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Abstract: The main goal of control theory is input tracking or system stabilization. Different feedback-
computed controlled systems exist in this area, from deterministic to soft methods. Some examples of
deterministic methods are Proportional (P), Proportional Integral (PI), Proportional Derivative (PD),
Proportional Integral Derivative (PID), Linear Quadratic (LQ), Linear Quadratic Gaussian (LQG),
State Feedback (SF), Adaptative Regulators, and others. Alternatively, Fuzzy Inference Systems (FISs)
are soft-computing methods that allow using the human expertise in logic in IF–THEN rules. The
fuzzy controllers map the experience of an expert in controlling the plant. Moreover, the literature
shows that optimization algorithms allow the adaptation of FISs to control different processes as
a black-box problem. Python is the most used programming language, which has seen the most
significant growth in recent years. Using open-source libraries in Python offers numerous advantages
in software development, including saving time and resources. In this paper, we describe our
proposed UPAFuzzySystems library, developed as an FISs library for Python, which allows the
design and implementation of fuzzy controllers with transfer-function and state-space simulations.
Additionally, we show the use of the library for controlling the position of a DC motor with Mamdani,
FLS, Takagi–Sugeno, fuzzy P, fuzzy PD, and fuzzy PD-I controllers.

Keywords: intelligent control; fuzzy logic; fuzzy inference systems; open source; Python

1. Introduction

The main goal of control theory is to be tracking the input or system stabilization that
produces an adjusted output associated with a process that responds to different behaviors.
Achieving this implies designing a control law adapted to the process model. To obtain this
model means using physics and mathematical principles with parametrizing stage after
modeling to achieve similar behavior to the process [1,2].

A feedback Computer-Controlled System (CCS) has an input that samples the Process
Variable (PV) with an Analog–Digital Converter (ADC). Then, the CCS uses this information
to calculate an algorithm that considers the Reference Variable (RV) or desired value for PV
by producing an analog output—converted from digital with a Digital–Analog Converter
(DAC). All the conversions and steps in the CCS are shown in Figure 1 [3].

CCSs use algorithms ranging from deterministic to soft methods with probabilistic tech-
niques. Some examples of deterministic methods are Proportional (P), Proportional Integral
(PI), Proportional Derivative (PD), Proportional Integral Derivative (PID), Linear Quadratic
(LQ), Linear Quadratic Gaussian (LQG), State Feedback (SF), and Adaptive Regulators [1,3].
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Alternatively, Fuzzy Inference Systems (FISs) are soft-computing methods that offer a
linguistic way of dealing with complex processes and the possibility of translating human
experience into logic in IF–THEN rules.

The FISs were introduced in the early 1970s by Lotfi A. Zadeh. This invention repre-
sented a breakthrough in set theory, as fuzzy logic mimics the human decision process. In
1975, Ebrahim Mamdani initiated the FIS to control a steam engine and boiler by creating
linguistic synthesis control rules based on human expert operators, obtaining the first
fuzzy controller [4].

The fuzzy controllers make it possible to design the control law with rules that repre-
sent the experience of the experts in controlling the plant. Moreover, the literature shows
that algorithms such as Least Square Estimator (LSE), Genetic Algorithms (GAs), Par-
ticle Swarm Optimization (PSO), and Gradient Descent (GD), among others, allow the
optimization of FISs for controlling different processes such as black-box problems [5–10].

FIS controllers simplify the control of complex systems without linearities and time
variations, but their programming and configuration are more complex than classical
approaches. However, there are several commercial alternatives for implementing and
simulating FIS controllers.

The MATLAB™ fuzzy logic toolbox enables the design and implementation of FIS for
control, modeling, and simulation [11]. Current research papers that implement the MAT-
LAB™ fuzzy logic toolbox investigate the following: reducing chemical oxygen demand in
low-strength wastewater [12], controlling the speed of motors for robots [13], designing
the control of a three-phase grid-connected inverter using a Raspberry Pi system [14], the
design, modeling, and simulation of one-degree of freedom inverted pendulum [15], and
designing a single-stage photovoltaic system with energy recovery control [16].

Additionally, “IT2-FLS” is another toolbox of MATLAB™ for implementing fuzzy logic
of interval type 2. It includes different construction stages, including design, description,
and implementation. However, it does not contain parameters or methods specific to
control systems [17].

A commercial alternative for implementing and controlling FIS is National Instru-
ments, whose LabVIEW™ software provides a graphical programming framework. In
addition, LabVIEW™ allows the implementation of real-time controllers using the same
brand of diving instruments, such as USB-6001/6002/6003/6211 and others [18]. Lab-
VIEW with FIS has shown promising results in controlling Carbon Dioxide Fertilization
in a Greenhouse Environment [18], Air Valve for soprano recorders with automatic note
recognition [19], Gain Scheduling of PID Controller Based on Fuzzy Systems [20], and a
suspension system for a quarter-hour car [21], to name a few.
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On the other hand, according to the 2022 TIOBE (The Importance of Being Earnest)
index, Python is the most widely used programming language and has experienced signifi-
cant growth in recent years (Figure 2) [22].
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Python has specific libraries for implementing simulations and control using classical
approaches with model analysis and control laws. Therefore, Python should have an
open-source library for implementation and simulation with FIS controllers. In addition,
most of the control libraries or toolboxes in Python are open-source—a philosophy for
access to programs that allows code modifications, the sharing of contributions, and use
under license restrictions intended to limit responsibility.

Using open-source libraries in Python offers numerous advantages for software de-
velopment. First, open-source libraries approve developers to save time using algorithms
already implemented for different proposals [23]. Second, they provide high quality and
reliability because they are constantly updated and maintained by a large and diverse
community of developers [24]. Third, open-source libraries are cost-effective because they
do not require licensing fees, aiding organizations to allocate more resources to other
areas of their project [25]. Finally, using open-source libraries in Python has led to faster
time-to-market and better product quality [26].

Despite that, there are other open-source alternatives for simulating FISs. They are
related to developing expert systems and fuzzy logic in software applications. In addi-
tion, the control domain is not their priority, and they cannot simulate controllers with
mathematical model descriptions, transfer functions, and inputs as a ramp or step response.

According to the Python Package Index (PyPI), the most relevant libraries for the
implementation of FIS and fuzzy control include the average number of downloads based
on Shield’s IO statistics [27]:

• “Fuzzy-logic-toolbox”: Library licensed in 2020 based on the behavior in MAT-
LAB™ without simulation of fuzzy controllers with an average of 47 downloads
per month [28].

• “Scikit-fuzzy”: A library licensed in 2012 to popularize fuzzy logic in Python, agreeing
to simulate and describe FIS using rounding arithmetic with IEEE (Institute of Electrical
and Electronics Engineers) standards. However, simulations with transfer functions
or mathematical models lack control structures such as fuzzy PID controllers. Shield’s
IO statistics state that it has an average of 26,000 times per month.

www.tiobe.com
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• “fuzzylab”: Licensed in 2007, this is a library based on Octave Fuzzy Logic Toolkit
0.4.6. This library allows the simulation of FISs without including the implementation
of controls with transfer functions, mathematical models, or other control structures
in its methods. However, its developers used it to control an autonomous robot’s
navigation system [29,30], averaging 53 downloads per month.

• “fuzzython”: Released in 2013, it allows the construction of FIS, including the Mam-
dani, Sugeno, and Tsukamoto models, but it misses tools for working with fuzzy
control or the simulation of systems with transfer function or state-space model de-
scriptions [31], with an average of 12 downloads per month.

• “Type2Fuzzy”: Licensed in 2007, this library allows work with type 2 FIS, in general
descriptions for software applications, but it does not include methods for working
with transfer functions, state-space models, and fuzzy control [32] with an average of
53 downloads per month.

• “Fuzzy-machines”: This is a 2018 licensed library for working with FIS but does not
include methods for working with fuzzy controllers, transfer functions, or state-space
descriptions, with an average of 18 times per month.

• “pyfuzzylite”: A 2007 licensed Library for developing FIS and controllers 2007 over a
graphic interface. It allows working in Mamdani, Takagi–Sugeno, Larsen, Tsukamoto,
Inverse Tsukamoto, and Hybrids. However, it does not include fuzzy PID controllers
or methods for simulation with transfer functions and state-space representations [33]
from an average of 302 downloads per month.

• “Simpful”: It depends on “numpy” and “scipy” libraries. It has properties of polygonal
and functional models. It allows the definition of fuzzy rules as text strings in natural
language, the description of complex fuzzy two rules built with logical operators, and
Mamdani and Takagi–Sugeno interference methods. However, it does not consider
parameters for automatic control [33]. Shield’s IO statistics state that it has an average
of 113,000 times per month.

• “pyFume”: It collects classes and methods for the antecedent set and associated param-
eters of a Takagi–Sugeno (TS) fuzzy system from data using the Simpful library. The
antecedent set and related parameters of a Takagi–Sugeno fuzzy model are extracted
from data and then building an executable fuzzy model using the Simpful library.
It only applies fuzzy logic and does not consider automatic control parameters [34].
Shield’s IO statistics state that it has an average of 120,000 times per month.

In this work, we describe our proposal UPAFuzzySystems library developed in the
Universidad Politécnica de Aguascalientes (UPA) as an FISs library for Python, which
supports the design and implementation of the fuzzy controller with transfer function and
state-state representations already published in open-source license in [34]. In addition,
our proposal uses the “control” library for simulation. According to Shield’s statistics IO,
the “control” library is the most used library for simulating controllers in Python, with
57,000 downloads per month. Furthermore, our proposal includes P, PD, PI, and PID fuzzy
controller structures. This proposal is a novel idea since no other Python library allows
the simulation and test of fuzzy controllers with transfer functions and state-space models.
Furthermore, there are no other alternatives in Python for designing fuzzy controllers with
PID structures. Moreover, we compare all these libraries in terms of their capabilities in
designing FISs and fuzzy controllers and simulating them (Table 1).
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Table 1. Comparison of Python libraries for FISs and their capabilities, including UPAFuzzySystems.

Library Design of FISs Design of FISs
Controllers

PID FISs
Controllers

Simulation of FISs Controllers
with Transfer Functions and

State-Space Models

Fuzzy-logic-toolbox Yes No No No

Scikit-fuzzy Yes Yes (Only Mamdani
controller) No No

fuzzylab Yes No No No
fuzzython Yes No No No
Type2Fuzzy Yes (Type 2) No No No
Fuzzy-machines Yes No No No
pyfuzzylite Yes Yes No No
Simpful Yes No No No
pyFume Yes No No No
UPAFuzzySystems Yes Yes Yes Yes

2. Materials and Methods

FISs belong to the soft-computing methods because, unlike hard-computing methods,
they consent to work with tolerances and imprecisions and make decisions under uncer-
tainty. Moreover, our natural language deals with imprecision in inference because we
allow fuzzy boundaries instead of well-defined ones [35,36].

