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Abstract: This article addresses the problem of balancing an inverted spherical pendulum on a
quadrotor. The full dynamic model is obtained via the Euler-Lagrange formalism, where the dynamics
of the pendulum is coupled to the dynamics of the quadrotor, taking as control inputs the torques
associated with the yaw, roll, and pitch dynamics, and a control input for the vertical displacement in
height. A trajectory tracking control scheme is proposed by means of an active disturbance rejection
control based on a discontinuous extended state observer (ADRC-DESO) that allows controlling the
system in the translational dynamics of the quadrotor including the rotational dynamics and the
inverted pendulum dynamics. To address this problem, the dynamic model is linearized around
an equilibrium point, taking into consideration that the system operates in close vicinity of the
equilibrium points, thus considerably simplifying the dynamic model. Proving that the linear model
is controllable and therefore differentiable flat, flat outputs are proposed around the displacements
associated with the three cartesian axes of the Euclidean space, including a dynamic associated with
the yaw dynamics of the quadrotor allowing to parameterize the full linear system. Simulation results
as well as a convergence analysis validate the performance of the strategy.

Keywords: differential flatness; discontinuous observer; inverted pendulum; lyapunov analysis

1. Introduction

The inverted pendulum is one of the most popular and widely studied systems in
control theory for educational purposes. The system consists of a nonlinear and under-
actuated dynamic system where the main objective is to maintain in balance the mass of
the inverted pendulum on a carriage that moves horizontally by means of a force induced
by the tires, Sardor Israilov et al. [1]. The pole holding the mass of the pendulum moves
freely over the carriage so the position of the inverted pendulum is indirectly controlled
through the horizontal movement of the carriage. This system has presented a challenge
in control theory and numerous articles have focused on the control of such a system.
However, unlike the classical problem, an interesting configuration that further complicates
the system is to exchange the car for a quadrotor allowing the system to move horizontally
and vertically in the space of three dimensions where the objective is still to keep the
inverted pendulum in balance, He B. et al. [2].

Few works that address this problem have been reported in the literature, the flying
inverted pendulum was first introduced by Hehn M. et al. [3] where it was solved by de-
signing linear controllers for stabilization of the inverted pendulum on a quadrotor which
can be used for both static and dynamic equilibria of the pendulum. However, the results
indicated that the problem can be improved by investigating other control approaches.
Krafes S. et al. [4] presents the full nonlinear model of the spherical inverted pendulum on
a quadrotor and visual servoing control. While that, Nayak A. et al. [5] proposed to swing
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up a spherical pendulum mounted on a moving quadrotor, and a backstepping control
law based on geometric principles is presented. Numerical experiments for aggressive
maneuvers beginning very close to the downward stable equilibrium position of the pendu-
lum confirm the control action. While that, Ibuki T. et al. [6] proposed an inverse optimal
control law is proposed for the stabilization of the inverted pendulum on a quadrotor, and
then convergence analysis and optimality interpretation is provided. Simulation results
validate the control law and the effectiveness of the vertical input by comparing it with
the traditional linear quadratic regulator (LQR) control case. However, Marcelino M. de
Almeida et al. [7] proposed a three-level cascade nonlinear control strategy using a tilt-rotor
UAV to balance an inverted pendulum. An input-output feedback linearized control law is
implemented at each level of the cascade system. The control strategy is validated by simu-
lation results. On the other hand, Yang Y. et al. [8] proposed the motion equations of the
quadrotor with payload pull and the motion equations of the payload with variable length
cable in a more concise, complete model of the quadrotor-suspended payload system based
on the Newton-Euler method. To efficiently reduce the swing of the slung payload under
the quadrotor, a cascade control scheme based on integral backstepping with trajectory
planning is designed. However, despite the presence of unmeasurable states, parametric
uncertainties, and external disturbances, a combination of the ADRC and the flatness theory
to design a reliable tracking controller for a quadrotor is presented by Abadi A. et al. [9].
In addition, Jackson Oloo [10] investigates the effect of loss of rotor effectiveness on the
states of an inverted pendulum mounted at the center of mass of a moving quadrotor and
an adaptive Model Predictive Controller is utilized to develop a controller that enables the
quadrotor to track a circular trajectory while experiencing varied degrees of loss of actuator
effectiveness. Besides, Ahmad Nor Kasruddin Nasir et al. [11] proposed two iterations
of the Opposition-based Spiral Dynamic Algorithm (ObSDA) for a system that seeks to
optimize a type-2 fuzzy logic controller. Moreover, Avinash Siravuru et al. [12] present
two formulations for modeling and control of a 3D pendulum, one is Euler parameter-
ized and the other is a coordinate-free geometric formulation in the S0(3) manifold space.
Nevertheless, Yang W. et al. [13] present a nonlinear controller for trajectory tracking of a
quadrotor-inverted pendulum system, and a mathematical model of the whole system is
presented, followed then by the design of a Lyapunov function that, by resorting to the
backstepping technique, enables an implicit saturation of the position and linear velocity
errors associated with the inverted pendulum load. The origin of the closed-loop total
system error is then proved to be locally asymptotically stable. Moreover, Villaseñor Rios
CA et al. [14] provides a nonlinear underactuated planar vertical take-off landing (PVTOL)
aircraft system with an inverted pendular load and a linear extended state observer-based
active disturbance rejection control to reject both nonmodeled dynamics and external
disturbances. Few works have been reported that propose some improvement to the dis-
turbance estimation observer, for example Aws Abdulsalam Najm et al. [15] present an
improved active disturbance rejection control (IADRC) scheme for the stabilization of the
altitude and attitude subsystems of the unmanned aerial vehicle (UAV) system, which
is a highly coupled nonlinear system, taking into consideration exogenous disturbances,
measurement noise, and parameter uncertainties. The IADRC configuration consists of an
improved tracking differentiator (ITD) and a nonlinear PID controller. Whereas, Moreno,
J.A. et al. [16] present a unified method to design a class of discontinuous observers for
second-order systems. It generalizes and improves several other known methods, for exam-
ple, the High-Gain Observer, the Super-Twisting Observer, and the Uniform Differentiator,
enhancing their properties and restricting the treatment to the two-dimensional case.

