undeformed chip thickness (depth of cut for the orthogonal
cutting process); w is the cutting width; ¢ is the shear angle; - is the tool rake angle; gr
is the contact pressure at the clearance face; fs is the friction coefficient at the rake face;
fr is the friction coefficient at the clearance face; h; is the length of chamfer wear at the
clearance face.

The determination of the contact pressure at the clearance face gr was due to the solu-
tion of Prandtl’s problem, adapted for orthogonal machining [52,53]. The shear angle ¢ for
the respective cutting and material parameters, as well as for the tool geometry parameters,
is calculated based on the variational principle of the minimum cutting power [52]. To
determine the shear yield point of the material to be machined g, studies of the resistance
of the processed material to the cutting process were used [53]. The friction coefficient fs in
the contact between the tool rake face and the chip, as well as the friction coefficient fr in
the contact between the tool clearance face and the machined workpiece, were determined
for the specified experimental conditions per the procedures [54,55].

2.2.3. FEM

The numerical simulation of the orthogonal cutting process to determine the cutting
forces was performed using a finite element cutting model. For this purpose, a three-
dimensional cutting model was developed to simulate the machining of AISI 1045 steel.
Figure 4 shows a meshed geometric model of the developed FEM model, combined with
the simulation results of the machined material strain. In addition, Figure 4 also shows the
initial and boundary conditions of the model.

Strain [mm/mm]

2.00 '

i
i N S
PRADNT S ST o HoRhEd 0.67
CRREE RS & SR S :
NERRER R e St R B AC] nintit
S N SR NSSASRRNRSSRRS N ISRAR
PR A4 B e R S R YR e N AU S e O SR
KL Mo SR o i AV e SV RS SR
PR KR RN N REREE R
K RN A N e e S S N S e e R R NSO R S
CREE AT SRR R R RS R RN
KRR g g S A e R A B By AR SRR R By
e i 1 S R S NS it
o f‘sﬁ_’i"“""niﬁséiuﬂﬁsiﬁt:»"“ﬁ:ssﬁsﬁ S "E.bagﬂﬂﬂ
KRR RERERE
o [ 1 \=
y Al 0.00

Figure 4. Initial geometry and boundary conditions of the FEM cutting model.

In the primary cutting zone, as well as in the zone of contact between the tool rake face
and the contact zone between the tool clearance face and the workpiece machined surface,
the mesh was made significantly finer than in the rest of the workpiece. The mesh in the
remaining areas was established more roughly. This was done to improve the efficiency
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and accuracy of the cutting process simulation. Through the fixing of the workpiece and
tool movements in the direction of the coordinate axes, as well as by setting the thermal
conditions at the boundaries of the tool and workpiece, the boundary conditions were
determined. The tool movement in the Z-axis direction was limited by rigidly fixing its
surface opposite to the tool rake face. The workpiece movement was limited by the rigid
fixation of its bottom in the directions of the X, Y, and Z axes. The thermal initial conditions
at room temperature (T;) were given at the bottom and the left-hand side of the workpiece,
as well as at the left-hand side and the top of the tool. The tool penetrated the workpiece
along axis Z to the depth of cut a (the thickness of the undeformed chip). The workpiece
width is given by the value w. The tool working motion with the cutting speed V¢ was set
to an absolute motion in the negative X-direction to ensure the cutting process. The initial
workpiece model mesh contained about 58,237 elements and about 12,901 nodes. The edge
length of the largest workpiece model element was about 0.096 mm, and the edge length of
the smallest element was about 0.029 mm. The initial tool model mesh contained about
28,668 elements and about 6498 nodes. In this case, the edge length of the largest element
was about 0.093 mm, and the edge length of the smallest element was about 0.0196 mm.
The material model of AISI 1045 steel was described by the Johnson—-Cook constitutive
equation [56] with the model parameter values presented in [57,58]. The contact interaction
between the tool rake face and the chip in the secondary cutting zone, as well as the contact
interaction between the tool clearance face and the workpiece, were modeled using the
Coulomb model in accordance with the method [54,55]. A special model of machined
material damage [59], such as when machining titanium alloys [60], was not provided in
the developed FE-cutting model. This was done because chip formation when machining
AISI 1045 steel is a continuous process with the formation of flow chips [61,62]. In this
case, the machined material damage that realized the chip separation process occurred
automatically, according to the algorithm used in the software package [63].

3. Results

The application of RCSA to describe the dynamic interaction between the cutting
process and machine structure was formulated by Danylchenko and colleagues [64]. They
proposed to consider the cutting process as a dynamic interaction between the tool and the
workpiece. The tool and the workpiece are represented as elastic bodies with a distributed
mass, and the cutting process is represented as an elastic connection between them in the
cutting zone. The stiffness of this elastic coupling k, was taken to be equal to the ratio of the
change in cutting force Fr to the change in cutting depth a, [65]. This relation can also be

represented in the form of a partial derivative of the function Fr = Fr(a,), namely k, = 3%.
In the linear cutting force model, the stiffness k;, corresponds to the static stiffness of the
cutting force equal to the product of the cutting force coefficient kr and the chip width
w [30,34]. The representation of the cutting process in the form of an elastic connection
between the workpiece and the tool allows taking into account not only the coordinate
connection between them in the contact zone [27] but also the dynamic connectivity of
their vibrations [66,67]. This, in turn, makes it possible to consider the cutting process as
a dynamic component of the mechanical system “spindle unit-workpiece-tool” and to
present the system itself as a closed dynamic system [68].

3.1. Dynamic Model of System “Spindle Unit”

The dynamic model of the spindle is developed as a model part of the lathe’s closed
dynamic system. The machine model is represented by a set of dynamic models of the
elastic system “spindle unit” and the tool elastic system. These systems interact with each
other through the cutting process. A dynamic model of the elastic spindle unit system is
developed for a spindle unit with a workpiece clamped in the spindle. A dynamic model of
the elastic tool system is developed for a tool mounted on the machine bed. The workpiece
interacts with the tool through the cutting process. In open-loop dynamic models of elastic
systems, the cutting process is taken into account only by the cutting force [8].



