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Abstract: Hybrid electric vehicles that can combine the advantages of traditional and new energy
vehicles have become the optimal choice at present in the face of increasingly stringent fuel consump-
tion restrictions and emission regulations. Range-extended hybrid electric vehicles have become an
important research topic because of their high energy mixing degree and simple transmission system.
A compact traditional fuel vehicle is the research object of this study and the range-extended hybrid
system is developed. The design and optimization of the condition prediction energy management
strategy are investigated. Vehicle joint simulation analysis and bench test platforms were built to
verify the proposed control strategy. The vehicle tracking method was selected to collect real vehicle
driving data. The number of vehicles in the field of view and the estimation of the distances between
the front and following vehicles are calculated by means of the mature algorithm of the monocular
camera and by computer vision. Real vehicle cycle conditions with driving environment and slope
information were constructed and compared with all driving data, typical working conditions under
NEDC, and typical working conditions under UDDS. The BP neural network and fuzzy logic control
were used to identify the road conditions and the driver’s intention. The results showed that the
equivalent fuel consumption of the control strategy was lower than that of the fixed-point power
following control strategy and vehicle economy improved.

Keywords: hybrid electric vehicle; road condition identification; driving intention recognition; energy
management strategy

1. Introduction

New energy vehicles are usually vehicles driven entirely, or mainly, by new forms of
energy. These vehicles have received extensive research attention from various countries
and institutes because of their adoption of a new type of power system with high efficiency,
low emissions, and low pollution. Hybrid electric vehicles utilize two or more energy
storage systems that mainly use internal combustion engines and motors as power sources.
The advantages and disadvantages of energy management strategies determine the overall
performance of the vehicle. Therefore, the energy management strategy of the power
system has been extensively investigated. The energy management strategy aims to control
the energy flow between different power sources of the power train according to the power
demands of the vehicle. A reasonable management strategy can optimize the potential
of the power system and reduce energy consumption and emission pollution. Energy
management strategies are mainly divided into rule-, optimization- and learning-based
techniques [1–3].

The logic of the rule-based management strategy is to collect information, such as
driving speed, power demand of the vehicle, and battery power, whilst the vehicle is being
driven. The corresponding rule threshold logic table usually set for the upper and lower
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limits of driving motor speed, engine torque constraints, and power battery state of charge
can be subdivided into two categories: deterministic and fuzzy rules [4–6]. Jalil N et al. [7]
proposed a rule-based control strategy that selects three variables: power demand, driver’s
acceleration command, and battery state of charge. The engine and battery work as effi-
ciently as possible to improve the economy of the vehicle through appropriate power and
torque distribution. Kim M et al. [8] proposed a hybrid thermostat strategy for series hybrid
electric vehicles. This new thermostat approach combines the advantages of the power
follower strategy to achieve high efficiency. The optimization-based management strategy
can be divided into two categories: global and real-time optimization. The optimized
management strategy can solve the multi-objective and constrained nonlinear optimization
problem of the hybrid power system and achieve optimal performance under different
driving conditions [9–13]. Satoshi et al. [14] explored an effective energy management sys-
tem, which optimized the operating area of the internal combustion engine, and proposed
a torque control strategy for parallel hybrid electric vehicle battery charging to sufficiently
reduce the emission of harmful pollutants. Erfan et al. [15] designed a new and efficient
engine start–stop control method and adopted a self-learning optimization algorithm to
optimize the working point of the internal combustion engine under different driving
conditions and to remarkably reduce the fuel consumption of the vehicle under different
cycle conditions. M.S. Teja et al. [16] used the particle swarm optimization algorithm to
optimize the fuel consumption, power output, and energy flow of hybrid electric vehi-
cles. A comparison of guidelines proved that the method rapidly completed the design
and reduced fuel consumption and vehicle emissions. With the development of artificial
intelligence and the improvement of computing performance, learning-based methods
have attracted the attention of many scholars [17–19]. Wang et al. [20] proposed a HEV
method integrated with an ORC (HEV–ORC) using reinforcement learning. The simulation
results showed that DRL-based EMS can save 2% more fuel energy than rule-based EMS.
Cheng et al. [21] put forward an energy management strategy based on real-time update
reinforcement learning to allocate the energy flow of the hybrid system reasonably under
unknown conditions.

The complex and changeable working environments of vehicles when driving on
the road include objective road facilities and real-time traffic conditions. If a vehicle is
in a congested section of a road, then, from the perspective of optimizing the vehicle’s
control strategy, the facts that the road traffic flow is large, the speed is slow, and the
starts and stops are frequent need to be taken into account. Under these conditions, the
economy of the vehicle should be prioritized by not running the engine at low speed for
a long time, avoiding frequent engine starts and stops, and using pure electric driving as
extensively as possible. If a vehicle is on a smooth road for a long time, then it is likely that
the traffic flow on the road is less and the speed is high. The driving range of the vehicle
should be taken into account so as to ensure the engine works efficiently and to provide
sufficient backup power for the vehicle. However, actual road conditions present high
uncertainty, and determining the driving conditions of vehicles using traditional methods
is difficult. Therefore, existing energy management strategies of vehicles fail to achieve
predetermined energy saving and emission reduction effects in actual use. If road condition
identification and vehicle driving condition prediction can be carried out, then the engine,
generator, motor, power battery, and other components can be reasonably controlled so as
to effectively reduce vehicle exhaust emissions and energy loss.

Research on vehicle condition prediction is mainly divided into two categories: known
and unknown driving conditions [22–24]. The known driving cycle refers to the driving
process on a fixed route. Real-time information is not used in the actual research process.
The control strategy offering minimum fuel consumption during the entire driving process
is investigated on the basis of given typical cycle conditions and historical information.
To assess unknown future driving conditions, current driving information for the vehicle,
combined with certain perceptive means to assist in identifying road conditions and
predicting future driving conditions, are necessary. This kind of investigation has gradually
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become an important research direction with enrichment of perceptual means gaining
attention in recent years because of its importance and feasibility in engineering practice.