FISs authorize using membership degrees in sets to express logic with fuzzy bound-
aries. The membership value µ defines the degree of membership in the ranges [0, 1].

A membership function µ(x) defines µ for each x point of the universe X in a fuzzy
set A as in Equation (1).

A = {x,µ(x)|x ∈ X} (1)

For example, deciding whether a person is young or old, with an age’s universe
in the range [0, 100] years, one could use well-defined bounds (Figure 3a) to express a
falsely narrow categorization or use FISs with trapezoidal µ(x) to correctly represent the
imprecisions and uncertainties of the problem, as shown in Figure 3b.
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clear boundaries.

The µ(x) forms have a significant impact on the FISs behavior. The most common
membership functions include the triangle in Equation (2) as a function of the vertices a, b, c;
the trapezoid in Equation (3) depending on vertices a, b, c, d; the Gaussian in Equation (4)
as a function of the parameters c and σ; the generalized bell in Equation (5) subject to
parameters a, b, c, and others. Moreover, one can assign µ directly based on empirical



Machines 2023, 11, 572 6 of 42

values or in the statistical metrics of a dataset by specifying the raw membership values
and the corresponding element of the universe as in Equation (6) [37].

triangle(x; a, b, c) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, c ≤ x

(2)

trapezoid(x; a, b, c, d) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d
0, d ≤ x

(3)

gaussian(x; c,σ) = e−
1
2 (

x−c
σ )

2
(4)

bell(x; a, b, c) =
1

1 +
∣∣ x−c

a

∣∣2b (5)

raw(x,µ) = {(x1,µ1), (x2,µ2), . . . , (xn,µn)}, i = 1, . . . , n (6)

The FISs derive conclusions using logical IF–THEN rules, with premises using fuzzy
sets and consequences that can use fuzzy sets for Mamdani, FLSmith; functions for Takagi–
Sugeno; and raw numbers in fuzzy linear and PID controllers [5,36]. The FISs structure
includes the following phases: preprocessing, fuzzification, rule base, inference engine,
defuzzification, and post-processing (Figure 4).
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IF–THEN rules imply working with connectives to define interactions midst premises
represented with fuzzy sets. Moreover, these connectives agree with the definition of fuzzy
composite sets in n dimensions that map interactions between premises. Connectives
include the intersection (AND) and union (OR) operations, which are based on classical set
theory but adapted to fuzzy logic. Equations (7) and (8) define the AND (∧) and OR (∨)
connectives for nonlinear FIS, and Equations (9) and (10) define the AND (∧) and OR (∨)
connectives for linear systems respectively, in that order [35,36].

A∧B≡min(µA(x),µB(x)) (7)

A∨B≡max(µA(x),µB(x)) (8)

A∧B≡µA(x) ∗ µB(x) (9)
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A∨B≡µA(x) + µB(x)− µA(x) ∗ µB(x) (10)

After defining premises with their connectives, Implications (→), or Equivalences
(↔) enable the derivation of conclusions or consequences with rules in the form IF–THEN
of Equation (11). Implications more commonly used in controllers include the Mamdani
implication in Equation (12), which gathers the consequence based on the fuzzy input
universe X to the fuzzy output universe Y. The Mamdani and FLS controllers (FL Smidth)
use this implication [5].

If f(e1 is A1, e2 is A2, . . . , ek is Ak) then f(y1 is B1, y2 is B2, . . . , yk is Bk) (11)

{〈〈x, y〉,µA′⇒′B(x, y)〉 | x ∈ X, y ∈ Y,µA′⇒′B(x, y) = min(µA(x),µB(y))} (12)

Alternatively, Takagi and Sugeno contain fuzzy rules that generate a set of linear
functions depending on the premises. Takagi–Sugeno controllers generate output functions
depending on the error and change in error as in Equation (13). Linear and fuzzy PID
controllers and Takagi–Sugeno controllers use this approach [5].

If f(e1 is A1, e2 is A2, . . . , ek is Ak) then y = g(e1, e2, . . . , ek) (13)

Finally, defuzzification allows an appropriate scalar output for the controlled process
or specific application of the FIS. There are several defuzzification methods, including
Center of Gravity (COG) for continuous fuzzy sets in Equation (14), Center of Gravity for
Singletons (COGS) (Equation (15) for singletons and Equation (16) for discrete systems),
Bisector of Area (BOA) in Equation (17), Mean of Maxima (MOM) in Equation (18), Leftmost
Maxima or Smallest of Maxima (LM) in Equation (19), and Rightmost Maxima or Largest
of Maxima (RM) in Equation (20) [5,36].

COG =

∫
X µA(x)xdx∫
X µA(x)dx

(14)

COGS =
∑k α

∗
kSk

∑k α
∗
k

(15)

COGS =
∑i µA(xi)xi

∑i µA(xi)
(16)

BOA = argminxj

(∣∣∣∣∣ j

∑
i=1

µc(xi)−
imax

∑
i=j+1

µc(xi)

∣∣∣∣∣
)

, 1 < j < imax (17)

MOM =

∑
i∈I

xi

|I | ,I = {i | µc(xi) = µmax} (18)

LM = xmin(I) (19)

RM = xmax(I) (20)

FIS controllers apply different combinations of universes, membership functions, infer-
ence rules, connectives, implications, and defuzzification. However, all the configurations
have common input premises that depend on the error and output consequences to change
the process state. Table 2 describes some of these configurations.
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Table 2. Configurations for FIS controllers.

FIS Controller Input Universes Connectives IF-THEN Rules Defuzzification

Mamdani Not defined Equations (7) and (8) Equation (11) Equations (14) and (16)
FLS [−1, 1] Equations (9) and (10) Equation (11) Equation (17)
Linear [−100, 100] Equations (9) and (10) Equation (13) Equation (15)
Takagi–Sugeno Not defined Equations (9) and (10) Equation (13) Equation (15)
Linear P [−100, 100] Equations (9) and (10) Equation (13) Equation (15)
Linear PD [−100, 100] Equations (9) and (10) Equation (13) Equation (15)
Linear PID [−100, 100] Equations (9) and (10) Equation (13) Equation (15)
No-linear P Not defined Equations (7) and (8) Equation (11) Equations (14) and (16)
No-linear PD Not defined Equations (7) and (8) Equation (11) Equations (14) and (16)
No-linear PID Not defined Equations (7) and (8) Equation (11) Equations (14) and (16)

The fuzzy P, PD, and PID controllers start with a linear structure, as in Table 2. The
goal of using the linear approach is to first design a twin of a P, PD, or PID controller for
the process with classic controllers. Then, the structure is changed to a no-linear form.
This change allows having a no-linear FIS controller with the benefits of derivatives and
integrals without having too complex rules [36].

The P controller has two gains, GE and GU, as shown in Figure 5. First, GE sets the
control deviation of the plant to be in the ranges [−100, 100] required for this controller
(Table 2). Then, GU sets the gain so that it is equal to Kp of the previously designed classical
P controller. Equations (21) and (22) determine the GE and GU, respectively [36].

GE =
100

max(|e|) (21)

GU =
Kp

GE
(22)

Machines 2023, 11, x FOR PEER REVIEW 8 of 42 
 

 

Table 2. Configurations for FIS controllers. 

FIS Controller Input Universes Connectives IF-THEN Rules Defuzzification 

Mamdani Not defined Equations (7) and (8) Equation (11) Equations (14) and (16) 

FLS [−1,1] Equations (9) and (10) Equation (11) Equation (17) 

Linear [−100,100] Equations (9) and (10) Equation (13) Equation (15) 

Takagi–Sugeno Not defined Equations (9) and (10) Equation (13) Equation (15) 

Linear P [−100,100] Equations (9) and (10) Equation (13) Equation (15) 

Linear PD [−100,100] Equations (9) and (10) Equation (13) Equation (15) 

Linear PID [−100,100] Equations (9) and (10) Equation (13) Equation (15) 

No-linear P Not defined Equations (7) and (8) Equation (11) Equations (14) and (16) 

No-linear PD Not defined Equations (7) and (8) Equation (11) Equations (14) and (16) 

No-linear PID Not defined Equations (7) and (8) Equation (11) Equations (14) and (16) 

The fuzzy P, PD, and PID controllers start with a linear structure, as in Table 2. The 

goal of using the linear approach is to first design a twin of a P, PD, or PID controller for 
the process with classic controllers. Then, the structure is changed to a no-linear form. 

This change allows having a no-linear FIS controller with the benefits of derivatives and 
integrals without having too complex rules [36]. 

The P controller has two gains, 𝑮𝑬 and 𝑮𝑼, as shown in Figure 5. First, 𝑮𝑬 sets the 

control deviation of the plant to be in the ranges [−100,100] required for this controller 

(Table 2). Then, 𝑮𝑼 sets the gain so that it is equal to 𝑲𝒑 of the previously designed clas-

sical P controller. Equations (21) and (22) determine the 𝑮𝑬 and 𝑮𝑼, respectively [36]. 

𝑮𝑬 =
𝟏𝟎𝟎

𝒎𝒂𝒙(|𝒆|)
 (21) 

𝑮𝑼 =
𝑲𝒑

𝑮𝑬
 (22) 

 

Figure 5. Structure of P fuzzy controller. 

The controller FIS PD in Figure 6 has three gains 𝑮𝑬, 𝑮𝑼, and 𝑮𝑪𝑬. FIS PD, of the 

FIS P, uses 𝑮𝑬 to adjust the error to be in the ranges [−100,100] and then uses Equation 
(22) to determine 𝑮𝑼. Then, 𝑮𝑪𝑬 is determined from the lead time 𝑻𝒅 using Equation 
(23). 

𝑮𝑪𝑬 = 𝑮𝑬 ⋅ 𝑻𝒅 (23) 

 

Figure 5. Structure of P fuzzy controller.

The controller FIS PD in Figure 6 has three gains GE, GU, and GCE. FIS PD, of the FIS
P, uses GE to adjust the error to be in the ranges [−100, 100] and then uses Equation (22) to
determine GU. Then, GCE is determined from the lead time Td using Equation (23).

GCE = GE·Td (23)

The controller FIS PID in Figure 7 uses the same structure as the controller PD with
GE and GU for scaling the input with Equation (21) and obtaining the equivalent Kp with
Equation (22). Similarly, it uses GCE to map the derivative gain from the derivative time
Td using Equation (23). However, FIS PID includes an integrative effect controlled by the
gain GIE and maps the effect of the integrative time Ti, thus Equation (24).