Machines 2023, 11, 582 12 of 33

The spindle unit is represented as a subsystem set of a mechanical oscillating system.
The “spindle unit” system includes subsystem 1 of the workpiece (index s = 1), subsystem 2
of the spindle (index s = 2), and subsystem 3 of the spindle housing (index s = 3) (Figure 5).
The elastic tool system is represented as a concentrated mass m; elastically fixed to the
machine bed. For the “spindle unit” system, the connections between its subsystems are
the connection between the workpiece and spindle for subsystems 1 and 2, the spindle
bearing for subsystems 2 and 3, and the connection between the spindle housing and
the machine bed for subsystem 3. All connections have elastic and dissipative properties.
During machining, the “spindle unit” system interacts with the tool system 0 (index s = 0).
In the dynamic model, this interaction is accounted for by the elastic connection between

(1) 1)

stiffness k), * and force 1?1 . The normal for the cutting plane component of the cutting
force is used as the force (thrust force). In the general case, this force ?1(1) is a variable that is
functionally dependent on the actual depth of cut a. The force Ps(l) has a static component

and a dynamic component F ;1) [30]. The static component Ps(l) is determined by a given
value of the cutting depth and the value of the workpiece static displacement relative to the

tool at the place of its application. The variable component F ;1) is determined by periodic
changes in the cutting depth. The depth variation is caused by the variable chip thickness
being cut and the value of the workpiece dynamic displacement relative to the tool at the
point where the force is applied.

u 1 S
0( )
e CIC e ;@ N kSi) -
3) 0 mEO)i (,) ) kr’i
S
i : b hi s,s+1 M s,5+1
1D 3 0 K h® X]- ;

(a) | (b)

Figure 5. A model of the lathe’s closed dynamic system: (a) scheme of the closed dynamic model;
(b) generalized scheme of the supports (joints).

Taking into account the back-coupling between the elastic system and the cutting
process, the static component of the workpiece and tool relative displacement and the static

component of the actual depth of the cut are determined from the force Fs(l). The force

value F él) is used to determine the dynamic component of the workpiece and tool relative
displacement and the dynamic component of the actual depth of the cut.

In the dynamic behavior study of complex mechanical systems, it is considered reason-
able to divide them (decompose) into simpler subsystems [26]. The separation of subsys-
tems from each other is ensured either by introducing additional connections that prohibit
the common points (nodes) movement of subsystems (method of dynamic stiffnesses) or, in
contrast, by eliminating the connections between them (method of dynamic compliances).
When decomposing the system using the method of dynamic compliances, their harmonic
reactions are applied in the direction of the removed connections. These reactions are then
determined from the condition of joint deformation of the subsystems [41,69]. Applying
this approach to the dynamic model of the “spindle assembly” system, it is represented as
a set of interconnected dynamic models of subsystems under the harmonic force action.
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The dynamic models of the subsystems extracted from the “spindle unit” system by re-
placing the connections between them with appropriate harmonic reactions are shown in
Figure 6. Workpiece subsystem 1 is illustrated in Figure 6a. Tool subsystem 0 is illustrated
in Figure 6b. Spindle subsystem 2 is shown in Figure 6¢c. Housing subsystem 3 is shown in
Figure 6d.

(d)

Figure 6. Subsystem dynamic models of the “spindle unit” system: (a) 1—workpiece; (b) 0—tool;
(c) 2—spindle; (d) 3—housing.

The conditions for subsystem deformation jointness in this case are represented in the
form of equality conditions for the amplitudes of generalized displacements (linear and
angular) at the points of subsystem separation. At points u(!) (see Figure 6a) and 0) (see
Figure 6¢) of subsystems 1 and 2 separation, these conditions have the form:

(12) w12 , D) 212, (D) w01, D) _ (2 12 () a2, & (2) v23
X2 MY g X0 g = —agg X — g 'M12+j§1“0j X+

k

+ ¥ M

]1:1 12 1 1 2 2 L 1%

[%S,u)-Xu +¢1(m, ) M2 +ﬁ£1),xo,1 T 5§,P) _ _ﬁ(()o),Xl,Z _ 4)(()0).M1,2 i Zl ﬁ(()j)'X?SJr
]:

k
2) 223
+ '21 4’((Jj) -M;
]:

where X1, X12, Xf’?’, M2, and M2 are the amplitudes of the removed connection reac-

tions (forces and moments); ucl(].s), ,Bl(js), 'yi(].s), and (Pl(];) are the harmonic coefficients of the
subsystems’ s influence, namely ocl(js) and ﬁl(]s) as the amplitudes of the displacement and

rotation angle in the i-th point from the unit harmonic force applied in the j-th point; 'yl(].s)
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and gb(s) are the amplitudes of the displacement and angle of rotation at the i-th point from

the unit harmonic moment applied at the j-th point; a2 and qb ? are the harmonic influence
coefficients at the points of subsystems 1 and 2 separation; ocilF) and 55111?) are the amplitudes
of generalized displacements (linear and angular) at the u point of subsystem 1 from the
applied external harmonic force.

The harmonic influence coefficients ocuu and 4) 2 take into account the compliances of

the removed connections and, by analogy with [69], are determined by dependencies:

@, 1

1
al2 = ()—I—(—a d L2 = = lal + 7/ (14)
kM k!

where kﬁl) and kg” are the radial and angular stiffnesses of connection of subsystems 1 and 2.

The amplitudes of the generalized displacements oc,(AlF) and ,B,(AlF) from the applied

external harmonic force are determined by the dependencies:

(1), L1 1) A1
nif = o -B B = B HY, (15)

The deformation coincidence conditions for subsystems 2 (see Figure 6c) and 3 (see
Figure 6d) at the i-th separation point are represented as:

k

k
2 2 2,3 2,3 2) aAf23 _
—a) X122y DM2 4 3 2P XP 4 () + )X L M =
j=L ri j=1
k
_ 23 (3) Ag23
= th X] ; Vij M].
j= j=1
12 (2) Arl2 o s g(2) 323 2) M23 1 (o 4 1 23 16)
—51'0 XV = ig M +j§1,3ij X +] 12]#1% M + (¢ +@)'Mi’ =

R o N
[ e = L

where k( ) and k( ) are the radial and angular stiffnesses of the i-th spindle support.
The deformatlon coincidence conditions for subsystems 1 (see Figure 6a) and 0 (see

(1)

Figure 6b), taking into account the stiffness kj,’ of the cutting process, are represented
as follows:

1
@)'(Fl(l) + X0 + txg)-lez + ryﬁ).Ml,Z _ —“50)'X0’1, 17)
p

where ocgo) is the harmonic coefficient of influence of the subsystem O-th.
The full system of deformation jointness equations in matrix form is described by the
following equation:

a(w) y(w)| [X] _ [ar -
o) ol ] =[] or o = o) i
where [D(w)], [F], and [Af] are the block matrices of dynamic compliance (harmonic
influence coefficients), amplitudes of the generalized reactions of removed connections,
and generalized displacements from the applied external harmonic force influences.
Equations system (16) includes equations system (11), “k” equations systems (16)
(according to the number of connections in systems 2 and 3), and Equation (17). The separate
components of these equations are determined by dependencies (14) and (15). From
equations system (17), the natural frequencies vibration of the elastic system, the reactions of
the removed connections [X] and [M], and the transverse (radial) displacement amplitudes
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(s) 1) of

q; ~ of the i-th points of the subsystems are determined. The movement amplitudes g,
the workpiece subsystem 1 are determined using the dependencies:

g = afl (Y 4 X0 4 afy) X124y M2, (19)

m

)

The movement amplitudes g,
the dependencies:

of the spindle subsystem 2 are defined using

(2) _“z(g) 'XLZ —

q; ~ =

k
(2) Aq1,2 (2) 23
o M+ 2 L3 ~Xj + («

(2)+L)_X2,3+i (2)’M2/3 (20)
ii @) ) = Tij M

j=1, j#i kri

(3)

The movement amplitudes g,

;7 for subsystems 3 housing are defined using
the dependencies:

k
qlgs): Z I()Xzs Z'Yz; M23 1)

The displacement amplitudes of the tool subsystem 0 are determined using the
following dependencies:

e under the force Fl(l) action (open-loop system):

0
g® = —a{0.FV; (22)
e  when representing the cutting process by taking into account the elastic relationship

with stiffness k (closed system):

g = —a{0.x01, (23)

The basic transfer matrices (5), (9), and (10) are used to calculate the harmonic influence
coefficients in the joint deformation equations (18). To derive the calculated dependencies
of the harmonic influence coefficients in the joint deformation equations of subsystem (18),
it is necessary to consider two special cases of loading a beam with a distributed mass
mounted on elastic bearings with damping (Figure 7):

e loading by harmonic force F; (Figure 7a);

e loading by harmonic moment M; (Figure 7b).

Figure 7. Schemes for determining the harmonic influence coefficients of the subsystems: (a) loading
by harmonic force Fj; (b) loading by harmonic moment M;.

For the beam shown in Figure 7, the parameter vectors {Y}y and {Y},, as well as the
transfer matrix [T], will be expressed using the following equations (see Section 2.1):

1
{Y}o = {v0,00,0,0}"; {Y},, = {y,04,0,0}7; [T] = [T],,-[T]-[T)-[T];-[T); = [][T];, (24)

i=u
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Taking into account Equation (8), the transfer matrix [T] of the beam in the expanded
form is:

[T) = [Tul [ Toli [Tuli: [Tolj-[Tul [ Tol i [Tul i [To]y [Ty, (25)

In the case of an external load applied to the j-th cross-section, Equation (6) for the
schemes shown in Figure 7 appears as follows [21]:

{Y}, = [T]-{Y}o + [T, ;-{F};, (26)

where [F]j is the load vector in the j-th section of the beam: {F}j= {O,O,O,Fj}T or

{F}j: {O,O,M]-,O}T; [T]u,]- is the matrix equal to the product of the transfer matrices [T];
of the sections (8) placed between the u-th and j-th sections:

(Y} = [T]; o {Y}o + [T]; ;{F}, (27)

where {Y};= {y;,0;,M;,Q;}T is the vector of the transverse displacement amplitudes y;, rotation
angle 6;, bending moment M;, and shear force Q; in the i-th beam section; [T]; ¢ is a matrix
equal to the product of the transfer matrices [T]; of the sections (8) placed between the i-th
and 0-th sections; [T];; is a matrix equal to the product of the transfer matrices [T]; of the
sections (8) placed between the i-th and j-th sections.

The order in which the [T],, j, [T]; 0, and [T];; matrices included in Equations (26) and (27)
and their corresponding harmonic influence coefficients are determined is presented in
Appendix A.

3.2. Stiffness Calculation of the Additional Elastic Coupling

The stiffness kg,l) of the additional elastic coupling is taken into account in the joint

strain in Equation (17) and, accordingly, is included in the dynamic compliance matrix
[D(w)] (18). In the general case, the natural frequencies of dynamic systems are determined

from the condition det [D(w)] = 0. Therefore, the influence of the value kg,l) on the natural
frequencies vibration formation of the considered closed dynamic system of the lathe is
obvious. In general terms, this stiffness is the ratio of the thrust component of the cutting
force Fr to the change in the depth of cut (undeformed chip thickness) [34] and is defined
by the dependence [64]:

_ OFr
 Oap’

b (28)
where a,, is the actual value of the depth of the cut.

Various methods can be used to determine the thrust force Fr: direct measurement
of cutting forces in the studied cutting process (see Section 2.1), the use of various known
empirical dependencies, calculation of the cutting forces by the analytical cutting model (see
Section 2.2.2), and finally, by numerical simulation of the cutting process (see Section 2.2.3).
For example, a well-known empirical relationship [70] can be used to determine the thrust
force Fr in the turning process:

Fr = Cpeal,-fV-VE-k. (29)

The value k](l,l) is determined as follows:

1 aFT FT —
b = g = o = G vk (30)

where C,—coefficient that depends on the mechanical properties and structure of the
machined material and the material of the cutter cutting part, as well as the processing
type; f—feed; Vc—cutting speed; x, y, and n—degree values; k—correction factor that takes
into account the actual cutting conditions.
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In general, the actual value of the cutting depth 4, depends on the total elastic
~(1) ~(0)

displacements of the workpiece qll and tool qco at contact point 1.
They are determined by static and dynamic (dependencies (19) and (23)) calculations:
0 1
a = ap =3~ 3, G
Taking into account dependencies Equations (19) and (23), a,, is defined using
the dependence:

Gy = a, + ﬁEO)XO'l . &gll).go,l . al(zl)_gl,z . ,71{21).]\711,2, 32)

It is obvious that a change in the actual value of the cutting depth a,, leads to a change
in the value of the radial component of the cutting force Fr (29), the value of the stiffness

k,(gl) (30), and the values of X01 X12 and M2, the reactions of the removed connections
(17). Thus, the model takes into account the closed elastic system “spindle-workpiece-tool”

)

during cutting. In the case of a linear cutting force characteristic, the stiffness k;,l can be
determined by using the empirical dependence (29):
K = Fr/a, = Cpx-al - fY-VEK, (33)

where g, is the given value of the cutting depth.