Yue Wang et al. [25] conducted an in-depth analysis of driving information from
both historical and future dimensions, completed cycle construction and future driving
prediction, and proposed a hierarchical optimization control strategy based on driving
information. Erik et al. [26] used GPS and a route slope database to complete road slope
predictive control. Real vehicle GPS information combined with the database was applied
to determine the location of the vehicle, complete the vehicle’s predictive control, and
improve the vehicle’s 3.5% fuel saving rate. Jun Hou et al. [27] proposed an optimal energy
management strategy, based on vehicle–cloud connection, that considers battery decay and
electricity cost and uses the dynamic programming method on the cloud computing plat-
form. The model predictive control method is used to deal with uncertainty constraints of
the system. The simulation results showed the superiority of the method with an improve-
ment rate of 40%, compared with the rule-based method. The analysis demonstrated that
research on traditional driving cycle identification is based on the existing typical driving
cycle and real vehicle historical driving information [28–30]. The vehicle’s perception of
the surrounding environment has improved with the development of intelligent vehicles.
Research on the predictive control of a vehicle’s driving cycle under an unknown driving
cycle will be applied to real vehicles in the future [31,32].

The future driving state of a vehicle has strong randomness and no posteriority (i.e.,
the state of the previous moment has no direct influence on the driving state of the next
moment), which are Markov characteristics. The Markov chain is widely used in natural
science and engineering technology, and is effective in state prediction. Therefore, many
researchers use the Markov algorithm to conduct research into the prediction of working
conditions [33,34]. In the actual driving process of a vehicle, it is usually impossible to
achieve predetermined energy saving and emission reduction effects. If road condition
identification and vehicle driving condition prediction can be carried out, the engine, gener-
ator, motor, power battery and other components can be controlled more reasonably, which
can effectively reduce vehicle exhaust emission and reduce vehicle energy loss. In contrast
to an energy management strategy that integrates vehicle networking information, the
main contribution of this paper is the improved control strategy gained through prediction
of future driving conditions of a vehicle by means of the vehicle ‘s own sensors, and inte-
gration into the ECMS strategy of this improved road condition recognition method with
the driver intention recognition strategy through the utilization of fuzzy logic. In this way,
the ECMS strategy has a predictive energy management function. The main idea of the
fusion is to adjust the SOC threshold and the vehicle demand power in the ECMS control
strategy. The results showed that it can effectively improve the economy of the vehicle.

This paper is organized as follows. An approach based on control of the predictive
equivalent consumption minimization strategy (ECMS) under unknown conditions is
proposed in the first part this study. The research object and modeling method of a
hybrid electric vehicle are briefly introduced in the second part. The identification of road
conditions and driver intentions suitable for the algorithm are identified and integrated
into the ECMS algorithm in the third part. Finally, a test bench is built in the fourth part to
verify the algorithm.

2. Hybrid Electric Vehicle Model Construction
2.1. Drive Motor System Model

The driving motor is the power source of driving vehicles with two outputs of torque
and power at work. The motor and motor controller are usually considered as a whole
when modeling. A theoretical model of the motor was established to analyze the voltage
of each winding of the motor with electromagnetic torque characteristics as the output.
Considering the simple mechanical structure and fast torque response of the motor, an
experimental model of the motor, combined with the control demand of the hybrid system,
met simulation requirements. The motor test bench is shown in Figure 1.
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According to the experimental model, the expected output torque of the motor
Tmcmd(n, α) is as follows:

Tm_cmd(nm, α) = α × Tmax(nm) (1)

where, Tmax(n) is the peak torque of the motor at speed; α is the torque load rate, nm is the
motor speed.

2.2. Equivalent Circuit Model

In this paper, the equivalent circuit method was used to construct the power battery
model. The equivalent circuit modeling method describes the performance of the power
battery by establishing an ordinary differential equation. It is assumed that the battery is
composed of circuit components, such as capacitance, resistance, and voltage source. This
method greatly simplifies the complexity of modeling. The equivalent internal resistance
model is a relatively simple model, which ignores the polarization characteristics of the
battery and has low accuracy. On this basis, the Thevenin model increases the polarization
resistance and polarization capacitance of the battery, and the simulation accuracy of the
working state of the battery is high [35].

The state of charge (SOC SOC) of the battery represents the percentage of the remaining
power of the battery to the total power, which is affected by many factors, such as battery
temperature, life, charge and discharge speed. The SOC of the battery can be calculated
by the current, the SOC value at the previous moment and the total capacity using the
ampere–hour integration method:

SOC(t) = SOC(t − 1)−
∫

Idt
Qb

(2)

where, SOC(t) is the SOC of the battery; SOC(t − 1) is the SOC of the battery at the
previous moment; Qb is the ampere–hour capacity of the battery.

2.3. Reducer Model

The forward transmission of the reducer can reduce the speed and increase the output
torque, so as to provide sufficient wheel driving power, and reversely transmit power
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during braking recovery. In this paper, the modeling process mainly considered longitudi-
nal dynamics, without considering the differential, and the transmission distance was not
long. It was assumed that the transmission shaft was rigid, and that the reducer adopted
a cylindrical gear reducer. The expressions of wheel end torque Twheel , speed nwheel and
moment of inertia of the reducer Jwheel are as follows:

Twheel =

{
Tmiηr, α > 0

Tmi
ηr

, α < 0
(3)

nwheel = nmi (4)

Jwheel = Jmi2 + Jr (5)

where, Tm is the reducer motor end torque; ηr is the mechanical efficiency of the reducer;
nin is the speed of the reducer motor end; Jin is the reducer motor end equivalent rotational
inertia; Jr is the rotary inertia of the reducer. Among these values, Twheel is affected by the
transmission direction.