Previous results have been obtained by the authors of the present article that address
the problem of disturbances rejection in a quadrotor. In Martinez-Vasquez A. et al. [17],
presents a strategy based on the differential flatness of the system is presented to pa-
rameterize the states of the system and obtain a new flat output of the system whose
output allows controlling the system by sliding modes control, simulation results val-
idate the good performance of the control strategy. Finally, in our most recent work
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Martinez-Vasquez A. et al. [18] present the inverted pendulum on a quadrotor problem
in two dimensions is presented, in this article, the concept of discontinuous extended
state observer (DESO) is introduced for the first time with an active disturbance rejection
control (ADRC) scheme, an extra integral is added to the chain of integrators to improve
the estimation of endogenous and exogenous disturbances. In addition, it is shown to
attack the problem in horizontal and vertical dynamics to simplify the control problem. A
convergence analysis and simulation results validate that the following error converges
to zero.

Nevertheless, this article is considered an extension of Martinez-Vasquez A. et al. [18],
where we mainly address the case of the quadrotor in three-dimensional space, therefore
the modeling of the full system is presented considering the dynamics of the spherical
pendulum. A DESO-ADRC is used to control and estimate and compensate in a feedback
control considering the full nonlinear system.

The main contributions are summarized below.

• The full system of the quadrotor and inverted pendulum in three dimensions is
considered, where four control strategies are shown to control the system in roll, pitch,
yaw, and height. Therefore, four control strategies based on DESO-ADRC are proposed.
The explicit model is presented and attacked in terms of the eight states that describe
the dynamics of motion of the quadrotor and the inverted spherical pendulum. This
allows us to apply the strategy described in Martinez-Vasquez A. et al. [17] where
the model is simplified in three dynamics of translation around the three axes of the
coordinate system and one dynamic of rotation associated with the yaw motion.

• The differential parameterization is presented. However, in this article the param-
eterization is extended to the yaw dynamics and the extra horizontal translational
dynamics around the Y axis, allowing to consider the roll dynamic rotation of the
quadrotor, the swing dynamics of the pendulum in the Y− Z frame, and the dynamics
of translation of the quadrotor on the Y axis with the control input τφ.

The structure of this article is as follows: The three-dimensional model of the spherical
inverted pendulum on a quadrotor subject to disturbances is presented in Section 2. The
detailed analysis of the control strategy based on ADRC-DESO applied to the complete
system is presented in Section 3. The full closed-loop system’s stability analysis is carried
out in Section 4. Simulation results demonstrating a trajectory tracking control strategy
are presented in Section 5. Conclusions and recommendations for additional research are
enumerated in Section 6.

2. Inverted Pendulum on a Quadrotor Model

In Figure 1, a quadrotor with an inverted pendulum is shown. For practical purposes,
the system is considered to be subject to external disturbances that may be crosswind
disturbances. However, as will be shown later, the term disturbances also consider endoge-
nous disturbances, mainly those associated with dynamics not modeled or neglected in the
modeling process. In this sense, the Euler-Lagrange formalism is suggested to obtain the
complete model of the inverted pendulum system on a quadrotor.

The Lagrangian of the system is considered as:

L = KQuadrotor + KPendulum − TQuadrotor − TPendulum, (1)

where KQuadrotor and KPendulum are the kinetic energy of the quadrotor and el pendulum,
while TQuadrotor and TPendulum are the potential energy associate to the quadrotor and the
pendulum respectively. The definitions of these terms is defined as:
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KQuadrotor =
1
2

Mξ̇T ξ̇ +
1
2

η̇TJη̇, (2)

KPendulum =
1
2

mc ξ̇T
p ξ̇p, (3)

TQuadrotor = Mgz, (4)

TPendulum = mcg(z + l cos α) (5)

Being ξ = [x y z]T ∈ R3 the coordinates of the center of mass of the quadrotor with
respect to the inertial frame I . ξp = ξ + lr with r = [sin α cos β sin α sin β cos α]T ∈ R3 the
coordinates of the bob mass with respect to the inertial frame. η = [φ θ ψ]T ∈ S3 the Euler
angles of the quadrotor with respect to the frame B, while the J matrix is defined in [19].
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Figure 1. The inverted pendulum on a quadrotor.