GIE =
GE
Ti

(24)
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Having defined the linear structures FIS P, PD, and PID, let us explain the inference
system with the IF–THEN rules. The conditions and consequences for these rules depend on
the type of FIS controller. Linear P, Linear PD, and Linear PID, for example, use rules similar
to those of the linear controller to create a clone of a classical controller in the design stage.
Then, they switch to no-linear rules such as those used in Mamdani, FLS, or Takagi–Sugeno
controllers [36]. Table 3 shows the type of rules used in different FIS controllers.

Our proposed library UPAFuzzySystems for Python is already published as an open-
source license. It implements fuzzy universes with fuzzy sets, FIS systems, and FIS con-
trollers with a simple definition of all required parameters by three different Python classes
fuzzy_universe, inference_system, and fuzzy_controller. All the codes of UPAFuzzySys-
tems are in [34].

The class fuzzy_universe is the first-level definition, i.e., all other classes require it
for describing premises or consequences with fuzzy universes. A continuous or discrete
fuzzy universe contains fuzzy sets defined in the universe with membership values for
defining certain situations. The class fuzzy_universe also has several methods for adding
and removing fuzzy sets with all membership functions from Equations (2)–(6), all of which
can be found in [34].

The class fuzzy_inference is the second-level class. It allows the description of the
IF–THEN rules using the premises and consequences defined with the class fuzzy_universe.
Moreover, the class fuzzy_controller uses it to specify its IF–THEN rules. All methods
related to fuzzy_inference class are in [33]. Finally, the class controller defines the fuzzy
controllers with specific structures and simulates their behavior with transfer functions and
state-space equations. All methods for working with the class fuzzy_controllers are in [34].
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Table 3. Rules for the different FIS controllers.

FIS Controller Example of Rules

Mamdani

One input:
If error is Neg then control is Neg
If error is Zero then control is Zero
If error is Pos then control is Pos
Two input:
If error is Neg and change error is Neg then control is Neg
If error is Neg and change error is Zero then control is Neg
If error is Zero and change error is Neg then control is Zero
If error is Neg and change error is Pos then control is Zero
If error is Zero and change error is Zero then control is Zero
If error is Zero and change error is Pos then control is Zero
If error is Pos and change error is Neg then control is Zero
if error is Pos and change error is Zero then control is Pos
If error is Pos and change error is Pos then control is Pos

FLS

One input:
If error is Neg then control is Neg
If error is Zero then control is Zero
If error is Pos then control is Pos
Two input:
If error is Neg and change error is Neg then control is Neg
If error is Neg and change error is Zero then control is Neg
If error is Zero and change error is Neg then control is Zero
If error is Neg and change error is Pos then control is Zero
If error is Zero and change error is Zero then control is Zero
If error is Zero and change error is Pos then control is Zero
If error is Pos and change error is Neg then control is Zero
if error is Pos and change error is Zero then control is Pos
If error is Pos and change error is Pos then control is Pos

Linear

One input:
If error is Neg then control is −100
If error is Zero then control is 0
If error is Pos then control is 100
Two inputs:
If error is Neg and change error is Neg then control is −200
If error is Neg and change error is Pos then control is 0
If error is Pos and change error is Neg then control is 0
If error is Pos and change error is Pos then control is 200

Takagi–Sugeno

One input:
If error is Neg then control is a·error + b
If error is Zero then control is 0
If error is Pos then control is c ·error + d
Two inputs:
If error is Neg and change error is Neg then control is
a·error + b·cherror + c
If error is Neg and change error is Pos then control is 0
If error is Pos and change error is Neg then control is 0
If error is Pos and change error is Pos then control is
d·error + e·cherror + c

Linear P
If error is Neg then control is −100
If error is Zero then control is 0
If error is Pos then control is 100

Linear PD

If error is Neg and change error is Neg then control is −200
If error is Neg and change error is Pos then control is 0
If error is Pos and change error is Neg then control is 0
If error is Pos and change error is Pos then control is 200

Linear PID

If error is Neg and change error is Neg then control is −200
If error is Neg and change error is Pos then control is 0
If error is Pos and change error is Neg then control is 0
If error is Pos and change error is Pos then control is 200
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3. Results and Discussion

The results in this section cover the steps and results in implementing fuzzy universes,
fuzzy inference systems, and fuzzy controllers with UPAFuzzySystems.

3.1. Important Libraries

When working with figures in Python, the “matplotlib” library is used and imported
in line 1 of Code 1. Then, in line 2, the proposed library “UPAFuzzySystems” is inserted
to implement fuzzy universes, inference systems, and controllers. Then, we import the
“numpy” library in line 3 to define vectors, matrices, and operations with numbers. Finally,
the “control” library in line 4 allows defining transfer functions and state-space equations
for simulation. The Python code to import the libraries is in Code 1.

Code 1. Importing main libraries in Python.
1
2
3
4

import matplotlib.pyplot as plt
import UPAFuzzySystems as UPAfs
import numpy as np
import control as cn

3.2. Fuzzy Universes with Fuzzy_Universe Class

After importing the main libraries, an example of fuzzy universes with a description
of Collision Distances from 0 to 60 m in near, middle, and long-range allows explaining the
use of the fuzzy_universe class in the “UPAFuzzySystems” library.

Code 2 in line 1 defines the universe from 0 to 60 with 100 samples using a “numpy”
library. Then, line 2 corresponds to an instance of the class fuzzy_universe, passing the
name of the universe and the instruction to perform a continuous universe.

Next, we add fuzzy sets for all collision regions in lines 3–5 by passing the name of
the fuzzy set, the type of fitness function, and its vertices. This example uses trapezoidal
and triangular membership functions according to Equations (2) and (3), respectively.

Finally, in line 6, we access the plot of the fuzzy_universe, and in lines 7–10, the figure
was modified to change the axis names. All the Python code for the implementation is in
Code 2.

Code 2. Python code for the description of a fuzzy universe.
1
2
3
4
5
6
7
8
9
10

distances = np.linspace(0,60,100)
DistanceColision = UPAfs.fuzzy_universe('Collision Distance',distances,'continuous')
DistanceColision.add_fuzzyset('close-range','trapmf',[0,0,5,15])
DistanceColision.add_fuzzyset('mid-range','trimf',[10,20,30])
DistanceColision.add_fuzzyset('long-range','trapmf',[25,40,60,60])
DistanceColision.view_fuzzy()
ax = plt.gca()
ax.set_xlabel('Collision Distance (m)')
ax.set_ylabel("$\mu$")
plt.show()

Figure 8 shows the results obtained with the view_fuzzy method executed in line 6 of Code
2 and the updated information in the axis.

3.3. Fuzzy Inference System with Inference_System Class

The IF–THEN rules of an inference system require premises and consequences. There-
fore, we define a consequence of speed for the premise defined in Section 3.2. We follow
the approach described in Code 2 and create the consequence in Figure 9.
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After that, we set the rules for the FIS: in this case, a slow speed for a near collision
distance, a medium speed for a medium-range collision distance, and a fast speed for a
far-range collision distance. In other words, the rules:

1. IF Collision Distance is short-range→ Speed is slow
2. IF Collision Distance is mid-range→ Speed is medium
3. IF Collision Distance is long-range→ Speed is fast

Code 3 defines the inference system. First, we create an instance of the class infer-
ence_system and pass the name to assign in line 1. Then, lines 2 and 3 define the premise
and the consequence, respectively. Next, lines 4–6 describe the rules for the FIS, passing a
list of premises with a list per premise with its name and the corresponding fuzzy set name,
a list of connectives, and a list of consequences with a list per consequence with its name
and the corresponding fuzzy set name.

Hence, in line 7, the type of rules is configured. In this case, the Mamdani system
with its configuration is shown in Table 2. Then, in line 8, the FIS is created. To display
the system’s surface in line 9, call the method surface_fuzzy_system and pass a list of
“numpy” arrays, one per input premise, as before. Finally, lines 10–13 handle the axis
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labels. The Python code to define the inference system is in Code 3. The surface obtained is
in Figure 10.
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3.4. Fuzzy Controller with Fuzzy_Controller Class 

Let us define the Direct Current (DC) motor position as the process variable to con-
trol. The parameters and the transfer function are in Table 4. Ref. [38] details the DC motor 

used and the process for obtaining its model.  

Table 4. Parameters and transfer function for controlling position in a DC motor. 

Parameter Description Value 

𝐽 Inertial Coefficient 3.2284 × 10−6 kg ⋅ m2 

𝑏 
Viscous Friction  

Coefficient 
3.5077 × 10−6 

𝑁𝑠

𝑚
 

𝐾 Electromotive Force 0.0274 
𝑅𝑃𝑀

𝑉
 

𝑅 Armor Resistance 4 Ω 
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Code 3. Python code for defining inference system and its rules.
1
2
3
4
5
6
7
8
9
10
11
12
13

Speed_Collision = UPAfs.inference_system("Speed based in Collision Distance")
Speed_Collision.add_premise(DistanceColision)
Speed_Collision.add_consequence(Speed)
Speed_Collision.add_rule([['Collision Distance','close-range']],[],[['Recommended Speed','slow']])
Speed_Collision.add_rule([['Collision Distance','mid-range']],[],[['Recommended Speed','medium']])
Speed_Collision.add_rule([['Collision Distance','long-range']],[],[['Recommended Speed','fast']])
Speed_Collision.configure('Mamdani')
Speed_Collision.build()
Speed_Collision.surface_fuzzy_system([distances])
ax = plt.gca()
ax.set_xlabel(r"Collision Distance (m)")
ax.set_ylabel(r"Speed ($\frac{km}{h}$)")
plt.show()

3.4. Fuzzy Controller with Fuzzy_Controller Class

Let us define the Direct Current (DC) motor position as the process variable to control.
The parameters and the transfer function are in Table 4. Ref. [38] details the DC motor used
and the process for obtaining its model.

Table 4. Parameters and transfer function for controlling position in a DC motor.

Parameter Description Value

J Inertial Coefficient 3.2284× 10−6 kg·m2

b Viscous Friction
Coefficient 3.5077× 10−6 Ns

m

K Electromotive Force 0.0274 RPM
V

R Armor Resistance 4 Ω
L Armor Inductance 2.75× 10−6 H
te Simulation Time 1.0 s
ns Total Number of Samples 1500
t f Transfer Function K

s((Js+b)(Ls+R)+K2)

Code 4 shows the code for defining the transfer function, its parameters, a test input,
and a test signal with disturbances using the control library. The test input starts at zero
and gradually changes in 5 ms to the equivalent radian for 45◦ (0.78539816 rad) 0.25 s later.
Lines 1–7 give the parameters, line 8 describes the universe, line 9 generates the input,
line 10 defines the starting seed for randomness, line 11 represents the uniform random
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perturbation around 10% of the reference input, line 12 defines the s term for the frequency
space, and line 13 stipulates the transfer function.