2.4. Engine Model

The engine itself has a complex structure, such as a crank connecting rod and valve
system, and has many auxiliary systems, such as cooling and lubrication. The working
process involves strong transient processes, such as ventilation and combustion. The
modeling of this part is always difficult. Common modeling methods include the steady-
state test model, the average value model and the theoretical model. This paper selected
the steady-state experimental model to construct the model’s engine, which met simulation
requirements. The model includes an engine controller, which takes speed, throttle opening
and the start-stop command as inputs and outputs engine torque and fuel consumption rate.

According to the input speed table, the zero opening torque TL(ne) and the full opening
torque of the throttle TH(ne) are obtained, and the engine torque output is preliminarily
estimated by using the throttle opening Tetable(n, αE):

Te_table(n, αE) =αE × TH(ne) + (1 − αE)× TL(ne) (6)

where, TL(ne) and TH(ne) are the minimum and maximum torques at engine speed; αE
is the throttle opening. The friction torque loss of the engine Tloss(ne) at each speed is
measured by the power analyzer, and the actual engine output torque is corrected:

Te(ne, αE) =Te_table(ne, αE)+Tloss(ne) (7)

Engine output power Pe and average effective pressure Pbemp are divided into:

Pe =
Tene

9550
(8)

Pbmep =
4πTe

Vcyl
(9)

where 9550 denotes the unit conversion factor, ne denotes the engine torque.
The fuel consumption rate

.
m f uel and total fuel consumption of the engine m f uel are

calculated as follows:
.

m f uel =
PeBe
3600

(10)

m f uel =
∫

.
m f ueldt (11)

where, Pe denotes the effective power and Be denotes the average effective fuel consumption
rate obtained by using the fuel consumption meter with the dynamometer.
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2.5. Vehicle Model

This paper focused on the power and economy of the vehicle, so the model mainly
considered the longitudinal dynamics of the vehicle, that is, the mathematical relationship
between the longitudinal force and the motion of the vehicle. In the stable state, the
dynamic equation of the resistance of the vehicle is:

∑ F = Ff + Fw + Fi + Fj
Ff = mg f cosα

Fw = CD Au2
a

21.15

Fi = mgsinα

Fj = δm du
dt

(12)

where, ∑ F is the total resistance of the vehicle; Ff is the road rolling resistance; Fi is the
slope resistance; Fw is the air resistance; Fj is the accelerating resistance; m is the vehicle full
load quality; f is the rolling resistance coefficient; α is the ramp angle; g is the acceleration
of gravity; CD is the wind resistance coefficient; A is the windward area of the vehicle; δ is
the rotating mass conversion coefficient for the vehicle.

3. Method and Simulation

This section mainly proposes road condition identification and driving intention
recognition suitable for the ECMS strategy. The algorithm’s structure is shown in Figure 2.
In the first half of this section, an improved method of road condition identification and
improved driver intention recognition strategy, based on fuzzy logic, are introduced. In
Sections 3.2 and 3.3, the strategy of integrating the predictive features with the ECMS
method and the corresponding verification are addressed.
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3.1. Road Condition Identification and Driving Intention Recognition
3.1.1. Improvement of Road Condition Identification Based on Neural Network Method

The degree of congestion in driving conditions is of great significance to the energy
management system of hybrid vehicles. Traditional driving conditions are categorized
according to traffic conditions or driving areas, such as urban conditions, suburban condi-
tions, and high-speed conditions. Based on vehicle driving history information, the neural
network is utilized to divide the number of vehicles in a field of view, and to determine
driving conditions for each time period as being congested, neutral or unobstructed.

The artificial neural network is an intelligent mathematical method, which can simulate
the logical reasoning ability of the human brain and is suitable for dealing with complex
pattern recognition problems. The BP (Back Propagation) neural network is the most
commonly used method to establish a mapping relationship through input and output
parameters provided by training samples, and adjusts the error back propagation for
network training. In the design process of the BP neural network, the number of hidden
layers greatly influences the mapping ability and generalization ability of the system.
This paper studied the identification of driving road conditions. The output was divided
into three categories: congestion, neutral and unobstructed. The following three types of
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working conditions correspond to the vector form outputs: congestion condition [1,0,0];
neutral condition [0,1,0]; smooth condition [0,0,1]. The selected neural network had 11 input
parameters and 3 output parameters.

The number of nodes is determined according to the following empirical formula:

N =
√

Ni + No + x (13)

where the number of input parameters is 11, No is the number of output parameters and
x can be any constant between 0 and 11.

A BP neural network system of 11 × 10 × 3 was built in this study. Parameters, such
as training function, are listed in Table 1.

Table 1. BP neural network parameter table.

Type Parameter

the number of hidden layers 1
number of the hidden layer nodes 10

hidden layer transfer function logsig
Output layer transfer function tansig

training function trainlm
performance index minimum mean square error (MSE)

learning goal 1 × 10−6

the number of hidden layers 1

The error distribution, mean square error, gradient and regression number obtained
by training the BP neural network are shown in Figures 3–6, respectively.
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In order to verify the rationality of the number of vehicles in the field of view intro-
duced by the network, a neural network with only 10 driving parameters and a neural
network with 11 input parameters were trained. The results were used to identify real
vehicle experimental conditions. The results of the two-road condition identification are
shown in Figure 7. It can be seen from the diagram that most of the two different road
condition identification networks were accurately identified. The method of using the BP
neural network to identify the road condition of the cycle condition is very feasible.
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field of view.