Applying the Euler-Lagrange equation as:

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= u, (6)

where u = [ f τ 0 0]T ∈ R8 represents the force applied to the quadrotor by the propulsion
force considering the next definitions f = RF ∈ R3, being F = [0 0 u]T ∈ R3, where
u = f1 + f2 + f3 + f4, while R is a rotation matrix defined in [19]. τ = [τφ τθ τψ]T ∈ R3

represent the torque inputs defined as τφ = ( f2 − f4)d, τθ = ( f3 − f1)d, τψ = ∑4
i=1 τMi ,

with τMi is the torque produced by the motor Mi.
A generic form of the full system can be represented by the equation:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu (7)

The matrices and vector expressions associated with the previous Equation (7) are
as follows, where q = [x y z φ θ ψ α β]T is the generalized coordinates vector. The
development of the full equations was done in Maple software, find the files at https:

https://drive.google.com/drive/folders/ 1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC
https://drive.google.com/drive/folders/ 1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC


Machines 2023, 11, 578 5 of 19

//drive.google.com/drive/folders/1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC (accessed on 19
May 2023).

M(q) =

 (M + mc)I3×3 03×3 Θ
03×3 IQ 03×2

Γ 02×3 Φ

,

C(q̇, q) =

 03×3 03×3 Υ
03×3 03×3 03×2
02×3 02×3 Ψ

,

G(q̇, q) =


02×1

g(M + mc)
03×1
Gµ

, B =

 Re3 03×3
03×1 I3×3
02×1 02×3

,

u = [ f τ 0 0]T

where e3 = [0 0 1]T , and

Θ = mcl

 CαCβ −SαSβ

CαSβ SαCβ

Sα 0

,

Γ = mcl

 CαCβ −SαSβ

−CαSβ SαCβ

−Sα 0

T

,

Φ =

[
mcl2 0

0 mcl2S2
α

]
, Gµ =

[
−mclgSα

0

]
,

Υ = mcl

 −(α̇Sα + β̇CαSβ) −(α̇CαCβ + β̇Sα)
−(α̇Sα + β̇CαCβ) −(α̇CαCβ + β̇Sα)

−α̇Cα 0

,

Ψ = mcl2
[

0 −β̇Sα cos α
β̇SαCβ α̇SαCβ

]
To simplify the mathematical model representation, the following notation is used

Sα = sin α(t), Cβ = cos β(t), Sβ = sin β(t), Cφ = cos φ(t), Sφ = sin φ(t), Cθ = cos θ(t),
Sθ = sin θ(t), Cψ = cos ψ(t), Sψ = sin ψ(t) is used.

Problem Statement

An output reference trajectory tracking control strategy of the inverted spherical pen-
dulum system on a quadrotor subjected to external disturbances given by crosswind is
desired. The control strategy is based on a DESO for the estimation of unknown distur-
bances given by the neglected non-linear crosswind, as well as, phase variables of the flat
outputs which are compensated in the feedback control. It is required that the trajectory

https://drive.google.com/drive/folders/ 1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC
https://drive.google.com/drive/folders/ 1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC
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tracking errors: eψ = ψ− ψd, ez = z− zd, eFx = F− Fxd and eFy = Fu − Fyd and α → 0,
satisfying the criteria:

‖eψ(t)‖ ≤ ε ∀t ≥ T0, (8)

‖ez(t)‖ ≤ ε ∀t ≥ T0, (9)

‖eFx (t)‖ ≤ ε ∀t ≥ T0 (10)

‖eFy(t)‖ ≤ ε ∀t ≥ T0 (11)

In which T0 represents a selected settlement period.

3. Control Strategy

Control techniques used to stabilize the full system are based on the following priority
rule. (1) the yaw angle is stabilized via a control, in this case it is desired that ψ→ ψd, then
consequently controlling the translation movement in height, i.e., z→ zd. (2) by means of
the torques associated with the rotational dynamics, the horizontal translational motion
of the quadrotor is controlled, consequently, controlling the swinging movement of the
inverted pendulum, this is achieved through a relationship of the states by means of a
flat output All the decoupling algebraic process was made in maple software; find the
files are at https://drive.google.com/drive/folders/1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC
(accessed on 19 May 2023).

3.1. Yaw Control

To carry out the aforementioned control schemes, it is necessary to decouple the model
given by Equation (7), where the yaw dynamics result as,

ψ̈ =
τψ

Iψ
+ ϑψ, (12)

where ϑψ is the term that represents the global perturbation introduced into the yaw
dynamics. The DESO is then used as a method for estimating the total disturbance,

˙̂ψ1 = ψ̂2 + λψ3(ψ1 − ψ̂1),
˙̂ψ2 = uψ + ϑ̂ψ1 + λψ2(ψ1 − ψ̂1),

˙̂ϑψ1 = ϑ̂ψ2 + λψ1(ψ1 − ψ̂1),
˙̂ϑψ2 = ρψ · sign(ψ1 − ψ̂1),

(13)

where λψ3 , λψ2 , λψ1 and ρψ are positive real constants parameters. When the estimation
error is defined as ẽψ = ψ1 − ψ̂1, the dynamics of the estimation error introduced by the
observer is governed by the following.