3.3. Determination of Natural Frequencies Vibration of the Lathe Elastic System
“Spindle—Workpiece—Tool”
3.3.1. Dynamic Model of the Lathe “Spindle-Workpiece-Tool” System

The studied spindle unit is mounted on a solid body rigidly fixed to the machine bed,
so its influence on the formation of natural vibration frequencies of the spindle unit can
be neglected. Based on this, the spindle unit is considered a mechanical vibration system
consisting of the subsystems of the workpiece (subsystem 1, index s = 1) and the spindle
with the chuck (subsystem 2, index s = 2), which is elastically fixed to the machine bed. The
“spindle unit” system interacts with the tool subsystem (subsystem 0, index s = 0) at the
point of contact between the workpiece and the tool. The structural and calculation scheme
of the spindle unit, taking into account the contact interaction between the workpiece and
tool, is shown in Figure 8.

Chuck

L‘ Workpiece

[ na/

Figure 8. Structural and calculation scheme of the spindle unit.

The workpiece subsystem (s = 1) is considered as a beam with distributed mass
consisting of two sections (1 = 2). In section 1M, the workpiece is in contact with the
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(1)

tool. This is taken into account by the elastic coupling with stiffness k,’. The preload
of this elastic connection during cutting is provided by moving the slide with the tool
to a given depth of cut a,. When the experimental studies are performed, this preload
is ensured by pressing the workpiece with a force equivalent to the thrust force Fr. In
section 2(1), the workpiece is connected to the spindle (section 0?) spindle). This is taken

into account via elastic couplings with stiffnesses kgl) and k,(ll) and damping coefficient
hM. The spindle-chuck subsystem (s = 2) is considered as an elastically mounted beam
with a distributed mass on the machine bed. The beam consists of eight sections (1 = 8). In
sections 3@, 4@ 5@ and 7@ of the beam, bearings are placed. This is taken into account

@) )

(2
,; and angular k

well as the damping coefficients hgz) , (i = 1-4). The tool subsystem (s = 0) is considered
(0)

as a concentrated mass m;, ’ elastically mounted on the machine’s slide. This is taken into

account by the stiffness kgo) and damping hgo) coefficients, respectively. Thus, the “spindle

unit” system appears as a “spindle-workpiece—tool” system. To mathematically describe
the dynamic behavior of the “spindle-workpiece-tool” system (see Figure 8), this system is
decomposed [71]. Subsystems are separated from the system by replacing the connections
between them with appropriate harmonic reactions. The system decomposition scheme
when taking into account the contact interaction between the workpiece and tool is shown
in Figure 9.

by the elastic and damping connections with radial k stiffnesses, as

1,2
8(2) 7(2) 6(2) 5(2) 4(2) 3(2) -X O
s o oo )_Ml,z m,;
g/ 2(2) 1(2) 0(2)
7 7 7, gg
Z

Figure 9. Decomposition scheme of the “spindle-workpiece-tool” system during the contact interac-

tion of the workpiece with the tool: index (1)—workpiece subsystem; index (2)—spindle-tool-chuck
subsystem; index (0)—tool subsystem.

The dynamic behavior of the system is described by the joint deformation conditions
of the subsystems. This deformation jointness of the subsystems is represented in the form
of equality conditions for the amplitudes of linear displacements at the points of subsystem
separation (see Figure 9):

e  for the subsystems of the workpiece (s = 1) and tool (s = 0):
1
(@) + W)-XO'1 +al) FY o) x12 4 ) m12 = a0 x01, (34)
P
> for the subsystems of the workpiece (s = 1) and the spindle with chuck (s = 2):4

1)

1 1 1 1 2 2
w§1)~X0'1 JrD(gl),lsl( + (t’égz) + k(lT)).Xl,2+,Y£Z),M1,2 _ 70‘(()0).)(1,2 7%()0),M1,2

ﬁS”XO'l +ﬁgll).pl(1) +‘3£12).X1,2+ (‘Pé? + ﬁ).Ml,Z _ _ﬁ(()%)_xl,Z _(P(()é)_Ml,z

., (35)
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2

where X1, X112 and M2 are the response amplitudes of the removed connections; «; i
ﬁl( i ), 'yl.(]. ), and gbl. j are the harmonic influence coefficients of subsystems s, namely “Ej) nd
,Bl(]s) as the displacement amplitudes and the rotation angle at the i-th point from the unit

harmonic force applied at the j-th point; 'yf;) and <pfjs) are the displacement amplitudes and
the rotation angle at the i-th point from the unit harmonic moment applied at the j-th point;

aEO) is the harmonic influence coefficient of the tool subsystem represented as a system

0) _ 1

with one degree of freedom: a,’ = PONMOIY ; w is the vibration frequency [49].
—m

After transforming Equations (34) and (35), the general system of deformation jointness
equations at the points of subsystem disconnections will be of the form:

(aﬁ) + .. R(O))_Xo,l + a(l).Xl,Z + 7(1)_Ml,2 _ —Déﬁ)-Fl(l)
1 1 2 1) (1
( )-X0’1 ( g2) + +DC(()O)) X12+ (,Y( )+,Y( )) M12 ‘X£1> Fl( ) (36)
(1) 1) (1
ﬁ( X0 + () +ﬁ D)-X12 4 (9 + 5+ 90g))- M2 = —pyy) -
or
[D(w)]-[X] = [AF], (37)
where [X] is the vector of harmonic response amplitudes of the removed connections [X]
= (X01 x12 M12)T; [A] is the vector of displacement amplitudes from the action of the
T
external load: [A] = (—aﬁ) -Fl(l) , 1) F ,321 ) ; [D(w)] is the matrix of dynamic
compliance (matrix of harmonic 1nﬂuence coeff1c1ents see Equation (18)):