A subjective evaluation method was used to ignore the transition stage of the working
condition, and the total identification accuracies of each working condition were 78.9% and
89.5%, respectively. Compared with an identification method that introduces monocular
visual information, an identification method that does not use the number of vehicles in
the field of view experiences a certain degree of misidentification. In Figure 7b, in graph
period 121–180 s, it can be observed that the traditional identification method identified the
working condition as neutral, while the improved identification result of the corresponding
period, as seen in the graph in Figure 7c, identified congestion. It was speculated that the
reason the traditional road condition identification process mistakenly identified conditions
as neutral was based on the driving speed and vehicle acceleration action, with a maximum
speed of more than 40 km/h, at this stage. From the number of vehicle detections in the
field of view, it can be seen that the numbers of vehicles were mostly 4 or 5, and the result
was corrected to more realistic driving conditions.

In Figure 7b, graph time period 601–720 s, the traditional identification method iden-
tified the working condition as congestion, while the improved identification of the cor-
responding time period in Figure 7c graph identified it as neutral. An analysis of the
vehicle speed diagram showed that there was a long idle condition in this section, which
corresponded to a waiting situation at a traffic intersection in the actual driving process.
The traditional identification method took into account factors such as lower average speed
and mileage in the working section and misjudged the identification results as being con-
gestion. In the improved identification results, the number of vehicles in the field of view
was mostly represented as neutral conditions. There were 3 or 4 vehicles, not significantly
different from the aforementioned neutral working section, and the identification results
were corrected to neutral. From the perspective of the working condition section, the
improved BP neural network had a more accurate identification effect in dealing with the
two types of working conditions of rapid acceleration and long idle speed in the working
condition section.

3.1.2. Improved Driving Intention Recognition Based on Fuzzy Logic

Driving intention mainly includes acceleration, braking and cruising, and it is realized
by the accelerator pedal and the brake pedal. Since driving intention is closely related to
vehicle operation conditions, the real-time traffic environment and the driver’s psychology,
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acceleration and deceleration pedal opening is greatly affected by a driver’s personal
operational habits, and real-time performance is high. With this in mind, i is difficult
to adopt an accurate mathematical model or mathematical language definition, so fuzzy
control was adopted. The basic structure of the fuzzy controller includes four main parts:
knowledge base, fuzzy interface, fuzzy inference engine and anti-fuzzy interface.

The defuzzification interface contains defuzzification steps. The fuzzy results ob-
tained by reasoning need to be defuzzified and divided into quantitative output control
values. The center of gravity method is the most commonly used method. The final out-
put control value is obtained by weighting the output fuzzy quantities according to the
membership degree.

3.1.3. Analysis of Intention Recognition Results

The results of driving intention recognition during driving are shown in Figure 8a.
It can be seen from the diagram that the designed recognition system better identified
the driver’s intention to accelerate and decelerate the vehicle. By comparing with the
driving speed, as shown in Figure 8a, the environmental parameter of the change rate
of the vehicle distance was introduced, so that there was earlier identification of the
driver’s intention than the vehicle’s start time, and some working conditions were even
identified earlier than the driver’s pedal operation. Compared with the traditional method
of intention recognition, using only vehicle information such as speed and accelerator
pedal, the predictability greatly improved.
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In order to evaluate the recognition results, it is assumed that the recognition result
at time t is Ut, and whether the vehicle acceleration is consistent with the action of the
intention recognition result is judged within t − (t + 5). If it is consistent, it is regarded as
a precise recognition, and if it is not, it is regarded as a false recognition. The proportion
of precise recognition number to total recognition number is defined as the recognition
accuracy. According to the statistics, the accuracy of total of 1380 s experimental cycle
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recognition was 85.3%. Figure 8b shows the input parameters and recognition result
diagram of the 0–300 s stroke. It can be seen from the diagram that the main reason for the
recognition error was the input parameters of the driver’s pedal. The pedal opening range
was large and there were many membership functions. The second reason was that the
driver needed to tread on the brake pedal for a long time when stopping at idle speed, and
the acceleration intention judgment was delayed when starting again.

3.2. Threshold Condition Prediction Optimization

Combined with the results of road identification and driver intention recognition, the
traditional ECMS control strategy was adjusted as follows:

1. Under congestion conditions, the vehicle starts and stops frequently, but the power
demand is not high. At this time, if the SOC reaches the preset SOCCS−in, the CS mode
is turned on to start the range extender to start power generation, and the surplus
power is used for power battery charging. At the end of driving, the power battery
surplus is too high. Long-term driving in congestion conditions also means the range
extender frequently starts and stops. By reducing the SOCCS−in threshold, the above
situation can be improved. The control strategy was set as follows: SOCCS−in was
adjusted to 27% and SOCCS−out was adjusted to 30% when the driver’s intention was
not to accelerate quickly in congested conditions.

2. Under the neutral condition, the SOCCS−in parameter remained unchanged at 30%,
and the SOCCS−out was adjusted to 33%;

3. When the SOC does not reach the preset SOCCS−in, the CS mode is opened in advance
and the range extender is at the lowest point of specific fuel consumption to generate
electricity, to avoid long-term operation of the engine at high speed and low efficiency,
and, thereby, to meet driving demands, improve the overall economy of the vehicle
and contribute to improving high-speed driving mileage. The above situation can
be improved by increasing the threshold. The control strategy was set as follows:
SOCCS−in was adjusted to 33% and SOCCS−out was adjusted to 36% when the driver’s
intention was not to decelerate at the current time.

The predictive SOC adaptive ECMS (PS–ECMS) strategy and the engine fixed point
and power following (FPPF) strategy were compared through simulation under real vehicle
experimental conditions.