ẽ(4)ψ + λψ3 ẽ(3)ψ + λψ2
¨̃eψ + λψ1

˙̃eψ + ρψ · sign(ẽψ) = ϑ̈ψ (14)

A characteristic polynomial then denotes the dynamics for the DESO’s tracking error
estimation in yaw dynamics, this is

pψ(s) = s4 + λψ3 s3 + λψ2 s2 + λψ1 s + λψ0 (15)

The ADRC-DESO output reference in yaw dynamics is given by:

τψ = Iψ

[
ψ̈d − kψ1(ψ̇− ψ̇d)− kψ0(ψ− ψd)− ϑ̂ψ1

]
, (16)

where kψ1 , kψ0 are positive constants real parameters and Iψ is the moment of inertia.

https://drive.google.com/drive/folders/ 1m4ci86XqrfgyvfScftufrJmsl7_2Y7uC
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3.2. Height Control

Decoupling the system (7), the vertical dynamics associated with the height control
correspond to

z̈ = gzu + ϑz, (17)

where ϑz = f z + ϑz1, is the term of total disturbace un the vertical Z axis, and u is the
thrust force control input. The term ϑz1 corresponds to the exogenous or external unknown
disturbance, in this case, a wind gust. The term gz corresponds to the nonlinear terms as a
result of decoupling the complete model given by (7), and fz corresponds to nonlinearities
associated with the dynamics at height and are defined as,

gz =

(mc
[
(CψSβ − SψCβ)Sφ − (CψCβ + SψSβ)SθCψ

]
SαCα

M(M + mc)

+
(M + mc)CθCφ −mcC2

αCφCθ

M(M + mc)

)
,

(18)

fz =
mclβ̇2(Cα − C3

α) + mclα̇2Cα − (M + mc)g
M + mc

, (19)

The following dynamics describe the DESO for the height dynamics:

˙̂z1 = ẑ2 + λz3(z1 − ẑ1),
˙̂z2 = uz + ϑ̂z1 + λz2(z1 − ẑ1),

˙̂ϑz1 = ϑ̂z2 + λz1(z1 − ẑ1),
˙̂ϑz2 = ρz · sign(z1 − ẑ1),

(20)

where λz3 , λz2 , λz1 and ρz are positive real constants parameters. Given that ẽz = z1 − ẑ1,
the dynamics of the estimation error is by the following:

ẽ(4)z + λz2 ẽ(3)z + λz1
¨̃ez + λz0

˙̃ez + ρz · sign(ẽz) = ϑ̈z (21)

The following characteristic polynomial then, denotes the dynamics for estimating the
DESO’s tracking error in height dynamics,

pz(s) = s4 + λz3 s3 + λz2 s2 + λz1 s + λz0 (22)

For height dynamics (17), the following describes the ADRC-based DESO output
reference trajectory tracking controller.

u =
z̈d − kz1(ż− żd)− kz0(z− zd)− ϑ̂z1

gz
(23)

3.3. Horizontal Position Control

The horizontal dynamics of the inverted pendulum system on a quadrotor is governed
by the rotational dynamics of the quadrotor which is controlled by the control inputs
associated with the torques due to the thrust forces of the motors. The translational
dynamics of the quadrotor is associated in a cascade scheme together with the rotational
dynamics; this is, to move the quadrotor horizontally it is necessary to generate an effect
on the translational dynamics, and in turn the translational dynamics allows to control the
balance of the inverted pendulum. To achieve this in 3-D space, it is necessary to decouple
the complete system in a translation dynamic around the X axis with β = 0 and another
around the Y axis considering that β = π/2, provided that it has been fulfilled ψ→ 0 and
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z→ zd have been accomplished. Making use of the symmetry of the system and considering
small movements in the rotational dynamics, both dynamics can be linearized on the X
and Y axis around the equilibrium points (x(t), y(t), z(t), φ(t), θ(t), α(t)) = (x̄, ȳ, z̄, 0, 0, 0)
and u(t) = ū = (M + mc)g, τ̄φ = 0, τ̄θ = 0. The linearized and decoupled model around X
axis is given by

ẍδ =
(M + mc)gθδ −mcgα

M
, (24)

θ̈δ =
τθδ

Iθ
, (25)

α̈δ =
(M + mc)g

Ml
(αδ − θδ), (26)

while the decoupled linearized model for the Y frame is represented by,

ÿδ =
−(M + mc)gφδ −mcgα

M
, (27)

φ̈δ =
τφδ

Iφ
, (28)

α̈δ =
(M + mc)g

Ml
(φδ − αδ) (29)

A set of flat outputs are defined [17,20,21].