Code 4. Code for defining transfer function and its parameters in a DC motor.
1
2
3
4
5
6
7
8
9
10
11
12
13

J = 3.2284E-6
b = 3.5077E-6
K = 0.0274
R = 4
L = 2.75E-6
te = 1.0
ns = 500
T = np.linspace(0,te,ns)
Input = np.array([(np.radians(45)*min((t-0.25)/0.005,1)) if t> 0.25 else 0 for t in T])
np.random.seed(0)
Perturbation = np.array([np.random.uniform(-1,1)*i*0.1 for i in Input])
s = cn.TransferFunction.s
TF = K/(s*((J*s+b)*(L*s+R)+K**2))

Once we define the input and the plant’s transfer function, we describe the controller’s
structure. In this case, a feedback controller with a fuzzy control system (Figure 11).
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Figure 11. Feedback controller for controlling position in a DC motor with a fuzzy system.

Moreover, we define a control structure, including random perturbations expected as
a 10% reference input or X(s), to test the fuzzy controllers’ robustness (Figure 12).
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Figure 12. Feedback controller for controlling position in a DC motor with a fuzzy system and
random disturbances.

3.4.1. One-Input Mamdani Fuzzy Controller

After defining the system, we design the fuzzy controller with premises and conse-
quences concerning the error and the control behavior. Therefore, we implement these
premises following the approach in Code 2. First, defining a single error input with a
universe in the ranges [−100, 100] of the angular position in rad and then a single output
controller with a universe [−20, 20] volt (V). Figure 13 shows the premise, and Figure 14
shows the consequence.
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Figure 14. Control consequence for position control in a DC motor.

Subsequently obtaining premises and consequences, we define the rules for the FIS
using the approach described in Code 3. The fuzzy rules used for the controller are:

1. IF Error is Negative→ Control is Negative;
2. IF Error is Zero→ Control is Zero;
3. IF Error is Positive→ Control is Positive.

Next, we set the system configuration given in Table 2 for a Mamdani inference system.
Then, we simulate the FIS. The surface generated for the simulation of the rules is shown
in Figure 15.

Then, using the inference system defined and stored in the variable Mamdani1, we
create an instance of the class fuzzy_controller, passing the inference system, the type of
inference system (in this case, fuzzy with one input), the transfer function, and the sampling
time, as in line 1 of Code 5. Line 2 builds the controller. Line 3 provides the fuzzy controller
for simulation with processes defined in the space of the state model. Finally, line 4 returns
the system with the transfer function for simulation.
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Code 5. Python code for defining fuzzy controller with UPAFuzzySystems library.
1
2
3
4

FuzzController = UPAfs.fuzzy_controller(Mamdani1,typec='Fuzzy1',tf=TF,DT = T[1])
FuzzController.build()
FuzzControllerBlock = FuzzController.get_controller()
FuzzSystemBlock = FuzzController.get_system()

Once we obtained the system with the transfer function for simulation in line 4 of
Code 5, we solved the simulation using the control library in line 1 and plotted the results
in lines 2–7 of Code 6.

Code 6. Python code for simulation of fuzzy controller and plotting results.
1
2
3
4
5
6
7

T, Theta = cn.input_output_response(FuzzSystemBlock,T,Input,0)
plt.plot(T,Theta,label='Process Variable')
plt.plot(T,Input,label='Reference')
plt.xlabel("time (s)")
plt.ylabel("position (rad)")
plt.legend()
plt.show()

Figure 16 shows the simulation results of the DC motor position (blue) controlled with
the fuzzy controller while summited to the input created (orange). The absolute error is
1.92× 10−11, and the absolute percentage error is 2.45× 10−9% in steady conditions. The
maximum value reached is 8.47× 10−1 rad, the minimum value is 0.00 rad, the start value
is 0.00 rad, the end value is 7.85× 10−1 rad, the time rising is 3.86× 10−2 s, the overshoot
is 7.87%, the time peak is 7.46× 10−2 s, and the settling time is 1.25× 10−1 s.
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Similarly, we test the Mamdani controller with one input, but this time including the
disturbances at the input of the plant as in the block diagram in Figure 12. The obtained
results are shown in Figure 17.
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Figure 17. DC motor position controlled with a Mamdani controller, including disturbances in the
input of the plant.

Figure 17 shows the simulation results of the DC motor position (blue) controlled with
the fuzzy controller while summited to the input created (orange) and the disturbance
signal (green). The absolute error is 1.20× 10−2, and the absolute percentage error is 1.53%
in steady conditions. The maximum value reached is 8.60× 10−1 rad, the minimum value
is 0.00 rad, the start value is 0.00 rad, the end value is 7.97× 10−1 rad, the time rising is
3.86× 10−2 s, the overshoot is 7.86%, the time peak is 7.26× 10−2 s, and the settling time
is 6.38× 10−1 s.

3.4.2. One-Input FLS Controller

Using the same rules as for the Mamdani controller with one input and the same fuzzy
sets, we define the FLS controller. Nevertheless, we configure the UPAFuzzySystems library
to work with the FLS structure and modify the connectives and implications described in
Table 2. Code 7 shows the lines that define the inference system for the FLS controller. Line
7 is the one that differs from a Mamdani controller and configures the inference system for
the FLS controller structure.

Code 7. Lines for defining one input FLS controller in the UPAFuzzySystems library.
1
2
3
4
5
6
7
8

FLS1 = UPAfs.inference_system('FLS controller')
FLS1.add_premise(Error_universe)
FLS1.add_consequence(Control_universe)
FLS1.add_rule([['Error','negative']],[],[['Control','negative']])
FLS1.add_rule([['Error','zero']],[],[['Control','zero']])
FLS1.add_rule([['Error','positive']],[],[['Control','positive']])
FLS1.configure('FLSmidth')
FLS1.build()

For coding the FLS inference system, we simulate the system’s surface over the input
universe using the method described in Code 3 and obtain the results shown in Figure 18.



Machines 2023, 11, 572 18 of 42

Machines 2023, 11, x FOR PEER REVIEW 17 of 42 
 

 

 

Figure 17. DC motor position controlled with a Mamdani controller, including disturbances in the 
input of the plant. 

Figure 17 shows the simulation results of the DC motor position (blue) controlled 

with the fuzzy controller while summited to the input created (orange) and the disturb-
ance signal (green). The absolute error is 1.20 × 10−2, and the absolute percentage error 

is 1.53% in steady conditions. The maximum value reached is 8.60 × 10−1 rad, the mini-
mum value is 0.00 rad, the start value is 0.00 rad, the end value is 7.97 × 10−1 rad, the 
time rising is 3.86 × 10−2 s, the overshoot is 7.86%, the time peak is 7.26 × 10−2 s, and 

the settling time is 6.38 × 10−1 s. 

3.4.2. One-Input FLS Controller 

Using the same rules as for the Mamdani controller with one input and the same 

fuzzy sets, we define the FLS controller. Nevertheless, we configure the UPAFuzzySys-
tems library to work with the FLS structure and modify the connectives and implications 
described in Table 2. Code 7 shows the lines that define the inference system for the FLS 

controller. Line 7 is the one that differs from a Mamdani controller and configures the 
inference system for the FLS controller structure. 

Code 7. Lines for defining one input FLS controller in the UPAFuzzySystems library. 

1 
2 
3 
4 
5 
6 
7 
8 

FLS1 = UPAfs.inference_system('FLS controller') 
FLS1.add_premise(Error_universe) 
FLS1.add_consequence(Control_universe) 
FLS1.add_rule([['Error','negative']],[],[['Control','negative']]) 
FLS1.add_rule([['Error','zero']],[],[['Control','zero']]) 
FLS1.add_rule([['Error','positive']],[],[['Control','positive']]) 
FLS1.configure('FLSmidth') 
FLS1.build() 

For coding the FLS inference system, we simulate the system’s surface over the input 
universe using the method described in Code 3 and obtain the results shown in Figure 18. 

 

Figure 18. Surface obtained with the one-input FlS controller. Figure 18. Surface obtained with the one-input FlS controller.

In the next step, we build and simulate the controller using the methods in Code 5 and
Code 6. The simulation results show a smoother response than the Mamdani controller and
avoid overshooting the system response (Figure 19). The absolute error is 1.35× 10−3, and
the absolute percentage error is 1.72× 10−1% at steady state. The maximum value achieved
is 7.84× 10−1 rad, the minimum value−2.39× 10−16 rad, the start value−8.40× 10−17 rad,
the final value 7.84× 10−1 rad, the rise time 1.71× 10−1 s, the overshoot 0.00%, the peak
time 7.22× 10−1 s, and the settling time 3.71× 10−1 s.
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Similarly, we test the FLS controller with one input, including the disturbances at the
input of the plant, as in the block diagram in Figure 12. The results are shown in Figure 20.
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Figure 20. DC motor position controlled with an FLS controller, including disturbance signal.

Figure 20 shows the results of the FLS controller with one input and signal disturbance
for the DC motor position (blue) while summited to the input created (orange) and the
disturbance signal (green). The absolute error is 7.18× 10−3, and the absolute percentage
error is 9.14× 10−1% in steady conditions. The maximum value reached is 7.93× 10−1 rad,
the minimum value is−2.39× 10−16 rad, the start value is−8.40× 10−17 rad, the end value
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is 7.93× 10−1 rad, the time rising is 1.99× 10−1 s, the overshoot is 0.00%, the time peak is
7.22× 10−1 s, and the settling time is 6.80× 10−1 s.

3.4.3. One Input Takagi–Sugeno Controller

In this case, we define a control sequence in the Takagi–Sugeno configuration, as
shown in Table 2. The premise is the error as in the Mamdani and FLS controllers with
one input, but now we define two fuzzy sets. Therefore, the consequent definition has two
functions related to the error in the premises. Afterward, we introduce the rules with the
inference system class. The Python code to define the fuzzy universe with fuzzy sets and
the inference system for the Takagi–Sugeno controller with one input is in Code 8.

Lines 1–4 of Code 8 define the fuzzy sets of the premise error using the same procedure
as for the Mamdani and FLS controllers. Next, lines 10 and 13 specify the fuzzy sets
consequence with second-order functions defined concerning the input denoted by x. Then,
lines 19–23 describe the premises, consequences, and rules. After that, line 25 configures the
FIS to work with the Takagi–Sugeno structure in Table 2. Finally, line 27 builds the controller.