(o) + oy + ") oy 7y
D(w)] = oé? @+ re) 0B+ | 69
1 2
gl) (ﬁzz + ,500 ) (4’22 + kgT) + Gboo))

The main diagonal elements of the matrix [D(w)] correspond to the receptivity coef-
ficients of the RCSA method at the point of separation of the subsystems [29]. From the
equations system (36), the reactions of the removed connections are determined. Then, the
transverse displacement amplitudes (i = 0-u) of the subsystems’ characteristic points are
determined:

e  workpiece subsystem (s = 1):

‘71() ( (1) _H:(l)) X01+“(1) X12+7(1) M2 (39)

e spindle chuck subsystem (s = 2):

7.7 = oy X0 =g M2, (40)

e  tool subsystem (s = 0):

gl = —al.x01, (41)

The workpiece and tool subsystems are directly loaded with the force Fl(l) for an open

dynamic model. The additional elastic coupling with stiffness kj, is not taken into account
in this case. In this case, the workpiece and tool subsystems are considered separately.
Only the workpiece subsystem is decomposed. It consists of two subsystems—1st and 2nd.
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Therefore, the condition of joint deformation is entered only for the 1st and 2nd subsystems,
and dependencies (36) and (38) are represented in the forms:

(o) oy + 20 ) X2 (79 +70) M2 =~ Y

, , 42)
(B + Big)- X2 + (¢l + i +9{g)-M12 = g -F{!
(g + F5 o) vk + )
[D(w)] = , (43)

(B +BF) (@5 + 5 +9i)

The natural frequencies of the spindle-workpiece system are determined from the
condition det [D(w)] = 0 using expression (36) for the closed model or expression (43)
for the open-loop model. The natural frequency of the tool subsystem is defined by the

(0)
dependence f; = % The procedure for determining the harmonic influence coeffi-
my

cients alg].s), ﬁl(;), 'yi(js), and (pi(;) included in the matrices [D(w)] (38) and (43) is presented in
Appendix B.

3.3.2. Experimental Determination of Natural Vibration Frequencies of the
“Spindle-Workpiece-Tool” Elastic System

To measure the natural frequencies vibration, it is necessary to set the pressure force
(thrust force Fr) on the workpiece with the tool (see Section 2.1 and Figure 1). This
force is determined using direct experimental measurements of cutting forces during
orthogonal cutting, as well as using the analytical cutting model (see Section 2.2.2) and
numerical simulation of the orthogonal cutting process (see Section 2.2.3). Figure 10 shows a
comparison of cutting forces obtained by these methods. The cutting forces are recalculated
to the cutting width w = 1 mm. The measured value of the thrust force Fr was used in
experimental studies to determine the natural vibration frequencies of the elastic system
“spindle-workpiece—tool”. This force value was set when the tool was pressed to the
workpiece and this force was monitored by the dynamometer signal (see Section 2.1 and

Figure 1).
300
Material: AISI 1045; Hardness: 180 HB; R, = 625 MPa
Cutting speed V; = 160 m/min; Cutting feed f = 0.2 mm/rev;
Rake angle y = 0°; Clearance angle « = 8°; Cutting width w =1 mm
N
[7)
[)]
2
Rel
(o))
2 250
5
(@]
200
0

Cutting force Thrust force

Figure 10. Comparative values of cutting forces and thrust forces determined by measurement using
an analytical cutting model and via numerical simulation.

The influence of the contact force interaction between the workpiece and the tool
on the natural vibration frequencies of the elastic “spindle-workpiece—-tool” system was
studied using simulation and verified experimentally. The natural frequencies spectra



Machines 2023, 11, 582 21 of 33

of solid and tubular workpieces without tool pressure applied to the workpieces were
obtained by measurements and the subsequent transformation of the measurement results.
These spectra of the workpiece vibrations are shown in Figure 11.

S 0.2 ® 0.2 \
= 694.7 E 939.4
I ) o
. B
= =
E 0 ] i T E 0 I L L L
0 200 400 600 800 1000 % "0 200 400 600 300 1000
Frequency, Hz Frequency, Hz
(a) (b)
Figure 11. Workpiece natural vibration spectra without tool pressure: (a)—solid workpiece;
(b)—tubular workpiece.
Similar spectra of vibrations were received for all five variants of workpiece clamp-
ing by the tool at distances L1 = 122 mm, L, = 102 mm, L3 = 82 mm, L = 62 mm, and
L5 = 42 mm from the place of workpiece clamping in the three-jaw chuck. The correspond-
ing spectra of the workpiece vibrations were also obtained by calculating (19) the workpiece
displacement amplitudes at the point of application of an external harmonic force. As an
example, Figure 12 shows the experimental vibration spectra at overhang L, = 102 mm for
tubular and solid workpieces.
« 0.06 i Y ETTH ; 0.06 0 . ‘
@ 1530 L=102 mm % L=102 mm
‘E;o 04 (}ET\ i H i g 0.04 g% 2209n
@7 F—'—'—'ﬁ'—‘ >y
5002&366 :%002 366 / \
g i ; i i : —g 0 N~ — \/\
& 00 500 1000 1500 2000 2500 3000 < 0 500 1000 1500 2000 2500 3000
Frequency, Hz Frequency, Hz
(a) (b)
Figure 12. Workpiece natural frequencies spectra with the tool pressure on the overhang L, = 102 mm:
(a)—solid workpiece; (b)—tubular workpiece.
Histograms with comparative values of experimental and calculated natural frequen-
cies for all studied overhangs are presented in Figure 13.
2000 2500—
Spindle natural frequency Spindle natural frequency| \Workpiece natural frequency
I Measured I Measured I Measured - ‘
1600!! B calculated 2000 I cCalculated @ calculated ;
N Workpiece natural frequency N
]—'_'_'1200 I Measured :£'_'1500 |
> Calculated >
c c
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=] =] =2 &
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£ £ s
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Figure 13. Histograms of the workpiece’s natural frequencies when the tool is pressed at a distance L
from the chuck: (a)—solid workpiece; (b)—tubular workpiece.
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The natural frequency spectra of the workpiece without tool pressure (see Figure 11)
and with tool pressure (see Figure 12) can be clearly defined as the two natural frequency
zones of the “spindle-workpiece” system: the spindle (in the range of 315 Hz to 366 Hz) and
the workpiece (above 690 Hz). The natural frequencies of the cantilevered fixed workpiece
(see Figure 11) depend on their mass—inertial characteristics and are 695 Hz for a solid
workpiece and 940 Hz for a tubular workpiece. When the workpiece is pressed with the
tool at the coordinate point L, = 102 mm (see Figure 11), the frequency of the workpiece
natural vibrations increases significantly, up to 1530 Hz for a solid workpiece and 2209 Hz
for a tubular workpiece. The natural frequencies of the spindle increase insignificantly,
from 315 Hz to 366 Hz for a solid workpiece and from 346 Hz to 366 Hz for a tubular
workpiece. The histograms of the natural frequencies when the workpiece is pressed with a
tool at the point coordinate L (see Figure 13) confirm this trend for all tool point coordinates:
L1 =122 mm, L, =102 mm, L3 = 82 mm, L4 = 62 mm, and L5 = 42 mm. A complete overview
of the formation patterns and changes in the natural frequencies of the spindle and the
workpiece, depending on the tool point coordinate for the two types of workpieces, is given
by the cascade diagrams of the natural frequency spectrum for the workpiece when the
tool point coordinate equals L;. The cascade diagrams are shown in Figure 14.