Fx = xδ + lαδ, (30)

Fy = yδ + lαδ (31)

The dynamics of translation around the X axis with the Fx shows the following
relationship:

Fx = xδ + lαδ, (32)

Ḟx = ẋδ + lα̇δ, (33)

F̈x = gαδ, (34)

F(3)
x = gα̇δ, (35)

F(4)
x =

(M + mc)g2

Ml
(αδ − θδ), (36)

F(5)
x =

(M + mc)g2

Ml
(α̇δ − θ̇δ), (37)

F(6)
x = − (M + mc)g2

Iθ Ml
τθδ

+
(M + mc)g

Ml
F(4), (38)

Also, the following relationships between the system state variables and the Fy flat
output are associated with the Y axis and its time derivatives.
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Fy = yδ + lαδ, (39)

Ḟy = ẏδ + lα̇δ, (40)

F̈y = gαδ, (41)

F(3)
y = gα̇δ, (42)

F(4)
y =

(M + mc)g2

Ml
(φδ − αδ), (43)

F(5)
y =

(M + mc)g2

Ml
(φ̇δ − α̇δ), (44)

F(6)
y =

(M + mc)g2

Iθ Ml
τφδ

+
(M + mc)g

Ml
F (4) (45)

Because of the symmetric of the quadrotor, both dynamics of the newly formed linear
system have the same structure, and the Equations (38) and (45) show that the new system
has a relative degree six. The Figures 2 and 3 show how a DESO and a Luenberger observer
are used to estimate the phase variables and unknown uncertainties along the X and Y
axes, respectively.

Figure 2. A DESO and a Luenberger observer with displacement along X axis is represented as a flat
output cascade.

Figure 3. A DESO and a Luenberger observer with displacement along Y axis is represented as a flat
output cascade.
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As mentioned above, due to the symmetry of the system, the structure of both lat-
eral dynamics is identical; thus, only one case is presented to avoid rewriting the same
observer’s system, which can be applied to the translational motion around X and Y axis.
The following can be proposed as an appropriate Luenberger observer for the first stage of
the horizontal position.

˙̂F1 = F̂2 + λ3(F1 − F̂1),
˙̂F2 = F̂3 + λ2(F1 − F̂1),
˙̂F3 = F̂4 + λ1(F1 − F̂1),
˙̂F4 = F5 + λ0(F4 − F̂4),

(46)

λ3, λ2, λ1, λ0 are positive real constants parameters. A DESO can observe the unknown
total disturbance in the second stage in the form

˙̂F5 = F̂6 + λ3(F5 − F̂5),
˙̂F6 = uF + ϑ̂x + λ2(F5 − F̂5),

˙̂ϑx1 = ϑ̂x2 + λ1(F5 − F̂5),
˙̂ϑx2 = ρF · sign(F5 − F̂5)

(47)

ρF real positive constant. Given that ẽ1 = F1 − F̂1, the dynamics of the DESO estimation
error is governed by:

ẽ(4)1 + λ3 ẽ(3)1 + λ2 ¨̃e1 + λ1 ˙̃e1 + λ0 ẽ1 = 0, (48)

and with ẽ5 = F5 − F̂5,

ẽ(4)5 + λ3 ẽ(3)5 + λ2 ¨̃e5 + λ1 ˙̃e5 + ρF · sign(ẽ5) = ϑ̈F, (49)

The following expression represents the property characteristic polynomial associated
with the estimated error dynamic of the tracking prediction error by both observers in the
estimation factor. The characteristic polynomial of the DESO is given by:

pF = s4 + λ3s3 + λ2s2 + λ1s + λ0 (50)

Finally, the feedback control compensated the total disturbances for both, dynamic
motion on the X and Y axes respectively associate to the torque are shown below.

τθ =
MlIθ

(M + mc)g2

(
−k5(F̂

(5)
x − F(5)

xd )− k4(F
(4)
x − F(4)

xd )

− k3(F̂
(3)
x − F(3)

xd )− k2(F̈x − F̈xd)− k1(
˙̂Fx − ˙Fxd)

− k0(Fx − Fxd)− ϑ̂x + F(6)
xd

)
+

Iθ

g
F(4)

x ,

(51)

and the equation of motion along the Y-axis is given by:

τφ =
−MlIφ

(M + mc)g2

(
−k5(F̂

(5)
y − F(5)

yd )− k4(F
(4)
y − F(4)

yd )

− k3(F̂
(3)
y − F(3)

yd )− k2(F̈y − F̈yd)− k1(
˙̂Fy − Ḟyd)

− k0(F− Fyd)− ϑ̂y + F(6)
d
)
+

Iφ

g
F(4)

y

(52)
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4. Convergence Analysis

This section shows the convergence analysis of DESO and feedback controls based on
Lyapunov’s first theorem.