Code 8. Python code for the fuzzy universe and inference system for the one-input
Takagi–Sugeno controller.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Error_universe = UPAfs.fuzzy_universe('Error', np.arange(-100,101,1), 'continuous')
Error_universe.add_fuzzyset('negative','trimf',[-200,-100,100])
Error_universe.add_fuzzyset('positive','trimf',[-100,100,200])
Error_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel("Error (rad)")
ax.set_ylabel("$\mu$")
plt.show()

Control_universe = UPAfs.fuzzy_universe('Control', np.arange(-20,22,2), 'continuous')
Control_universe.add_fuzzyset('negative','eq','-0.001*(x[0])**2+0.4*x[0]')
Control_universe.add_fuzzyset('positive','eq','0.001*(x[0])**2+0.4*x[0]')
Control_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel("Control (Volts)")
ax.set_ylabel("$\mu$")
plt.show()

TSG1 = UPAfs.inference_system('Takagi-Sugeno One Input')
TSG1.add_premise(Error_universe)
TSG1.add_consequence(Control_universe)
TSG1.add_rule([['Error','negative']],[],[['Control','negative']])
TSG1.add_rule([['Error','positive']],[],[['Control','positive']])

TSG1.configure('Sugeno')

TSG1.build()

Figures 21 and 22 display the plots of the premise and consequences of the fuzzy sets in the
one-input Takagi–Sugeno controller. The consequence plot shows the functions depending
on the error premise.
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The surface simulation using the method described in Code 3 is shown in Figure 23,
where the output is a second-order response resulting from the second-order functions in
the output universe.

Machines 2023, 11, x FOR PEER REVIEW 20 of 42 
 

 

 

Figure 22. Consequence fuzzy sets of the one-input Takagi–Sugeno controller. 

The surface simulation using the method described in Code 3 is shown in Figure 23, 
where the output is a second-order response resulting from the second-order functions in 
the output universe. 

 

Figure 23. Surface response of the one-input Takagi–Sugeno controller. 

Finally, we configure the controller using the same method as in Code 5 and present 

the simulation results with the approach in Code 6. Figure 24 shows the results of the 
simulation. The absolute error is 1 . 22 × 10−8 , and the absolute percentage error is 
1.55 × 10−6% under stable conditions. The maximum value obtained is 7.85 × 10−1 rad, 

the minimum value is 0.00 rad, the start value is 0.00 rad, the end value is 7.85 × 10−1 
rad, the rise time is 1.25 × 10−1 s, the overshoot is 0.00%, the peak time is 7.22 × 10−1 s, 

and the settling time is 1.91 × 10−1 s. 

 

Figure 24. Controller response of the one-input Takagi–Sugeno controller. 
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Finally, we configure the controller using the same method as in Code 5 and present
the simulation results with the approach in Code 6. Figure 24 shows the results of the simu-
lation. The absolute error is 1.22× 10−8, and the absolute percentage error is 1.55× 10−6%
under stable conditions. The maximum value obtained is 7.85× 10−1 rad, the minimum
value is 0.00 rad, the start value is 0.00 rad, the end value is 7.85× 10−1 rad, the rise time is
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1.25× 10−1 s, the overshoot is 0.00%, the peak time is 7.22× 10−1 s, and the settling time
is 1.91× 10−1 s.
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Again, we test the Takagi–Sugeno controller with one input, including the disturbance
at the input of the plant, as in the block diagram in Figure 12. The results are in Figure 25.
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Figure 25. Controller response of the one-input Takagi–Sugeno controller with disturbances.

Figure 25 shows the results of the Takagi–Sugeno controller with one input and
signal disturbance for the DC motor position (blue) while summited to the input created
(orange) and the disturbance signal (green). The absolute error is 1.35× 10−2, and the
absolute percentage error is 1.72% in steady conditions. The maximum value reached is
8.00× 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the end value
is 7.99× 10−1 rad, the time rising is 1.33× 10−1 s, the overshoot is 1.60× 10−1%, the time
peak is 5.28× 10−1 s, and the settling time is 6.54× 10−1 s.

3.4.4. Two-Input Mamdani Controller

The definition of the two-input Mamdani controller implies the definition of two
premises, the first for the error and the second as the change in it or its derivative. Therefore,
we specify three universes: one for the error premise, one for the change in the error premise,
and another for the control consequence. The required code uses the same approach as
in Code 2. The premises and consequences for the two-input Mamdani controller are
in Figures 26–28.
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Having specified the premises and consequences of the two-input Mamdani controller,
we define the nine rules in the instance of the inference_system class of the UPAFuzzySys-
tems library for each possible combination between inputs, following the structure de-
scribed in Table 3. Thus, the specified rules are:

1. If error is Neg and change error is Neg then control is Neg;
2. If error is Neg and change error is Zero then control is Neg;
3. If error is Zero and change error is Neg then control is Zero;
4. If error is Neg and change error is Pos then control is Zero;
5. If error is Zero and change error is Zero then control is Zero;
6. If error is Zero and change error is Pos then control is Zero;
7. If error is Pos and change error is Neg then control is Zero;
8. If error is Pos and change error is Zero then control is Pos;
9. If error is Pos and change error is Pos then control is Pos.

The code to define these rules in the proposed library with the two-input Mamdani
controller is in Code 9.
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Code 9. Python code with rules for a two-input Mamdani controller using the
UPAFuzzySystems library.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mamdani2 = UPAfs.inference_system('Mamdani')
Mamdani2.add_premise(Error_universe)
Mamdani2.add_premise(ChError_universe)
Mamdani2.add_consequence(Control_universe)
Mamdani2.add_rule([['Error','negative'],['Change Error','negative']],['and'],[['Control','negative']])
Mamdani2.add_rule([['Error','negative'],['Change Error','zero']],['and'],[['Control','negative']])
Mamdani2.add_rule([['Error','zero'],['Change Error','negative']],['and'],[['Control','zero']])
Mamdani2.add_rule([['Error','negative'],['Change Error','positive']],['and'],[['Control','zero']])
Mamdani2.add_rule([['Error','zero'],['Change Error','zero']],['and'],[['Control','zero']])
Mamdani2.add_rule([['Error','positive'],['Change Error','negative']],['and'],[['Control','zero']])
Mamdani2.add_rule([['Error','zero'],['Change Error','positive']],['and'],[['Control','zero']])
Mamdani2.add_rule([['Error','positive'],['Change Error','zero']],['and'],[['Control','positive']])
Mamdani2.add_rule([['Error','positive'],['Change Error','positive']],['and'],[['Control','positive']])
Mamdani2.configure('Mamdani')
Mamdani2.build()

Then, we obtain the surface response for the two-input Mamdani controller by simulating
the error and the change in error inputs as defined in Code 3. Nevertheless, we now use
two inputs for the surface simulation. Figure 29 shows the simulated surface.
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Figure 29. Two-input Mamdani controller surface using the UPAFuzzySystems library.

After defining the rules and simulating the surface, we configure the fuzzy_controller
as before, but this time, we set the type of the controller to Fuzzy2, since the controller now
has two inputs. The Python code for the configuration changes only in line one with the
Fuzzy2 definition (Code 10).

Code 10. Python code for configuring two-input Mamdani controller using the
UPAFuzzySystems library.

1
2
3
4

MamdaniController = UPAfs.fuzzy_controller(Mamdani2,typec='Fuzzy2',tf=TF,DT = T[1])
MamdaniController.build()
MamdaniControllerBlock = MamdaniController.get_controller()
MamdaniSystemBlock = MamdaniController.get_system()

Finally, we simulate the controller using the approach described in Code 6. Figure 30 shows
the obtained controller’s response. The absolute error is 2.00× 10−6 rad, and the absolute
percentage error is 2.54× 10−4% at steady state. The maximum value reached is 8.12× 10−1

rad, the minimum value is −7.99× 10−18 rad, the start value is −4.28× 10−18 rad, the final
value is 7.85× 10−1 rad, the rise time is 2.66× 10−2 s, the overshoot time is 3.33%, the peak
time is 4.46× 10−2 s, and the settling time is 1.47× 10−1 s.
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Similarly, we test the Mamdani controller with two inputs, including the disturbances
at the input of the plant, as shown in the block diagram in Figure 12. The results are shown
in Figure 31.
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Figure 31. Two-input Mamdani controller response with disturbances.

Figure 31 shows the results of the Mamdani controller with two inputs and signal
disturbance for the DC motor position (blue) while summited to the input created (orange)
and the disturbance signal (green). The absolute error is 2.88× 10−2, and the absolute per-
centage error is 3.66% in steady conditions. The maximum value reached is 8.25× 10−1 rad,
the minimum value is−7.99× 10−18 rad, the start value is−4.28× 10−18 rad, the end value
is 7.57× 10−1 rad, the time rising is 2.66× 10−2 s, the overshoot is 9.09%, the time peak is
6.62× 10−1 s, and the settling time is 7.14× 10−1 s.

3.4.5. Two-Input FLS Controller

Using the same rules as for the two-input Mamdani controller and the same fuzzy sets,
we define the two-input FLS controller. Nevertheless, we configure the UPAFuzzySystems
library to work with the FLS structure and change the connectives and implications de-
scribed in Table 2. Figure 32 displays the simulated surface for the two-input FLS controller.
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Figure 32. Two-input FLS controller surface with the UPAFuzzySystems library.

Finally, we simulate the FLS controller using the approach described in Code 6.
Figure 33 represents the controller’s response obtained. This time, the absolute error
is 3.59× 10−4, and the absolute percentage error is 4.58× 10−2%. The maximum value
reached is 7.85× 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the
final value is 7.85× 10−1 rad, the rise time is 2.37× 10−1 s, the overshoot is 0.00 %, the time
peak is 7.22× 10−1 s, and the settling time is 3.79× 10−1 s.

Machines 2023, 11, x FOR PEER REVIEW 25 of 42 
 

 

 

Figure 33. Two-input FLS controller response by the UPAFuzzySystems library. 

Again, we test the FLS controller with two inputs, including the disturbances at the 
input of the plant, as shown in the block diagram in Figure 12. The results are shown in 

Figure 34. 

 

Figure 34. Two-input FLS controller response with disturbances. 

Figure 34 shows the results of the FLS controller with two inputs and signal disturb-
ance for the DC motor position (blue) while summited to the input created (orange) and 
the disturbance signal (green). The absolute error is 1.11 × 10−2, and the absolute percent-

age error is 1.41% in steady conditions. The maximum value reached is 7.96 × 10−1 rad, 
the minimum value is −5.79 × 10−5  rad, the start value is 0.00  rad, the end value is 

7.96 × 10−1 rad, the time rising is 2.67 × 10−1 s, the overshoot is 0.00 %, the time peak 
is 7.22 × 10−1 s, and the settling time is 6.74 × 10−1 s. 