The natural vibration frequencies of the “spindle-workpiece-tool” system were
calculated according to the results from modeling the dynamic compliance matrix
[D(w)] ((38) or (43)) from the condition [D(w)] = 0. For a closed system (taking into
account the tool pressure on the workpiece), [D(w)] was determined using (36). For
an open-loop “spindle-workpiece” system (without tool pressure on the workpiece),
[D(w)] was determined using (43). The numerical values of the coefficients assumed in
the calculations are presented in Table 2.

The stiffness k;,l) of the additional elastic connection was = 0.404 N/um. This stiffness
was calculated from the pressure force Fr applied to the workpiece by the tool and the
depth of the cut ay, (see (26)).

Table 2. Numerical values of the dynamic model coefficients (Figure 8).

Bearings
Double- Angular Tool-
Dynamic Model Row . Holder-
Coefficients Cylindrical Contac't Ball Rad.1a1 Chuck
Bearing Bearing :
Roller ... trs Joint
. (Positions 2 (Position 4)
Bearing and 3)
(Position 1)
Radial stiffness, k; (N/pm) 502 257 365 12
Angular stiffness, kf 12.050 ) ) 367 x 10-2
(N-um/rad) ’ ’
Damping, h; (N-s/mm) 2 2 2 0.3
lathe carriage
Equivalent mass, m, (kg) 0.95

Equivalent stiffness, k.

(N pm) 242
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Figure 14. Cascade diagrams for the natural frequency spectra of the workpiece at different tool point

coordinates L;: (a)—solid workpiece; (b)—tubular workpiece.
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4. Discussion

Using experimental measurements, the presence of two zones of vibrations with
increased amplitudes in the frequency range from 0 to 1000 Hz was established (see
Figure 11). These vibrations correspond to the first two natural frequencies of the system. In
this case, the values of the natural frequencies are different for tubular and solid workpieces.
For a solid workpiece, the first natural frequency is 346 Hz, and for a tubular workpiece, it
is 315 Hz. The second natural frequency of the system changes significantly and is 694.7 Hz
for a solid workpiece and 939.4 Hz for a tubular workpiece. At the same time, the natural
frequencies did not change either when changing the sensor location on the workpiece
or when changing the location of the impulse excitation application. The first natural
frequency of the system changes insignificantly when the tool presses the workpiece: in
the range of 366-374 Hz for a tubular workpiece and 364-373 Hz for a solid workpiece
(see Figure 13). As the tool point coordinate decreases, the value of the first natural
frequency increases. In addition, the values of the first natural frequency of the system
(366 Hz) when the workpiece is pressed with the tool (see Figure 12) are somewhat higher
than the corresponding values of the first natural frequency (315 and 344.2 Hz) of the
nonclamped workpiece (see Figure 11). The second natural frequency of the system (see
Figure 13) changes much more significantly. The frequency value decreases as the tool
point coordinate decreases: from 2276 Hz to 1352 Hz for a tubular workpiece and from
1707 Hz to 844 Hz for a solid workpiece.

The first and second natural frequencies of the spindle with chuck subsystem 2 are
349.5 Hz and 1563 Hz, respectively. The first natural frequency of the workpiece sub-
system 1, taking into account the rigidity of its fixing in the chuck, is equal to a tubular
workpiece with 949 Hz and for a solid workpiece with 743 Hz (see Figure 11). The first
natural frequency calculated values of the “spindle-workpiece” system for the tubular
and solid workpieces are 331 Hz and 318 Hz, respectively. These frequencies are close
to the calculated value of the first natural frequency of the “spindle—chuck” subsystem 2
(349.5 Hz). Thus, the system’s first natural frequency (see Figure 11) is the first natural
frequency of the “spindle—chuck” subsystem 2. The calculated values of the second natural
frequency of the “spindle-workpiece” system for the tubular and solid workpieces are
937 Hz and 721 Hz, respectively. These frequencies are close to the calculated values of
the first natural frequency of workpiece subsystem 1 (949 Hz and 743 Hz, respectively).
Thus, the system’s second natural frequency is the first natural frequency of workpiece sub-
system 1. The insignificant change in the system’s first natural frequency when clamping
different workpieces in the chuck without taking into account the tool pressure (331 Hz
for a tubular workpiece and 318 Hz for a solid workpiece; see Figure 11) is explained
by a minor contribution of the workpiece in changing the mass—inertial characteristics of
the “spindle-workpiece” system. The significant change in the system’s second natural
frequency under the same conditions (937 Hz for a tubular workpiece and 721 Hz for a
solid workpiece) is explained by a significant (as compared to the change in the natural
stiffness) change in the mass—inertial characteristics of the workpiece itself.