4.1. Discontinuous Extended State Observer

Theorem 1. Let us assuming that small movements are considered in the rotational dynamics of
the quadrotor, that the inverted pendulum starts from an initial condition close to the unstable
equilibrium point and that, in addition, the perturbations are bounded and differentiable. If the
coefficients λz0 , . . . , λz2 , λψ0 , . . . , λψ2 and λ0, . . . , λ3 associated with the characteristic polynomials
of the DESO design are chosen such that for N >> 0, all the roots are located to the left of the
complex plane C on the line {s ∈ C | Re(s) ≤ −N}. Then the estimation errors ẽψ, ẽz1 , ẽF1
and ẽF4 converge globally and asymptotically towards a ball of radius ρ given by S(0, r), and the
estimation variables ϑ̂ψ, ϑ̂z, ϑ̂x, ϑ̂y converge towards ϑψ, ϑz, ϑx, ϑy.

Proof. Let ẽ = [ẽ1 , . . . , ẽ4]
T stand for the phase variables in each (14), (21) and (49) given

system, These systems may be expressed generically as

˙̃e = Aeẽ + b
(
ϑ̇− ρ · sign(ẽ)

)
, (53)

where

Ae =


0 1 0 0
0 0 1 0
0 0 0 1
0 −λ1 −λ2 −λ3

,

b =
[

0 0 0 1
]T

Given the largest eigenvalue of Ae this is such that |Re(σmax(Ae))| ≥ N. This means
that there is a constant, symmetric, positive matrix P that guarantees a solution to the
Lyapunov equation for any given Q = QT > 0.

AT
e P + PAe = −Q (54)

Choosing a Lyapunov Function Candidate.

V(ẽ) =
1
2

ẽTPẽ, (55)

for the resultant closed-loop system and taking the derivative with respect to time of V(ẽ),

V̇(ẽ) =
1
2

ẽT(AT
e P + PAe)ẽ + ẽTPb(ϑ̈− ρ · sign(ẽ)), (56)

V̇(ẽ) ≤− ‖ẽ‖2‖P‖|Re(σmax(Ae))|
−‖ẽ‖‖P‖(ρ · sign(ẽ)− ϑ̄),

(57)

V̇(ẽ) ≤ −‖e‖‖P‖
(
|Re(σmax(Ae))|‖e‖ − ϑ̄

)
(58)

Thus, outside the sphere, this function has a strictly negative value.

S(0, r) =
(

e ∈ R4 | ‖e‖ ≤ ρ =
ϑ̄

|Re(σmax(Ae))|
≤ ϑ̄

N

)
(59)
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As a result, no path entering S(0, ρ) will never leave it. The ultimate bounding
sphere’s radius S(0, r) along ẽ decreases with the dominant eigenvalue’s real component of
Ae increases (|Re(σmax(Ae))|).

To express the estimation error given by (46), the Luenberger observer can be formulated as

˙̃e1 = Ae1 ẽ1, (60)

where

Ae1 =

 0 1 0 0
0 0 1 0
−λ0 −λ1 −λ2 −λ3


Given C as the complex plane, all the roots of this system lie on the line’s left side

{s ∈ C | Re(s) ≤ −N}. The error estimators ẽ1 thus tend to converge asymptotically
to zero.

4.2. The Disturbance Canceling Controller

According to the feddback controls (16), (23), (51) and (52) for the yaw, height,
and horizontal trajectory tracking, respectively, defining the trajectory tracking errors
eψ = ψ− ψ∗, ez = z− z∗ and eF = F− F∗, respectively, the closed-loop system of each
dynamics are given by

ëψ + kψ1 ėψ + kψ0 eψ + (ϑψ − ϑ̂ψ) = 0, (61)

ëz + kz1 ėz + kz0 ez + (ϑz − ϑ̂z) = 0, (62)

e(6)F + k5e(5)F + k4e(4)F + k3e(3)F + k2 ëF + k1 ėF + k0eF + (ϑF − ϑ̂F) = 0 (63)

These closed-loop dynamics have a generic representation expressed in a linear state
space as:

ė = Ae + B(ϑ− ϑ̂), (64)

where e = [e, ė..., e(n)]T is a state vector, taking the following values: e = eψ, with ϑ = ϑψ,
n = 2 for (61); e = ez, with ϑ = ϑz, and n = 2 for (62); e = eF, with ϑ = ϑF for (63), and
n = 6.

Theorem 2. Let the set of coefficients kz0 , kz1 and k0, . . . k5 are chosen in such a way that the phase
space for output tracking errors (e, , ė . . . , e(n−1)) provided by the disturbance rejection feedback
controllers (16), (23), (51) and (52), guides the trajectory tracking error of the controlled systems ψ,
z, Fx and Fy toward a small desired region of the origin and are chosen such that,

pψ = s2 + kψ1 s + kψ0 , (65)

pz = s2 + kz1 s + kz0 , (66)

pF = s6 + k5s5 + k4s4 + k3s3 + k2s2 + k1s + k0 (67)

These polynomials are Hutwitz if and only if defined the number N >> 0, and their roots lie
far enough on the left side of the imaginary axis in the field {s ∈ C | Re(s) ≤ −N}. Then, the
trajectories of the tracking error e = eψ, e = ez e = eFx and e = eFy globally converge to a ball
S(0, ρ) with radius ρ, as small as desired.
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Proof. The previous theorem states that the generic system (64), the term (ϑ − ϑ̂) and
e, ė, · · · , en−1 evolve in a small as desired neighborhood of the origin in terms of the esti-
mation error of the disturbance. It can be said that the estimation error ‖ϑ− ϑ̂‖ = ‖eϑ‖ ≤ ēϑ

is bounded in this sense. A candidate Lyapunov function is proposed using the same evi-
dence presented in Theorem 1, this is.