Figure 9 shows the comparison of SOC simulation curves of the power battery under
the FPPF and PS–ECMS strategies. In the first half of the simulation, the battery SOC of
the FPPF strategy rose from 30% to about 35%, the post-control strategy actively closed
the range extender, and the battery SOC curve also decreased. When the SOC of the 940 s
battery reached SOCCS−in 30%, it reopened, and, finally, dropped to 34.2% after 1320 s
of closing. The PS–ECMS strategy rapidly decreased the battery SOC at the beginning of
the simulation, which began to rise when it reached 27.6% at 359 s. The battery SOC was
maintained at about 30% in the neutral road condition section, and the battery SOC rose
sharply to 32.6% after 1051 s.

Affected by the change of vehicle driving power and charging power, the SOC curves
of the two groups of batteries indicated local jitter. When the battery was charged, the
two sets of curves at some operating points (such as at 1100 s, 1170 s) showed a decrease
in power, indicating that the power generated by the range extender was less than the
required power of the vehicle, and the vehicle was in mixed drive mode. The average
demand power of the vehicle under the unobstructed condition was higher, and the battery
charging speed was slower than at other time periods. At the same time, the instantaneous
high demand power frequency of the vehicle under the unobstructed condition was higher,
so the number of charging state power drops after 1000 s increased.



Machines 2023, 11, 576 12 of 20

Machines 2023, 11, x FOR PEER REVIEW 12 of 21 

 

 

Figure 9 shows the comparison of SOC simulation curves of the power battery under 
the FPPF and PS–ECMS strategies. In the first half of the simulation, the battery SOC of 
the FPPF strategy rose from 30% to about 35%, the post-control strategy actively closed 
the range extender, and the battery SOC curve also decreased. When the SOC of the 940 s 
battery reached 𝑆𝑂𝐶  30%, it reopened, and, finally, dropped to 34.2% after 1320 s of 
closing. The PS–ECMS strategy rapidly decreased the battery SOC at the beginning of the 
simulation, which began to rise when it reached 27.6% at 359 s. The battery SOC was 
maintained at about 30% in the neutral road condition section, and the battery SOC rose 
sharply to 32.6% after 1051 s. 

 
Figure 9. Power battery SOC curve comparison. 

Affected by the change of vehicle driving power and charging power, the SOC curves 
of the two groups of batteries indicated local jitter. When the battery was charged, the two 
sets of curves at some operating points (such as at 1100 s, 1170 s) showed a decrease in 
power, indicating that the power generated by the range extender was less than the 
required power of the vehicle, and the vehicle was in mixed drive mode. The average 
demand power of the vehicle under the unobstructed condition was higher, and the 
battery charging speed was slower than at other time periods. At the same time, the 
instantaneous high demand power frequency of the vehicle under the unobstructed 
condition was higher, so the number of charging state power drops after 1000 s increased. 

From the comparison of the battery SOC curves obtained by the FPPF and PS–ECMS 
strategies, it can be clearly observed that the SOC curve of the FPPF strategy battery had 
faster fluctuation speed and larger upper and lower range values. However, under 
different working conditions, the SOC curves of PS–ECMS were stable near the preset 
lower limit, and the change of the 𝑆𝑂𝐶  value also affected the range of the SOC curves. 
Although the overall upper and lower ranges were also large, the SOC ranges were 
maintained in the range of 3.5% under different working conditions. The PS–ECMS 
strategy was beneficial to the charging and discharging efficiencies and to the service life 
of the power batteries. The SOC at the end of the FPPF strategy could be any value 
between 𝑆𝑂𝐶   and 𝑆𝑂𝐶  , while the PS–ECMS strategy stabilized the SOC at a 
lower target value at the end of the trip, which was more economical. 

Figure 9. Power battery SOC curve comparison.

From the comparison of the battery SOC curves obtained by the FPPF and PS–ECMS
strategies, it can be clearly observed that the SOC curve of the FPPF strategy battery had
faster fluctuation speed and larger upper and lower range values. However, under different
working conditions, the SOC curves of PS–ECMS were stable near the preset lower limit,
and the change of the SOCCS−in value also affected the range of the SOC curves. Although
the overall upper and lower ranges were also large, the SOC ranges were maintained in the
range of 3.5% under different working conditions. The PS–ECMS strategy was beneficial to
the charging and discharging efficiencies and to the service life of the power batteries. The
SOC at the end of the FPPF strategy could be any value between SOCCS−in and SOCCS−out,
while the PS–ECMS strategy stabilized the SOC at a lower target value at the end of the
trip, which was more economical.

Figure 10 illustrates the comparison of the total fuel consumption simulation curves of
the engine under the FPPF and PS–ECMS strategies. Under the FPPF strategy, engine fuel
consumption rose roughly along a straight line between 0–273 s and 939 s–1320 s, and the
rest of the time it remained unchanged. The final fuel consumption was 867.7 g, and there
were several fast-rising segments in the straight line. At this stage, the engine deviated
from the lowest point of specific fuel consumption due to the power following strategy. The
PS–ECMS strategy began to consume fuel at 360 s, showing a stepped rise, and the final
fuel consumption was 786.3 g. Compared with the FPPF strategy, the PS–ECMS strategy
considered both the low-power and high-power driving requirements of the vehicle, and
the curvature of the fuel consumption curve changed, but the slope difference when the
curve rose is not large, indicating that the operating point was basically near the lowest
point of specific fuel consumption. The total fuel consumption of the PS–ECMS strategy at
the end of the trip was significantly lower than that of the FPPF strategy.

Figure 11 shows the comparison of engine speed simulation curves under the FPPF
and PS–ECMS strategies. The FPPF strategy had two operation intervals. The engine speed
in the 0–273 s interval was basically at the lowest point of 2000 rpm fuel consumption, and
the power demand was higher at some time points. After the engine speed rose, it returned
quickly. The vehicle demand power was higher in the unobstructed working condition,
so the engine speed deviated from 2000 revolutions more frequently in 939 s–1320 s. The
operation interval of the PS–ECMS strategy was relatively scattered, and the speed of each
operation interval was basically near the lowest point of specific fuel consumption.