3.4.6. Two Inputs Takagi–Sugeno Controller 

In this case, we define the control consequence in the Takagi–Sugeno configuration 

for two inputs, as described in Table 1. The premises are identical to the Mamdani and 
FLS controllers with two inputs. Therefore, the consequence definition now has three 
functions related to the error and change in error premises. Next, we introduce the rules 

with the inference system class. Again, these are the same as the Mamdani and FLS con-
trollers with two inputs. The Python code to define the fuzzy universe with fuzzy sets and 

the inference system for the Takagi–Sugeno controller with two inputs is in Code 11. 

Code 11. Code for defining the inference system and the fuzzy universe for the two-input Takagi–
Sugeno controller. 

1 
2 
3 
4 
5 

Error_universe = UPAfs.fuzzy_universe('Error', np.arange(-100,101,1), 'continuous') 
Error_universe.add_fuzzyset('negative','trapmf',[-100,-100,-40,0]) 
Error_universe.add_fuzzyset('zero','trimf',[-10,0,10]) 
Error_universe.add_fuzzyset('positive','trapmf',[0,40,100,100]) 
Error_universe.view_fuzzy() 

Figure 33. Two-input FLS controller response by the UPAFuzzySystems library.

Again, we test the FLS controller with two inputs, including the disturbances at the
input of the plant, as shown in the block diagram in Figure 12. The results are shown
in Figure 34.

Figure 34 shows the results of the FLS controller with two inputs and signal disturbance
for the DC motor position (blue) while summited to the input created (orange) and the
disturbance signal (green). The absolute error is 1.11× 10−2, and the absolute percentage
error is 1.41% in steady conditions. The maximum value reached is 7.96 × 10−1 rad,
the minimum value is −5.79 × 10−5 rad, the start value is 0.00 rad, the end value is
7.96× 10−1 rad, the time rising is 2.67× 10−1 s, the overshoot is 0.00 %, the time peak is
7.22× 10−1 s, and the settling time is 6.74× 10−1 s.
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Figure 34. Two-input FLS controller response with disturbances.

3.4.6. Two Inputs Takagi–Sugeno Controller

In this case, we define the control consequence in the Takagi–Sugeno configuration for
two inputs, as described in Table 1. The premises are identical to the Mamdani and FLS
controllers with two inputs. Therefore, the consequence definition now has three functions
related to the error and change in error premises. Next, we introduce the rules with the
inference system class. Again, these are the same as the Mamdani and FLS controllers with
two inputs. The Python code to define the fuzzy universe with fuzzy sets and the inference
system for the Takagi–Sugeno controller with two inputs is in Code 11.

Figure 35 displays the output consequence, which differs from the two-input Mamdani
and FLS controllers, in that the output premises are functions of the error and its change.
Here, the premises are identical to those in Figures 26 and 27.
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After defining the universes and configuring the FIS, we simulate the Takagi–Sugeno
surface reaction with two inputs according to the method in Code 3. The results are
in Figure 36.
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Code 11. Code for defining the inference system and the fuzzy universe for the two-input
Takagi–Sugeno controller.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Error_universe = UPAfs.fuzzy_universe('Error', np.arange(-100,101,1), 'continuous')
Error_universe.add_fuzzyset('negative','trapmf',[-100,-100,-40,0])
Error_universe.add_fuzzyset('zero','trimf',[-10,0,10])
Error_universe.add_fuzzyset('positive','trapmf',[0,40,100,100])
Error_universe.view_fuzzy()

ChError_universe = UPAfs.fuzzy_universe('Change Error', np.arange(-100,101,1), 'continuous')
ChError_universe.add_fuzzyset('negative','trapmf',[-100,-100,-40,0])
ChError_universe.add_fuzzyset('zero','trimf',[-10,0,10])
ChError_universe.add_fuzzyset('positive','trapmf',[0,40,100,100])
ChError_universe.view_fuzzy()

Control_universe = UPAfs.fuzzy_universe('Control', np.arange(-20,22,2), 'continuous')
Control_universe.add_fuzzyset('negative','eq','0.8*x[0]+0.1*x[1]')
Control_universe.add_fuzzyset('zero','eq','0.8*x[0]+0.005*x[1]')
Control_universe.add_fuzzyset('positive','eq','0.8*x[0]+0.1*x[1]')
Control_universe.view_fuzzy()

TSG2 = UPAfs.inference_system('Takagi-Sugeno Two Inputs')
TSG2.add_premise(Error_universe)
TSG2.add_premise(ChError_universe)
TSG2.add_consequence(Control_universe)

TSG2.add_rule([['Error','negative'],['Change Error','negative']],['and'],[['Control','negative']])
TSG2.add_rule([['Error','negative'],['Change Error','zero']],['and'],[['Control','negative']])
TSG2.add_rule([['Error','zero'],['Change Error','negative']],['and'],[['Control','zero']])
TSG2.add_rule([['Error','negative'],['Change Error','positive']],['and'],[['Control','zero']])
TSG2.add_rule([['Error','zero'],['Change Error','zero']],['and'],[['Control','zero']])
TSG2.add_rule([['Error','positive'],['Change Error','negative']],['and'],[['Control','zero']])
TSG2.add_rule([['Error','zero'],['Change Error','positive']],['and'],[['Control','zero']])
TSG2.add_rule([['Error','positive'],['Change Error','zero']],['and'],[['Control','positive']])
TSG2.add_rule([['Error','positive'],['Change Error','positive']],['and'],[['Control','positive']])

TSG2.configure('Sugeno')

TSG2.build()

Figure 36. Surface of the two-input Takagi–Sugeno controller using the UPAFuzzySystems library.

We then define the controller configuration according to Code 5, modified for the
Takagi–Sugeno structure, and plot the results using the approach in Code 6. Figure 37 shows
the controller response. The absolute error is 3.16× 10−12, and the absolute percentage error
is 4.02× 10−10% under stable conditions. The maximum value obtained is 7.96× 10−1 rad,
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the minimum value is 0.00 rad, the start value is 0.00 rad, the final value is 7.85× 10−1 rad,
the rise time is 6.66× 10−2 s, the overshoot is 1.37%, the time peak is 1.21× 10−1 s, and the
settling time is 8.47× 10−2 s.
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Figure 37. Control response of the two-input Takagi–Sugeno controller using the UPAFuzzySys-
tems library.

Similarly, we test the Takagi–Sugeno controller with two inputs, including the distur-
bances at the input of the plant, as shown in the block diagram in Figure 12. The results are
in Figure 38.
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Figure 38. Control response of the two-input Takagi–Sugeno controller with disturbances.

Figure 38 shows the results of the two-input Takagi–Sugeno controller with signal
disturbance for the DC motor position (blue) while summited to the input created (orange)
and the disturbance signal (green). The absolute error is 1.07× 10−2, and the absolute per-
centage error is 1.37% in steady conditions. The maximum value reached is 8.02× 10−1 rad,
the minimum value is 0.00 rad, the start value is 0.00 rad, the end value is 7.96× 10−1 rad,
the time rising is 6.66× 10−2 s, the overshoot is 7.07× 10−1%, the time peak is 5.22× 10−1 s,
and the settling time is 6.34× 10−1 s.

3.5. P, PD, and PID Fuzzy Controllers
3.5.1. Linear P Fuzzy Controller

The UPAFuzzySystems library also contains the linear P controller with the structure
shown in Figure 5. To work with this structure, the configured inference base configured is
linear. Therefore, the fuzzy_universe and inference_system classes configure the premises,
consequences, and rules to define a linear controller. Since the P fuzzy controller requires
no change in error input, the linear system definition uses only a premise in the error case
and a consequence controller, which are comparable in Table 2. Code 12 provides the
premise, consequence, and required rules.
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Code 12. Code for defining the one-input fuzzy linear system used in the linear P fuzzy controller.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Error_universe = UPAfs.fuzzy_universe('Error', np.arange(-100,101,1), 'continuous')
Error_universe.add_fuzzyset('negative','trimf',[-200,-100,100])
Error_universe.add_fuzzyset('positive','trimf',[-100,100,200])
Error_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel("Error (rad)")
ax.set_ylabel("$\mu$")
plt.show()

Control_universe = UPAfs.fuzzy_universe('Control', np.arange(-200,202,2), 'continuous')
Control_universe.add_fuzzyset(‘negative’,’ eq’,‘-200’)
Control_universe.add_fuzzyset('positive','eq','200')
Control_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel("Control (Volts)")
ax.set_ylabel("$\mu$")
plt.show()

LinearP = UPAfs.inference_system('Linear One Input')
LinearP.add_premise(Error_universe)
LinearP.add_consequence(Control_universe)
LinearP.add_rule([['Error','negative']],[],[['Control','negative']])
LinearP.add_rule([['Error','positive']],[],[['Control','positive']])

LinearP.configure('Linear')

LinearP.build()

Figures 39 and 40 display the premise and consequence plot for the linear system
defined for working with the linear fuzzy P controller according to Table 2.

Employing the same approach in Code 3, we simulate the linear system’s surface,
which must be a line, as shown in Figure 41.
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LinearPFuzzController = UPAfs.fuzzy_controller(LinearP,typec='P',tf=TF,DT = T[1], GE=15.91545709, GU=0.094248) 
LinearPFuzzController.build() 
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Figure 40. Consequence of the one-input linear controller using the UPAFuzzySystems library.
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Figure 41. Surface of the one-input linear controller using the UPAFuzzySystems library.

When the linear inference system is defined, the linear P fuzzy controller must include
the GU and GE gains according to Equations (21) and (22). The Python code for configuring
the controller with those gains is in Code 13.

Code 13. Python code for configuring the linear fuzzy proportional controller with the
UPAFuzzySystems library.

1
2
3
4

LinearPFuzzController = UPAfs.fuzzy_controller(LinearP,typec='P',tf=TF,DT = T[1], GE=15.91545709, GU=0.094248)
LinearPFuzzController.build()
LinearPFuzzControllerBlock = LinearPFuzzController.get_controller()
LinearPFuzzSystemBlock = LinearPFuzzController.get_system()

After defining the controller, we simulate it following the method in Code 6. The con-
troller response is shown in Figure 42. The absolute error is 1.26× 10−9, and the absolute
percentage error is 1.60× 10−7% in steady conditions. The maximum value reached is
9.88× 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the final value is
7.85× 10−1 rad, the rise time is 1.45× 10−2 s, the overshoot is 2.58× 10+1%, the time peak
is 3.26× 10−2 s, and the settling time is 1.27× 10−1 s.
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Figure 42. Response of the linear proportional fuzzy controller using the UPAFuzzySystems library.

Similarly, we test the linear proportional fuzzy controller, including the disturbances
at the input of the plant, as shown in the block diagram in Figure 12. The results are
in Figure 43.