V(e) =
1
2

eTPe, (68)

whose the derivative with respect to time takes the form,

V̇(e) =
1
2

eT(ATP + PA)e + eTPBeϑ, (69)

V̇(e) ≤ −‖e‖2‖P‖|Re(σmax(A))|+ ēϑ‖e‖‖P‖, (70)

V̇(e) ≤ −‖e‖‖P‖(|Re(σmax(A))|‖e‖ − ēϑ) (71)

V̇(e) is strictly non positive anywhere outside the ball,

S(0, ρ) =

(
e ∈ Rn | ‖e‖ ≤ ρ =

ēϑ

|Re(σmax(A))|

)
(72)

Thus, if we substitute each one of the dynamics of movement of the system (12), (17),
(38) and (45) the trajectory tracking errors of the full system converges towards the inside
of the sphere of radius S(0, ρ), the larger the quantity |Re(σmax(A))|. The sphere’s radius
is smaller.

5. Numerical Result

Numerical simulations were carried out considering the nonlinear system given by (7).
The parameters of the quadrotor UAV and the inverted pendulum are summarized in
Table 1.

Table 1. Simulation parameters of the quadrotor and inverted pendulum.

Parameter Value Units

Mass of the quadrotor, (M) 0.5 [kg]
Mass of the suspended load,

(mc) 0.2 [kg]

Cable length, (l) 0.3 [m]
Gravitational acceleration, (g) 9.8 [m/s2]

Inertia (Iφ) 0.1 [kg.m2]
Inertia, (Iθ) 0.1 [kg.m2]
Inertia, (Iψ) 0.1 [kg.m2]

The parameters for the yaw and height dynamics of the DESO are selected according
to λψ1 = λz1 = 4ζω3

n, λψ2 = λz2 = 4ζ2ω2
n + 2ω2

n, λψ3 = λz3 = 4ζωn, and feedback
control kψ0 = kz0 = ω2

nc , kψ1 = kz1 = 2ζcωnc , with ωn = 500, ζ = 0.9, and ωnc = 10,
ζc = 0.9. The parameters for lateral or horizontal dynamics are selected as λ0 = ω2

n,
λ1 = 4ζω3

n, λ2 = 4ζ2ω2
n + 2ω2

n, λ3 = 4ζωn, and the feedback control k0 = ω6
nc , k1 = 6ζcω5

nc ,
k2 = 12ωnc

4ζ2
c + 3ω4

nc , k3 = 8ω3
nc ζ3

c + 12ω3
nc ζc, k4 = 12ω2

nc ζ2
c + 3ω2

nc , k5 = 6ωnc ζc with
ωn = 500, ζ = 0.9, and ωnc = 7, ζc = 0.9. These parameters are chosen in a suitable way so
that their corresponding polynomials are Hurwitz.

In Figure 4 the behavior of the trajectory tracking of the quadrotor-inverted pendulum
system are shown. The behavior of the variables ψ, z, corresponding to the yaw and height
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dynamics of the quadrotor are shown in Figure 4d,c, while, the flats outputs associated to
the horizontal translational dynamics of the quadrotor are shown in Figure 4a,b.

Figure 5 shows the behavior of the attitude angles of the quadrotor. In Figure 5a,b
the pitch angle and teh roll angle associated with the rotational dynamics of the quadrotor
are shown.

The trajectory tracking error eψ, ez, eFx and eFy associated to the quadtortor are shown
in Figure 6. Figure 6a,b show the behavior of the horizontal translations dynamic of the
quadrotor on the X− Z and Y− Z reference frame respectively. Figure 6c,d the trajectory
tracking error in height and yaw dynamics are shown. All the errors converge to zero.

Figure 7 shows the behavior of the spherical inverted pendulum on a quadrotor. In
Figure 7a the behavior of α angle is shown, this angle goes to zero keeping the inverted
pendulum in an unstable vertical position while a trajectory tracking of the quadrotor is
taking place. Figure 7b shows the behavior of β angle, this angle describes the translation
of the bob with respect to the ZB. Figure 7c,d shows the angle with respect to the Y − Z
and X− Z frame, respectively.
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Figure 4. Trajectory tracking behavior of the inverted pendulum system on a quadrotor in three-
dimensional space reaching the reference. (a) Trajectory tracking of the flat output Fx associated
with the X axis. (b) Trajectory tracking of the flat output Fy associated with the Y axis. (c) Trajectory
tracking in height associated with the Z axis. (d) Trajectory tracking in yaw around the ZB axis.
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Figure 5. Attitude angles of the quadrotor. (a) Pitch angle of the quadrotor. (b) Roll angle of
the quadrotor.
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Figure 6. Trajectory tracking errors of the inverted pendulum system on a quadrotor in three-
dimensional space. (a) Trajectory tracking error in the X− Z frame. (b) Trajectory tracking error in
the Y− Z frame. (c) Trajectory tracking error in height. (d) Trajectory tracking error in yaw.
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Figure 7. Swing angles of the spherical inverted pendulum. (a) Swing α angle of the spherical
inverted pendulum. (b) β angle of the spherical inverted pendulum. (c) Swing αx angle projected in
the Y− Z frame. (d) Swing αy angle projected in the X− Z frame.