Machines 2023, 11, 576 13 of 20

Machines 2023, 11, x FOR PEER REVIEW 13 of 21 

 

 

Figure 10 illustrates the comparison of the total fuel consumption simulation curves 
of the engine under the FPPF and PS–ECMS strategies. Under the FPPF strategy, engine 
fuel consumption rose roughly along a straight line between 0–273 s and 939 s–1320 s, and 
the rest of the time it remained unchanged. The final fuel consumption was 867.7 g, and 
there were several fast-rising segments in the straight line. At this stage, the engine 
deviated from the lowest point of specific fuel consumption due to the power following 
strategy. The PS–ECMS strategy began to consume fuel at 360 s, showing a stepped rise, 
and the final fuel consumption was 786.3 g. Compared with the FPPF strategy, the PS–
ECMS strategy considered both the low-power and high-power driving requirements of 
the vehicle, and the curvature of the fuel consumption curve changed, but the slope 
difference when the curve rose is not large, indicating that the operating point was 
basically near the lowest point of specific fuel consumption. The total fuel consumption 
of the PS–ECMS strategy at the end of the trip was significantly lower than that of the 
FPPF strategy. 

Figure 11 shows the comparison of engine speed simulation curves under the FPPF 
and PS–ECMS strategies. The FPPF strategy had two operation intervals. The engine 
speed in the 0–273 s interval was basically at the lowest point of 2000 rpm fuel 
consumption, and the power demand was higher at some time points. After the engine 
speed rose, it returned quickly. The vehicle demand power was higher in the unobstructed 
working condition, so the engine speed deviated from 2000 revolutions more frequently 
in 939 s–1320 s. The operation interval of the PS–ECMS strategy was relatively scattered, 
and the speed of each operation interval was basically near the lowest point of specific 
fuel consumption. 

In summary, the PS–ECMS control strategy effectively reduced the battery power at 
the end of the trip and improved the economy under different road conditions. The energy 
consumption parameters of the two control strategies are shown in Table 2. From the table, 
it can be concluded that the equivalent fuel consumption of the PS–ECMS control strategy 
reduced by 4.45%. 

 
Figure 10. Comparison of engine fuel consumption curves. 

Table 2. Comparison of Energy Consumption between FPPF and PS-ECMS  

Control Strategy FPPF PS-ECMS 
Initial SOC/% 30 30 

Final value SOC/% 34.2 33.5 
power consumption/kWh −0.652 −0.544 

power consumption/g 867.7 786.3 

Figure 10. Comparison of engine fuel consumption curves.

Machines 2023, 11, x FOR PEER REVIEW 14 of 21 

 

 

Equivalent oil 
consumption/(L/100 km) 5.841 5.581 

 
Figure 11. Engine speed curve simulation comparison. 

3.3. Vehicle Demand Power Input Value Condition Prediction Optimization 
The ECMS control strategy is based on real-time driving demand power generating 

the power for the range extender. Compared with the traditional control strategy, it can 
improve economy and reduce fuel consumption. However, during the simulation of the 
PS–ECMS strategy, the range extender started 7 times in 1380 s. In actual driving, it is 
necessary to consider the problem of slow power supply if the battery power is low but 
the driver has rapid acceleration demand. The driver would sense a traditional fuel vehicle 
with idle start and stop functions. When driving starts again at an intersection there is a 
rapid acceleration demand, and the vehicle’s power output is extremely slow. This 
phenomenon is similar to the possible consequences of frequent starts and stops of the 
ECMS control strategy extender. In this section, future vehicle demand power is corrected 
by introducing the driving intention, identified in Section 3.1’s condition prediction, so as 
to optimize the vehicle demand power input value of the ECMS control strategy. In this 
way, the range extender can generate electricity according to future power demand. 

The PS–ECMS control strategy was adjusted as follows. The proportional coefficient 
of the vehicle demand power in the ECMS control strategy was modified according to the 
driver’s intention. The driver’s intention was to increase vehicle demand power during 
acceleration and rapid acceleration. The driver’s intention was to keep the vehicle demand 
power constant when the speed was uniform. The driver’s intention was to reduce the 
vehicle demand power during deceleration and rapid deceleration. The proportional 
coefficients were defined as 1.2, 1.1, 1.0, 0.9 and 0.8, respectively. The predictive power 
request adaptive ECMS (PPR–ECMS) strategy was compared with the engine fixed-point 
+ power following strategy. Figures 12–14 provide the simulation curves of the power 
battery SOC, engine total fuel consumption and engine speed under FPPF, PS–ECMS and 
PPR–ECMS strategies, respectively. 

Figure 11. Engine speed curve simulation comparison.

In summary, the PS–ECMS control strategy effectively reduced the battery power at
the end of the trip and improved the economy under different road conditions. The energy
consumption parameters of the two control strategies are shown in Table 2. From the table,
it can be concluded that the equivalent fuel consumption of the PS–ECMS control strategy
reduced by 4.45%.

Table 2. Comparison of Energy Consumption between FPPF and PS-ECMS.

Control Strategy FPPF PS-ECMS

Initial SOC/% 30 30
Final value SOC/% 34.2 33.5

power consumption/kWh −0.652 −0.544
power consumption/g 867.7 786.3

Equivalent oil consumption/(L/100 km) 5.841 5.581

3.3. Vehicle Demand Power Input Value Condition Prediction Optimization

The ECMS control strategy is based on real-time driving demand power generating
the power for the range extender. Compared with the traditional control strategy, it can
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improve economy and reduce fuel consumption. However, during the simulation of the
PS–ECMS strategy, the range extender started 7 times in 1380 s. In actual driving, it is
necessary to consider the problem of slow power supply if the battery power is low but the
driver has rapid acceleration demand. The driver would sense a traditional fuel vehicle
with idle start and stop functions. When driving starts again at an intersection there is
a rapid acceleration demand, and the vehicle’s power output is extremely slow. This
phenomenon is similar to the possible consequences of frequent starts and stops of the
ECMS control strategy extender. In this section, future vehicle demand power is corrected
by introducing the driving intention, identified in Section 3.1’s condition prediction, so as
to optimize the vehicle demand power input value of the ECMS control strategy. In this
way, the range extender can generate electricity according to future power demand.