The spindle’s first natural frequency with the workpiece clamped in the chuck and the
tool pressed is in the range of 361-368 Hz (see Figure 13). This frequency increases insignif-
icantly as the tool point coordinate decreases and does not depend on the workpiece type.
This confirms that the change in the workpiece type has little effect on the change in the
first natural frequency of the “spindle-workpiece” system. The second natural frequency
of the spindle with the workpiece clamped in the chuck and the tool pressed depends
significantly on both the workpiece type and the tool point coordinate (see Figure 13). The
second natural frequency decreases as the tool point coordinate decreases: from 2261 to
1366 Hz for a tubular workpiece and from 1692 to 847 Hz for a solid workpiece. This is
explained by the fact that the tool in a closed dynamic system acts as an additional support,
and its location significantly affects the workpiece natural frequencies. Thus, when the tool
point coordinate decreases, the length of the cantilevered workpiece part increases, and
accordingly, the value of the second natural frequency decreases. The calculation results of
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both the character and values correspond to the experimental results (see Figure 13). The
calculation error of the natural frequencies for the workpiece clamped in the chuck without
taking into account its tool pressure does not exceed 1.4% and, when taking into account
the tool pressure, does not exceed 6.5%. It should also be noted that the main trends in
the dynamic behavior of the cantilevered workpiece under conditions simulating length
turning coincide with the results of similar studies of the length turning dynamics with a
workpiece clamped in centers [33,34].

As a result of this study, the low dynamic sensitivity of the spindle assembly to
changes in the type and loading character of the workpiece was established. On the one
hand, this confirms the possibility of replacing the analytical determination results of the
structural dynamic responses of the forming units (workpiece and tool) with experimental
ones for practical applications [34]. On the other hand, changes in the spindle dynamic
characteristics, even within a small range, indicate that the dynamic interaction between
the spindle and the workpiece (tool) has not been sufficiently studied. This may, for
example, concern the quantification of the stiffness and damping in the workpiece or
tool clamping unit or the influence of individual spindle bearing parameters on the FRF
determination [34].

5. Conclusions

The basic condition for the decomposition of the multicomponent closed dynamic
system of the machine tool is determined by the type and character of the relation between
the partial subsystems of the workpiece and the tool in the cutting zone. The presentation
of the cutting process in the form of an elastic relation between the workpiece and the tool
ensures that this basic condition is fulfilled.

The developed dynamic model of the “spindle-tool-tool system” ensures a combined
account of the coordinate coupling of the conjugated partial subsystems and the dynamic
character of the elastic coupling between them. This account is implemented by means
of the method of dynamic compliance to decompose the system and the matrix transition
method to determine the coefficients of the subsystems” harmonic influence.

The coordinate coupling in the developed model is implemented by the coincidence
equations of deformations at the opening points of the coupled partial subsystems. The
dynamic character of the elastic relation between these subsystems is defined by the
coupled vibrations of the contacting bodies. The relation of these vibrations is ensured
by determining the harmonic influence coefficients of the subsystems. This approach
is applicable to all coupled partial subsystems of the machine tool mechanical system,
including the “workpiece—tool” pair.

The adequacy of the developed dynamic model of the system “spindle-workpiece—
tool” is evaluated based on the measurement results and modeling of the natural vibration
frequencies of the dynamic system. The adequacy test was performed for two types of
workpieces cantilevered in the spindle chuck at fixed length locations of their loading with
the cutting tool. This ensured that the main factors determining the formation and change
in the dynamic characteristics of the machine’s mechanical system were taken into account.

Through measurements and calculations of the system “spindle-workpiece-tool” vi-
brations, it was found that the natural vibration frequency of the workpiece significantly
depends on its type, as well as the condition and point coordinates of its pressure point
with the tool. The spindle natural frequency under the same conditions changes insignifi-
cantly. The deviation between the measured and calculated natural frequency values of
the workpiece clamped in the chuck without taking into account its pressure with the tool
does not exceed 1.4%. Taking into account the pressure of the workpiece with the tool, this
deviation does not exceed 6.5%.

Experimental verification of the calculation results of the system’s natural frequencies
proved the correctness of the tendency to change these frequencies depending on the
changes in the mass—inertial characteristics of the workpiece and the conditions of its
interaction with the cutter. This confirms the advisability of representing the contact force
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interaction between the tool and the workpiece in the calculation models as an additional
movable elastic support.
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Appendix A
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H;
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1) (0
lﬂ)fﬁﬁ)

0) ~(1) ~(1) ~(1)

Koy ®i"s Kip'y Tip

XO,l 21,2 Ml,Z
4

load column vector in j-th section
[F]]= {Ololorpj}T
or [F]]: {OIOIM]IO}

[T] matrix elements

specified cutting depth

actual cutting depth

correction factors
feed

cutting speed

indices

workpiece and tool elastic
displacements in the cutting zone

generalized subsystems

receptance reactions of discarded
bonds in the form of polyharmonic
functions with zero harmonic;

components ( X0 = X9 + x5!
, M2 = MO MOY)
tool natural frequency

first and second natural frequencies
of the closed-loop dynamic system

subsystem index, s = 0,1,2,3

number of subsystem sections
subsystem s damping coefficient in
i-th cross-section

localized mass of the tool
subsystem s = 0

Depending on the place of external load application (location of the j-th section relative
to the calculated u-th section), the [T],, ; matrix is determined by the equations:

[T

j+1
T[T},

i=u

W=

i=u

diag(1,1,1,1)

0
[T[T);

for 0<j<u
for j=0 ' (A1)
for j=u
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Thus, for the beam shown in Figure 7, [T}, = [T],-[T]; = [Tu],[Te]i:[Tul;. For
the case of beam loading by harmonic force (see Figure 7a), the matrix Equation (24) is
expanded as follows:

u,j u,j u,j u,j

Yu a1 a2 413 M4l Yo ay1 Ayp A3 Oy 0

0 a a a a 0 ay? ayl oabd al/ 0
ul _ 21 22 23 24| . 0 + 21 22. 23. 24 | . (AZ)
0 a1 azx ay axu| |0 ay] ay) azy ay]| |0

0 ag1 A4 A43  A44 0 au,j 1] u,j u,j Fj

41 Uy Az Ay

where a_, and aZ,’J] are the elements of matrices [T] and [T]u,]- defined by dependencies
(7) and (25), respectively.