Machines 2023, 11, x FOR PEER REVIEW 30 of 42 
 

 

 

Figure 42. Response of the linear proportional fuzzy controller using the UPAFuzzySystems library. 

Similarly, we test the linear proportional fuzzy controller, including the disturbances 
at the input of the plant, as shown in the block diagram in Figure 12. The results are in 

Figure 43. 

 

Figure 43. Response of the linear proportional fuzzy controller with disturbances. 

Figure 43 shows the results of the linear proportional fuzzy controller with signal 
disturbance for the DC motor position (blue) while summited to the input created (orange) 

and the disturbance signal (green). The absolute error is 3.60 × 10−3, and the absolute 
percentage error is 4.58 × 10−1% in steady conditions. The maximum value reached is 
9.93 × 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the end value 

is 7.89 × 10−1  rad, the time rising is 1.45 × 10−2  s, the overshoot is 2.58 × 10+1 %, the 
time peak is 3.46 × 10−2 s, and the settling time is 1.65 × 10−1 s. 

3.5.2. Linear PD Fuzzy Controller 

The Linear PD controller with the structure defined in Figure 6 implies working with 
a linear inference base with two inputs. Therefore, the class fuzzy_universe and infer-
ence_system configure the premises, consequences, and rules to define a two-input linear 

controller. The PD fuzzy controller requires two premises: the error and its change. A con-
sequence controller, comparable in Table 2, obtains the premise, consequence, and rules 

needed for a two-input linear fuzzy system. Code 14 shows the complete implementation 
of the linear fuzzy system with two inputs. 

Code 14. Code for defining the two-input fuzzy linear system with UPAFuzzySystems library. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Error_universe = UPAfs.fuzzy_universe('Error', np.arange(-100,101,1), 'continuous') 
Error_universe.add_fuzzyset('negative','trimf',[-200,-100,100]) 
Error_universe.add_fuzzyset('positive','trimf',[-100,100,200]) 
Error_universe.view_fuzzy() 
ax = plt.gca() 
ax.set_xlabel("Error (rad)") 
ax.set_ylabel("$\mu$") 
plt.show() 
 
ChError_universe = UPAfs.fuzzy_universe('Change Error', np.arange(-100,101,1), 'continuous') 
ChError_universe.add_fuzzyset('negative','trimf',[-200,-100,100]) 

Figure 43. Response of the linear proportional fuzzy controller with disturbances.

Figure 43 shows the results of the linear proportional fuzzy controller with signal
disturbance for the DC motor position (blue) while summited to the input created (orange)
and the disturbance signal (green). The absolute error is 3.60× 10−3, and the absolute
percentage error is 4.58× 10−1% in steady conditions. The maximum value reached is
9.93× 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the end value
is 7.89× 10−1 rad, the time rising is 1.45× 10−2 s, the overshoot is 2.58× 10+1%, the time
peak is 3.46× 10−2 s, and the settling time is 1.65× 10−1 s.

3.5.2. Linear PD Fuzzy Controller

The Linear PD controller with the structure defined in Figure 6 implies working
with a linear inference base with two inputs. Therefore, the class fuzzy_universe and
inference_system configure the premises, consequences, and rules to define a two-input
linear controller. The PD fuzzy controller requires two premises: the error and its change. A
consequence controller, comparable in Table 2, obtains the premise, consequence, and rules
needed for a two-input linear fuzzy system. Code 14 shows the complete implementation
of the linear fuzzy system with two inputs.
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Code 14. Code for defining the two-input fuzzy linear system with UPAFuzzySystems library.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Error_universe = UPAfs.fuzzy_universe('Error', np.arange(-100,101,1), 'continuous')
Error_universe.add_fuzzyset('negative','trimf',[-200,-100,100])
Error_universe.add_fuzzyset('positive','trimf',[-100,100,200])
Error_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel("Error (rad)")
ax.set_ylabel("$\mu$")
plt.show()

ChError_universe = UPAfs.fuzzy_universe('Change Error', np.arange(-100,101,1), 'continuous')
ChError_universe.add_fuzzyset('negative','trimf',[-200,-100,100])
ChError_universe.add_fuzzyset('positive','trimf',[-100,100,200])
ChError_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel(r"Change Error ($\frac{rad}{s}$)")
ax.set_ylabel("$\mu$")
plt.show()

Control_universe = UPAfs.fuzzy_universe('Control', np.arange(-200,202,2), 'continuous')
Control_universe.add_fuzzyset(‘negative’,’ eq’,‘-200’)
Control_universe.add_fuzzyset(‘zero’,‘eq’,‘0’)
Control_universe.add_fuzzyset('positive','eq','200')
Control_universe.view_fuzzy()
ax = plt.gca()
ax.set_xlabel("Control (Volts)")
ax.set_ylabel("$\mu$")
plt.show()

Linear = UPAfs.inference_system('Linear')
Linear.add_premise(Error_universe)
Linear.add_premise(ChError_universe)
Linear.add_consequence(Control_universe)

Linear.add_rule([['Error','negative'],['Change Error','negative']],['and'],[['Control','negative']])
Linear.add_rule([['Error','negative'],['Change Error','positive']],['and'],[['Control','zero']])
Linear.add_rule([['Error','positive'],['Change Error','negative']],['and'],[['Control','zero']])
Linear.add_rule([['Error','positive'],['Change Error','positive']],['and'],[['Control','positive']])

Linear.configure('Linear')

Linear.build()

Lines 4 and 13 in Code 14 produce the plots of the error and change in error premises,
as shown in Figures 44 and 45, respectively. The control consequence plot obtained with
line 23 is shown in Figure 46.
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Figure 46. Consequence control of the two-input linear controller using the UPAFuzzySystems library.

After defining the two-input linear inference system, we simulate its surface following
the method described in Code 3. Figure 47 shows the obtained surface with the two-input
linear system.

After obtaining the linear inference system, the definition of the linear PD fuzzy
controller must include the GU, GE, and GCE gains defined in Equations (21)–(23). The
Python code configures the PD fuzzy controller with those gains in Code 15.

Finally, we simulate the linear PD fuzzy controller following the approach in Code
6. The response of the system is in Figure 48. The absolute error is 1.83 × 10−7, and
the absolute percentage error is 2.33× 10−5% in steady conditions. The maximum value
achieved is 7.85× 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the
end value is 7.85× 10−1 rad, the rise time is 3.86× 10−2 s, the overshoot is 0.00%, the peak
time is 7.22× 10−1 s, and the settling time is 1.23× 10−1 s.
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Figure 47. Surface of the two-input linear controller using the UPAFuzzySystems library.

Code 15. Python code for configuring the PD fuzzy controller in the UPAFuzzySystems library.

1

2
3
4

LinearPDFuzzController = UPAfs.fuzzy_controller(Linear,typec='PD',tf=TF,DT = T[1], GE=15.91545709,
GU=0.094248, GCE=0.636618283)
LinearPDFuzzController.build()
LinearPDFuzzControllerBlock = LinearPDFuzzController.get_controller()
LinearPDFuzzSystemBlock = LinearPDFuzzController.get_system()
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Again, we test the linear PD fuzzy controller, including the disturbances at the input
of the plant, as shown in the block diagram in Figure 12. The results are shown in Figure 49.
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disturbance signal (green). The absolute error is 3.47× 10−3, and the absolute percentage
error is 4.42× 10−1 % in steady conditions. The maximum value reached is 7.91× 10−1 rad,
the minimum value is 0.00 rad, the start value is 0.00 rad, the end value is 7.89× 10−1 rad,
the time rising is 3.86× 10−2 s, the overshoot is 2.60× 10−1%, the time peak is 5.18× 10−1 s,
and the settling time is 1.61× 10−1 s.

3.5.3. Linear PD-I Fuzzy Controller

The Linear PD-I fuzzy controller uses as a basis a two-input linear system as the linear
PD controller. Therefore, we use the same system defined in Code 14. However, now, we
add a third gain and the integration connection as shown in Figure 7. Thus, the simulation
surface of the two-input linear system is the same as in Figure 47.

After that, we specify the configuration of the PD-I fuzzy controller with its gains GU,
GE, GCE, and GIE defined in Equations (21)–(24). The Python code for configuring the
PD-I fuzzy controller with its gains is in Code 16.

Code 16. Configuration of PD-I fuzzy controller with the UPAFuzzySystems library.

1

2
3
4

LinearPidFuzzController = UPAfs.fuzzy_controller(Linear,typec='PD-I',tf=TF,DT = T[1],
GE=15.91545709, GU=0.094248, GCE=0.636618283, GIE=7.234298678)
LinearPidFuzzController.build()
LinearPidFuzzControllerBlock = LinearPidFuzzController.get_controller()
LinearPidFuzzSystemBlock = LinearPidFuzzController.get_system()

Finally, we simulate the controller following the approach in Code 6. The output
response is shown in Figure 50. The absolute error is 5.77 × 10−15, and the absolute
percentage error is 7.35× 10−13% in steady conditions. The maximum value achieved is
7.85× 10−1 rad, the minimum value is 0.00 rad, the start value is 0.00 rad, the end value is
7.85× 10−1 rad, the time rising is 1.05× 10−2 s, the overshoot is 0.00%, the time peak is
7.22× 10−1 s, and the settling time is 3.46× 10−2 s.
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Figure 50. Response of the linear PD-I fuzzy controller using the UPAFuzzySystems library.

Similarly, we test the linear PD-I fuzzy controller, including the disturbances at the
input of the plant, as shown in the block diagram in Figure 12. The results are in Figure 51.

Figure 51 shows the results of the linear PD-I fuzzy controller with signal disturbance
for the DC motor position (blue) while summited to the input created (orange) and the
disturbance signal (green). The absolute error is 2.05× 10−3, and the absolute percentage
error is 2.61× 10−1% in steady conditions. The maximum value reached is 7.91× 10−1 rad,
the minimum value is 0.00 rad, the start value is 0.00 rad, the end value is 7.87× 10−1 rad,
the time rising is 1.05× 10−2 s, the overshoot is 4.11× 10−1%, the time peak is 5.12× 10−1 s,
and the settling time is 3.46× 10−2 s.
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Figure 51. Response of the linear PD-I fuzzy controller with disturbances.

3.6. Controllers Comparison

Each fuzzy controller implemented using the UPAFuzzySystems library has differ-
ent control characteristics produced in the control response. These characteristics are the
absolute error (absolute_error), the absolute percentage error (percentage_error), the maxi-
mum value (max_value), the minimum value (min_value), the start value (start_value), the
end value (end_value), the time rising (time_rising), the overshoot (overshoot), the time
peak (time_overshoot), and the settling time (settling_time). Table 5 compares the control
characteristics for each controller applied to the position control of a DC motor.