The PS–ECMS control strategy was adjusted as follows. The proportional coefficient
of the vehicle demand power in the ECMS control strategy was modified according to the
driver’s intention. The driver’s intention was to increase vehicle demand power during
acceleration and rapid acceleration. The driver’s intention was to keep the vehicle demand
power constant when the speed was uniform. The driver’s intention was to reduce the
vehicle demand power during deceleration and rapid deceleration. The proportional
coefficients were defined as 1.2, 1.1, 1.0, 0.9 and 0.8, respectively. The predictive power
request adaptive ECMS (PPR–ECMS) strategy was compared with the engine fixed-point
+ power following strategy. Figures 12–14 provide the simulation curves of the power
battery SOC, engine total fuel consumption and engine speed under FPPF, PS–ECMS and
PPR–ECMS strategies, respectively.
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The dynamic SOC curve of the improved control strategy (Figure 12) was more
susceptible to the demand power. Therefore, the charging oscillation amplitude of the
battery SOC was higher than that of PS–ECMS. Under the 450 s–900 s neutral working
condition, the FPPF and PS–ECMS strategies had time points (577 s, 746 s) when the
power decreased and the vehicle urgently needed power. The PPR–ECMS strategy could
precharge the battery based on the larger demand power predicted by the driver’s intention,
so that the power generated by the extender was transmitted to the drive motor through the
high-voltage bus the first time. When the vehicle was driving at high speed in unobstructed
road sections, the driving intention recognition was maintained at a constant speed and
deceleration for a long time. Therefore, the PPR–ECMS strategy tended to consume more
electricity, so the battery SOC was kept in a lower range. The final value of the battery
SOC reduced to 31.5% at the end of the stroke, which was lower than that of the normal
setting under unobstructed conditions. The reason was that there were more deceleration
and rapid deceleration driving intentions identified in the unobstructed road section, and
the upper and lower thresholds of the SOC were adjusted to the original value. This
indicated that the PPR–ECMS strategy helped to reduce the SOC of the battery at the end
of the stroke.

In regard to the total fuel consumption curve of the engine (Figure 13), the start-up
time of the PPR–ECMS strategy was similar to that of the PS–ECMS strategy, and the
initial fuel consumption was slightly higher than that of the PS–ECMS strategy. There
was little difference in fuel consumption under the neutral working condition, and the
fuel consumption in the unobstructed working condition was significantly lower than in
the other two strategies. It was evident that at medium and high speed, the PPR–ECMS
strategy, combined with the driver’s driving intention, offered better economy and avoided
the vehicle charging too much power at high speed.

The engine speed curve (Figure 14), compared with the PS–ECMS curve, indicated that
the PPR–ECMS strategy had a longer running time during the start-up period, avoiding
the three starts and stops of the extender near 590 s, 760 s, and 983 s. The control goal of
reducing the number of starts and stops was successfully achieved. During the operation of
the engine, the speed fluctuation range significantly improved compared with the FPPF and
PPR–ECMS strategies. The peak speed reached 6000 rpm, and there were many working
conditions below 2000 rpm, which might damage the power battery life and cause vehicle
vibration. It also required high responsiveness when the generator torque follows.

In summary, the PPR–ECMS control strategy predicted the future vehicle demand
power through the driver’s intention, and could significantly reduce the start and stop
times of the range extender in neutral/unobstructed road conditions, but the operation
range of the range extender changes greatly. The energy consumption parameters of the
three control strategies are shown in Table 3 From the table, it can be concluded that the



Machines 2023, 11, 576 16 of 20

equivalent fuel consumption of the PPR-ECMS strategy was 1.08% higher than that of
PS–ECMS and 5.48% higher than that of FPPF.

Table 3. Comparison of Energy Consumption FPPF, PS-ECMS and PPR-ECMS.

Control Strategy FPPF PS-ECMS PPR-ECMS

Initial SOC/% 30 30 30
Final value SOC/% 34.2 33.5 31.5

power
consumption/kWh −0.652 −0.544 −0.187

power
consumption/g 867.7 786.3 656.9

equivalent oil
consumption/(L/100 km) 5.841 5.581 5.521

4. Bench Test Verification
4.1. Extender System Test Bench Construction

In order to verify the corresponding control strategy, a bench test wass built for
analysis. The test bench mainly includes two motors and motor controllers, engines,
eddy current dynamometers, dynamometer control systems, fuel consumption meters,
rapid prototyping controllers, battery simulation test systems, power analyzers and other
components. With the existing equipment conditions in the laboratory, the bench test
platform of the range extender system was built, as shown in Figure 15. The powertrain
performance test bench structure schematic diagram is shown in Figure 16. The main test
equipment models used in the figure are shown in Table 4. As the control unit of the whole
system, the rapid prototyping controller receives the signals from the motor controller, the
engine controller, the battery simulation test system, the fuel consumption meter and the
power analyzer through the CAN bus, and automatically generates the code according to
the designed energy management strategy. The battery simulation test system simulates
the power battery pack and provides voltage, current, SOC and other information. The
power analyzer can be used to measure the input and output power and working efficiency
of the motor.
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Table 4. Range extender system bench main test equipment model table.