From the last two equations of the system (A2), the parameters 1 and 6 in the 0-th
beam section and the corresponding influence coefficients ag; and f; are determined:

wj uj
320y —042°034

— Yo _
Ny = &= =
0] P] a31'u42—u41-a32_ . (A3)
u,j uj s
‘B J— 970 — A41°034 —A31°0yy
U a31-04) —041-03)

The influence coefficients yo; and ¢o; when loading the beam with a harmonic moment
(see Figure 7b) are determined similarly:

u,j uj
__ 932043 —42°33

. — Yo
oj M; 431042 — 041703
: ' (A4)
u,j uj s
¢ B 970 __ 041033 —Aa31°dy3
0j — M; a31-04 —041-03)

The influence coefficients in the other sections of the rod are determined using a matrix
equation connecting the parameters of the arbitrary i-th section with the 0-th section:

{Y}; = [T o {Y}o + [T]; ;- {F}; (A5)

where {Y};= {y;, 0;, M;, Qi}T is the vector of amplitudes of transverse displacement v;,
rotation angle 6;, bending moment M;, and transverse force Q; in the i-th section of the
beam; [T]; ¢ is a matrix equal to the product of the transfer matrices [T]; of the sections
placed between the i-th and 0-th sections; [T];; is a matrix equal to the product of the
transfer matrices [T]; of the sections placed between the i-th and j-th sections.

The [T]; 0 and [T];; matrices are determined by the dependencies:

j+1
I1[T]; for 0 <j<i
0 =i
[T];0 = H[T]i; [T]i,j =T =TI[T];  for j=0 ; (A6)
. diag(1,1,1,1)  for j—i
0 for j>i

Thus, for the beam shown in Figure 7:

o  for the k-th section:
[T]k,j = [Tl u [T];, = [T]k'[T]j'[T]i'[T]l?
e  for the j-th section:

[T);; = diag(1,1,1,1) u [T];, = [T];-
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e  for the i-th section:

e for the 1-st section:
[T]i; = 0m [T]; o = [T];.
In the case of a beam loading with harmonic force (see Figure 7a), the matrix Equation
(A5) in the expanded form is represented by the following equation:

1,0 i,0 1,0 i,0 ij ij i

Yi afy Ay ay3 Ayl Yo ajy Ay aj3 a4l [0
0 | _ |ay ap ap anl |6 a’z{ AR A7
Mi - ai,O ai,O ai,O azO ’ 0 + i ij 0 |- ol’ ( )
31 @3 A3z Az 31 Az, A3z Az
Qi az,O az,O az,O az 0 0 ,] ,] ,] i Fj
41 42 43 T4 Ag1 Ogp 43 gy

where a' b 0 and a” b are the elements of matrices [T]; g and [T]i/j defined by dependencies (A6).
Using Equation (A7) and taking into account the systems of Equations (A3), the
expressions for the influence coefficients a;; and B;; are obtained:

L= Y
ij=f = a1 -ao; + afy-Boj + al (48)
_0; i,0 1]’
Bij = ?; = ay ag; +5’22 Boj + a3,

The influence coefficients y;; and ¢;; when loading the beam with a harmonic moment
(see Figure 7b) are determined similarly:

oy o i0 i,j
Vij = % = “11'701' + “12'4’0]' +ay
o,

, (A9)
Pij = 7 = ajy- 70j +”22 Poj +”l]

Appendix B

The harmonic influence coefficients txl{].s), ,Bl(]s), '71(] and cpi(].s) of the subsystems (see
Figure 9), included in the matrices [D(w)], are determined by dependencies (A3) and
(A4) and (A8) and (A9) using supporting matrices (Al) and (A6). Determination of the
harmonic influence coefficients oc(] ), /31(]1), 'yl(]l and (pi(jl) included in the matrix [D(w)] (36)

the workpiece subsystem (s = 1, Figure 9) is performed as follows:

The workpiece subsystem (see Figure 9) consists of two sections (1 = 2). Each of the
sections contains only a beam element with distributed mass, which is described by the
transfer matrix (5). Given the rules for the transfer matrices (7) and (8), the transfer matrix
[T]D of this subsystem equals:

(T =TT = (s, (410
i=2
where [T§V) = [T,){" and [T)\V = [T,]{".
The supporting matrices [T] SJ), [T] 1%), and [T] S) of the workpiece subsystems are

derived from the transfer matrix [T]!) (A10) and are calculated by the dependencies
(Al) and (A6). The component elements of the supporting matrices are used in the depen-
dencies (A3) and (A4) and (A8) and (A9) for direct calculation of the harmonic influence
coefficients oc( ), ,Bl(] ), 'yl y ,and 4’1’(]‘1) of the workpiece subsystem. The calculation equations
for the supportmg matrices are given in Table Al.
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Table Al. Supporting matrices for the workpiece subsystem (s = 1, u = 2).

Beam Section

Harmonic Influence Supporting Matrices
Coefficients of Type Number
1) o(1) (1) (1
wi By v 9y ! ) T, ] T30
1 2 3 4 5 6
aéj), !38? 0 1 [T]él)(&[) B -
aly B 100 92 0 2 Tl - i
ey 1 1 - mit  diag(1,1,1,1)
o' By 2 ! - mmy Y
ay, v%) 1 2 - ) 0
X2/ :3?2)' 72;), ¢ 2 2 - [T]él)-[ |V diag(1,1,1,1)

The determination of the harmonic influence coefficients uc(%), ,Bé%), ’y(%), and gb(%) of the
spindle—chuck subsystem (s = 2, Figure 9) included in the matrix [D(w)] (36) is performed
as follows. The spindle—chuck subsystem (s = 2) consists of eight sections (1 = 8). The third,
fourth, fifth, and seventh sections contain beam elements with distributed mass and elastic
bearings. The remaining sections contain only beam elements with distributed mass. Given the
rules for the transfer matrices (7) and (8), the transfer matrix [T]? of this subsystem equals:

m® =TT = M@ md m m@ m@ e mP md, e
i=8
where [Ty = [Ty, [T = ()7 M7, (17 = [T, 1157 = [T s

M = ()P, M5 = - may?, g = ), P = (1.

The harmonic influence coefficients zx(%), g%), 'Y(()o ,and 4)00) of the spindle—chuck sub-
system are determined by dependencies (A3) and (A4) when j = 0. The natural frequencies
of the spindle—chuck subsystem are determined from the condition of maximum dynamic
compliance (the first equation of the system (A3)):

azy-ag — ag-azp =0, (A12)
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