External disturbances, such as wind gusts in vertical, horizontal, and rotational motion
in yaw, are randomly generated in simulation and injected into the model. Figure 8 shows
the disturbances injected after ten seconds of simulation. Figure 8a,b shows the disturbance
in the horizontal on the X and Y axis. Figure 8c shows the disturbance injected in the
vertical dynamics, while Figure 8d shows the disturbance in yaw dynamics.

The behavior of feedback control signals with compensation of the disturbance are
depicted in Figure 9. Figures 9a,b show the control signals associated to the pitch and roll
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angles of the quadrotor. Figure 9c,d shows the behavior of the control signals in height and
yaw quadrotor’s dynamics. The effect of the disturbances injected to the quadrotor after
ten seconds of simulation are reflected in the control signals.
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Figure 8. Estimation of the disturbance in the three axes of the three-dimensional space and the
rotational perturbation on yaw. (a) Estimation of the disturbance in the X axis. (b) Estimation of
the disturbance in the Y axis. (c) Estimation of the disturbance in the Z axis. (d) Estimation of the
rotational disturbance on yaw.
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Figure 9. Control signal applied to the quadrotor UAV to reach the reference trajectory in three-
dimensional space and keeping the inverted spherical pendulum in balance. (a) Control signal τθ

applied to the quadrotor to reach the translation reference trajectory in X axis. (b) Control signal τφ

applied to the quadrotor to reach the translation reference trajectory in Y axis. (c) Control signal u
applied to the quadrotor to reach the translation reference trajectory in height. (d) Control signal τψ

applied to the quadrotor to reach the rotational reference trajectory in yaw.
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Figure 10 shows a virtual behavior of the full system with a trajectory tracking control
scheme. Figure 10a illustrates the three-dimensional trajectory tracking of the quadrotor
with the spherical inverted pendulum, where it is observed that the system starts from
an initial condition different from the desired trajectory, and by the action of the feedback
control with compensation of the disturbances it converges towards the desired trajectory.
In addition, the behavior of the inverted pendulum is observed, whose kinematics is
obtained from the numerical solutions of the elements α and β, demonstrating that β does
not converge to zero. Figure 10b shows the projections in the X−Y frame, and Figure 10c,d
represent the behavior of the system in the coordinate systems X− Z and Y− Z.

(a) (b)

(c) (d)

Figure 10. Virtual animation of the complete system under the trajectory tracking chart shown in the
simulation results in three-dimensional space. (a) Behavior of full system in the three-dimensional
space. (b) Surface view of the full system in the X − Y frame. (c) Lateral view in the X − Z frame
behavior the full system. (d) Lateral view in the Y− Z frame behavior the full system.

6. Conclusions

In this paper, a discontinuous extended state observer-based differential flatness to the
trajectory tracking problem of the spherical inverted pendulum attached on a quadrotor
UAV in three-dimensional space is presented. The full nonlinear model of the system
is obtained by the Euler-Lagrange formalism considering as control input the torques
over the Euler angles and the thrust force due to the propels of the quadrotor. This issue
requires considering small movements of the quadrotor-inverted pendulum system, which
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by means of a linearization around an equilibrium point allows for reducing the complexity
of the full model. Taking into account the differential flatness property of the linear model,
a set of new outputs are proposed (flat outputs) which allow the design of an active
disturbance rejection control in each control dynamics, more precisely, roll, pitch, yaw,
and in height dynamic. The proposed solutions guarantee accurate estimation of the total
disturbance which are used to compensate for their effects on feedback control, as well
as, guarantee trajectory tracking of the system with a minimum bounded error as it is
shown in the stability analysis. Finally, numerical simulations are shown to validate the
control strategy. An important aspect to highlight in our work is the solution to the β
angle of the system, which is projected on the earth, i.e., in the X − Y frame. This angle,
unlike the works reported in the literature where the problem of a suspended load is
addressed, never converges to zero, the angle that converges to zero guaranteeing the
stability of the inverted pendulum is the α angle. On the other hand, there are few works
that address the problem of the inverted pendulum in three-dimensional space, for example,
Hehn M. et al. [3] where, unlike our work, the authors propose a change of variable that
does not involve the alpha and beta angles, Rather, they propose to obtain the coordinates of
the pendulum on the frame of reference in the body, thus avoiding terms that involve angles
of oscillation; however, the model they propose is very limited. Villaseñor Rios et al. [14]
also address this case, where the problem is mainly studied in two dimensions, considering
a particular case of the full model in three dimensions, and also proposing a well-known
extended state observer to estimate the external disturbance.
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