Item Model

Electric eddy current dynamometer China, CAMA CW-260
Dynamometer control system China, CAMA FST-4

power analyzer Japan, YOKOGAWA WT-1800
Battery simulation test system Avi, AVL e-Storage

fuel consumption meter China, FCM-1
Coolant constant temperature device China, SHW-300

The PPR–ECMS control strategy needs to dynamically calculate the required power
of the vehicle in combination with the driver’s intention. Since the driver’s intention
recognition changes rapidly, and considering the computing power of the rapid prototyping
controller equipment in the bench test, only the PS–ECMS strategy test was carried out for
verification. In addition, when the ECMS strategy optimized the optimal operating point of
the required power, in order to save computing resources, the equivalent fuel of the range
extender under different power generation powers was calculated from 5 kW to 50 kW
with a gradient of 5 kW, and the minimum power point of the equivalent fuel taken.

4.2. Analysis of Bench Test Results

The neutral condition segments with time periods of 430–1080 s were extracted from
the real vehicle experimental cycle, and the bench experiments of FPPF and PS–ECMS
energy management strategies were carried out, respectively. When conducting two sets
of control strategy tests, the data of the dynamometer control system, power analyzer,
battery simulation test system, fuel consumption meter and other equipment in the bench
were recorded or transmitted and saved, and the battery power consumption and engine
fuel consumption calculated. The numerical results of equivalent fuel consumption per
hundred kilometers are summarized in Table 5.

It can be seen from the energy consumption table that, compared with the FPPF control
strategy, the operation time of the PS–ECMS range extender was significantly lower. Similar
to the simulation strategy, the PS–ECMS strategy tended to generate power and stop as
soon as possible.
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Table 5. Bench test energy consumption table of different control strategies.

Test Condition Real Vehicle Experiment Cycle

control strategy FPPF PS-ECMS
power consumption/kWh −0.375 −0.304

oil consumption/g 333.531 320.363
starting and

stopping times 1 3

Operation time of range extender/s 274 233
equivalent oil consumption/(L/100 km) 6.865 6.603

There were three start-stop times of the PS–ECMS strategy in the simulation time
of 650 s, which was not conducive to the performance of power response and emission.
In terms of 100 km equivalent fuel consumption, the equivalent fuel consumption of the
PS–ECMS strategy was 3.816% higher than that of the FPPF strategy, which was lower
than the improvement of simulation economy. The reasons may be as follows: 1. In the
simulation model, the engine model could not simulate the dynamic response process well,
ignoring the low fuel consumption caused by partial energy loss; 2. Limited by the optimal
power gradient setting of the test bench, the actual operating point of the range extender
was not the best point at the time used in the simulation.

In summary, after bench test verification, the PPR–ECMS control strategy effectively im-
proved the economy of the range extender, and the equivalent fuel consumption per hundred
kilometers reduced by 3.816% compared with the fixed-point power following strategy.

5. Conclusions and Discussion

In this paper, a compact traditional fuel vehicle was taken as the research object, and
the optimization of energy management strategy for condition prediction studied. The
main research content includes the following: parameter design of power train components,
construction of REEV joint simulation analysis platform; construction of real vehicle driving
cycle with driving environment, road condition identification and driving intention recogni-
tion, construction of an improved ECMS control strategy based on driving cycle prediction,
simulation analysis and experimental verification. The specific research content follows:

(1) Based on vehicle performance requirements in different modes, the parameters of the
power train components were designed. The energy flow under the four working
modes of REEV was analyzed. In the CD and CS modes, combined with the perfor-
mance requirements of the vehicle, the selection and parameter matching of the drive
motor, power battery, reducer, engine and generator were completed according to the
three levels of extreme working condition design, acceleration capacity design and
efficiency optimization design.

(2) A real vehicle driving cycle with environmental information was constructed and the
driving cycle prediction carried out.

Real vehicle driving data were collected, and a mature open-source algorithm used to
complete the vehicle number identification and the front and following distance measure-
ments for the video stream in the front field of view obtained by the monocular camera.
An experimental cycle condition, with environmental information, was constructed. The
comprehensive parameter value of the experimental cycle condition was 0.223, which
represented the driving data of the original vehicle. The BP neural network and fuzzy
logic control were used to complete the identification of road conditions and driver’s
intention recognition, respectively. The accuracy of road condition identification, based
on the number of vehicles in the field of view, was 10.6% higher. The driving intention
recognition, based on the distance between following vehicles, accelerated the recognition
time on the basis of ensuring an accuracy of 85.3%, and the overall recognition prediction
was better.
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(3) An improved ECMS energy management strategy, based on condition prediction, was
developed. The ECMS model was established under battery charging and discharging
conditions. The equivalent factor and the average power value of braking energy
recovery in the model were set according to identification of different road conditions.
The SOC threshold and the demand power of the vehicle were adjusted according to
the prediction results. The PS–ECMS and PPR–ECMS control strategies were built
and simulated. The results showed that the control strategy improved the economy of
the vehicle compared with the fixed-point power following control strategy, and the
equivalent fuel consumption per 100 km reduced by 4.45% and 5.48%, respectively.

In the future, we will conduct a neural network-based work condition prediction
mechanism analysis and explore the influential factors between neural network parameters
and work condition prediction. From the current feasibility analysis, it appears that inte-
grating the vehicle’s own sensors into driver assistance or energy management strategies
is both convenient and feasible, and can be implemented in practice. While it is true that
Vehicle-to-Vehicle (V2V) communication is a promising technology for improving road
safety and traffic efficiency, the use of camera-based systems for detecting and analyzing
the behavior of vehicles in front is also a common approach in many advanced driver
assistance systems (ADAS). That being said, V2V communication can also provide valuable
information about the behavior and intentions of other vehicles, especially in situations
where visual detection is limited, such as in adverse weather conditions or obstructed views.
Therefore, a combination of camera-based systems and V2V communication could poten-
tially provide the best of both worlds, and it is likely that future ADAS will incorporate
both technologies for enhanced safety and efficiency.
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