Additionally, Figure 52 compares graphically the control responses of all fuzzy con-
trollers implemented following an input or reference with an angular position of 45 degrees
(7.85 × 10−1 rad). As the figure shows, there are variations in the overshoot, time rising,
settling time, and time peak. Still, all the controllers maintain an error below 1% of the
reference in steady conditions.
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Figure 52. Comparison of control responses of fuzzy controllers implemented with the UPAFuzzySys-
tems library.

The more essential features of a controlled system are the absolute error, the absolute
percentage error, the overshoot, the settling time, and the time rising. These features identify
the response speed of the controller, its stability, and how well it follows the reference.
Maintaining them near zero improves the controller response. As Figure 53 shows, the
fuzzy linear PD-I controller has the best results controlling the position of a DC motor.
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Figure 53. Comparison of the characteristics of interest in fuzzy controllers with the UPAFuzzySys-
tems library.

However, for controlling the position of the DC motor, all the controllers maintain the
reference error minimally, and the settling time is also similar between them. At the same
time, the more significant dispersions are in the overshoot and the time to achieve it, as the
boxplot in Figure 54 shows.
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We also performed an ANOVA test to verify our conclusions about the best controllers
and their features of interest without disturbances. We evaluated the test without over-
shooting features because not all the controllers have overshot. Using the features absolute
error, percentage error, settling time, and time rising as groups, we obtained the results in
Table 6, which support that the fuzzy linear PD-I controller has the best results among all
the fuzzy controllers because of the pvalue = 0.000172.

Moreover, we also repeat the comparison between controllers analyzing their re-
sponses with disturbances in Table 7.

Additionally, we compare graphically the control responses of all fuzzy controllers
implemented following an input or reference with an angular position of 45 degrees
(7.85× 10−1 rad) and 10% of the input reference uniform random disturbances (Figure 55).
As the figure shows, there are variations in the overshoot, time rising, settling time, and
time peak. However, due to the disturbances, all the controllers now increase the error to
3.66% of the reference in steady conditions.
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Table 5. Comparison of control characteristics in fuzzy controllers implemented with the UPAFuzzySystems library.

Fuzzy Controller One-Input
Mamdani One-Input FLS Two-Input

Mamdani Two-Input FLS One-Input
Takagi–Sugeno

Two-input
Takagi–Sugeno

Fuzzy Linear
P

Fuzzy Linear
PD

Fuzzy Linear
PD-I

max_val (rad) 8.47× 10−1 7.93× 10−1 8.25× 10−1 7.96× 10−1 8.00× 10−1 8.02× 10−1 9.993× 10−1 7.91× 10−1 7.91× 10−1

min_val (rad) 0.00 −2.39× 10−16 7.99× 10−18 −5.79× 10−1 0.00 0.00 0.00 0.00 0.00
start_val (rad) 0.00 −8.40× 10−17 −4.28× 10−18 0.00 0.00 0.00 0.00 0.00 0.00
end_val (rad) 7.97× 10−1 7.93× 10−1 7.57× 10−1 7.96× 10−1 7.99× 10−1 7.96× 10−1 7.89× 10−1 7.89× 10−1 7.87× 10−1

time_rising (s) 3.86× 10−2 1.99× 10−1 2.66× 10−2 2.67× 10−1 1.33× 10−1 6.66× 10−2 1.45× 10−1 3.86× 10−2 1.05× 10−2

Overshoot (s) 7.86 0.00 9.09 0.00 1.60× 10−1 7.07× 10−1 2.58× 10−1 2.60× 10−1 4.11× 10−1

time_overshoot (s) 7.26× 10−2 7.22× 10−1 6.62× 10−1 7.22× 10−1 5.28× 10−1 5.22× 10−1 3.46× 10−2 5.18× 10−1 5.12× 10−1

settling_time (s) 6.38× 10−1 6.80× 10−1 7.14× 10−1 6.74× 10−1 6.54× 10−1 6.34× 10−1 1.65× 10−1 1.16× 10−1 3.46× 10−2

Absolute Error (rad) 1.20× 10−2 7.18× 10−3 2.88× 10−2 11.1× 10−2 1.35× 10−1 1.07× 10−2 3.60× 10−3 3.47× 10−3 2.05× 10−3

Percentage Error (%) 1.53 9.14× 10−1 3.66 1.41 1.72 1.37 4.58× 10−1 4.42× 10−1 2.61× 10−1

Table 6. ANOVA analysis of fuzzy controllers without overshoot.

sum_sq df F PR(>F)

C(features) 0.164450 3.0 9.066149 0.000172
Residual 0.193481 32.0

Table 7. Comparison of control characteristics in fuzzy controllers with disturbances.

Fuzzy Controller One-Input
Mamdani

One-Input
FLS

Two-Input
Mamdani

Two-Input
FLS

One-Input
Takagi–Sugeno

Two-Input
Takagi–Sugeno

Fuzzy Linear
P

Fuzzy Linear
PD

Fuzzy Linear
PD-I

max_val (rad) 8.60× 10−1 7.93× 10−1 8.25× 10−1 7.96× 10−1 8.00× 10−1 8.02E− 01 9.93× 10−1 7.91× 10−1 7.91× 10−1

min_val (rad) 0.00 −2.39× 10−16 −7.99× 10−18 −5.79× 10−5 0.00 0.00 0.00 0.00 0.00
start_val (rad) 0.00 −8.40× 10−17 −4.28× 10−18 0.00 0.00 0.00 0.00 0.00 0.00
end_val (rad) 7.97× 10−1 7.93× 10−1 7.57× 10−1 7.96× 10−1 7.99× 10−1 7.96× 10−1 7.89× 10−1 7.89× 10−1 7.87× 10−1

time_rising (s) 3.86× 10−2 1.99× 10−1 2.66× 10−2 2.67× 10−1 1.33× 10−1 6.66× 10−2 1.45× 10−2 3.86× 10−2 1.05× 10−2

Overshoot (s) 7.86 0.00 9.09 0.00 1.60× 10−1 7.07× 10−1 2.58× 10+1 2.60× 10−1 4.11× 10−1

time_overshoot (s) 7.26× 10−2 7.22× 10−1 6.62× 10−1 7.22× 10−1 5.28× 10−1 5.22× 10−1 3.46× 10−2 5.18× 10−1 5.12× 10−1

settling_time (s) 6.38× 10−1 6.8× 10−1 7.14× 10−1 6.74× 10−1 6.54× 10−1 6.34× 10−1 1.65× 10−1 1.61× 10−1 3.46× 10−2

Absolute Error (rad) 1.20× 10−2 7.18× 10−3 2.88× 10−2 1.11× 10−2 1.35× 10−2 1.07× 10−2 3.60× 10−3 3.47× 10−3 2.05× 10−3

Percentage Error (%) 1.53 9.14× 10−1 3.66 1.41 1.72 1.37 4.58× 10−1 4.42× 10−1 2.61× 10−1
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Again, we also compare the more essential features of a controlled system with the
fuzzy controllers and signal disturbances. As Figure 56 shows, the fuzzy linear PD-I
controller has the best results controlling a DC motor’s position and is the most robust.
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However, for controlling the position of the DC motor, all the controllers maintain a
reference error below 4% of error, and the settling time is also similar between them. At the
same time, the more significant dispersions are in the overshoot and the time to achieve it,
as the boxplot in Figure 57 shows.

We also performed an ANOVA test to verify our conclusions about the best controllers
and their features of interest with disturbances. Again, we evaluated the test without
overshooting features because not all the controllers have overshot. Using the features
absolute error, percentage error, settling time, and time rising as groups, we obtained
the results in Table 8, which support that the fuzzy linear PD-I controller has the best
results among all the fuzzy controllers in the presence of disturbances because of the
pvalue = 0.000038.
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Table 8. ANOVA analysis of fuzzy controllers without overshoot.

Sum_sq df F PR (>F)

C(features) 9.535859 3.0 11.074266 0.000038
Residual 9.184882 32.0

4. Conclusions

This work proposes the UPAFuzzySystems library for designing inference systems
with fuzzy logic, simulation, and control with fuzzy controllers, transfer functions, and
state-space models in discrete and continuous universes. To our knowledge, this proposal
is the only open-source Python library that integrates these functions.

Section 3.2 showed that the UPAFuzzySystems library could define fuzzy universes for
different situations, such as collision distance and recommended speed. Section 3.3 shows
how to specify the rules in an FIS system linking premises, connectives, and consequences.
Moreover, the library successfully simulates the problem’s surface response with input
arrays defining the inputs for the premise and obtaining its corresponding consequence in
a continuous universe.

Additionally, the UPAFuzzySystems library also successfully controls and simulates
the position of a DC motor plant (transfer function defined in Table 4 and codified in
Code 4) with the fuzzy controllers: one-input Mamdani controller in Section 3.4.1, one-
input FLS controller in Section 3.4.2, Takagi–Sugeno controller in Section 3.4.3, two-input
Mamdani controller in Section 3.4.4, two-input FLS controller in Section 3.4.5, two-input
Takagi–Sugeno controller in Section 3.4.6. Similarly, the UPAFuzzySystems library allows
the implementation of one-input and two-input linear fuzzy systems, together with the P
(Section 3.5.1), PD (Section 3.5.2), and PD-I (Section 3.5.3) controllers.

The controllers implemented using the proposed library reduce the steady error below
1% without disturbances and below 4% in the presence of 10% uniform random distur-
bances. Furthermore, we obtained interest features in control systems, such as overshoot,
steady time, time rising, and time peak, that vary depending on the controller. Those varia-
tions occur because of the different changes in the control structures, such as the premises,
the consequences, the connectives, the implication, the fuzzification, and the defuzzification
methods. Moreover, some of these structures even include derivatives that allow predicting
changes in the error behavior or integrals that allow gradual error reduction.

After performing an ANOVA analysis with the values of the features and the error
with each controller, supported with a pvalue = 0.000038, we concluded that the PD-I
controller obtains the best error reduction and features of interest. These best features
include a faster response, no overshoot, and no oscillations after reaching the reference,
even in the presence of disturbances, as detailed in Section 3.6.

Our proposal successfully implements different fuzzy structures for designing FISs
systems in general problems or controlling the position of a DC motor. However, following
the codes we use in this work, UPAFuzzySystems can help researchers and designers solve
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problems in general applications with FISs or even use fuzzy controllers in the literature to
control and simulate other transfer functions or state-space models.

Future Work

Although our proposal offers several control structures mechanisms for designing
and simulating FISs and fuzzy controllers, the users would also benefit if there were
methods for simplifying the implementation process. Thus, we will develop mechanisms
for automatically configuring the implementation of the controllers in embedded systems
based on the Raspberry Pi and Arduino platforms.
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