
Citation: Liu, Q.; Cao, S.; Lu, Z.

An Improved Crack Breathing Model

and Its Application in Crack

Identification for Rotors. Machines

2023, 11, 569. https://doi.org/

10.3390/machines11050569

Academic Editor: Mohammadreza

Ilkhani

Received: 17 April 2023

Revised: 15 May 2023

Accepted: 18 May 2023

Published: 20 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Improved Crack Breathing Model and Its Application in
Crack Identification for Rotors
Qi Liu 1,2, Shancheng Cao 3 and Zhiwen Lu 1,2,*

1 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,
Wuhan University of Science and Technology, Wuhan 430081, China; liuqi2022@wust.edu.cn

2 The Key Laboratory of Metallurgical Equipment and Control of Education Ministry,
Wuhan University of Science and Technology, Wuhan 430081, China

3 School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China;
shancheng.cao@nwpu.edu.cn

* Correspondence: luzhiwen@wust.edu.cn

Abstract: The crack breathing model and crack identification method for rotors using nonlinearity
induced by cracks are studied in this work. Firstly, the finite element method is utilized to model
a rotor–bearing system with a response-dependent breathing crack to obtain the numerical data
for crack identification. During the modelling, an improved breathing crack model is proposed,
focused on the unreasonable assumption about crack closure line in the original crack closure line
position (CCLP) model. Compared with the original model, the improved breathing model can reflect
the nonlinear behavior of cracks better. Secondly, based on the established model, super-harmonic
features at 1/3 and 1/2 of the critical rotating speeds under different crack locations and crack
depths are extracted for crack identification. Additionally, the super-harmonic features from two
measurement points are used as inputs into an artificial neural network with a Levenberg–Marquardt
back-propagation algorithm, corresponding crack positions and depths as outputs. The robustness
of the method is tested by examining the identification results under different levels of noise. The
results show that the proposed crack identification method is efficient for simultaneous identification
of crack depth and position in operating rotors.

Keywords: crack identification; rotor dynamic; breathing crack; nonlinear super-harmonic; artificial
neural network

1. Introduction

Fatigue cracks on rotors will appear inevitably under the action of long-term alternat-
ing loads. If not detected in a timely manner, a sudden failure of equipment could occur.
With the rotation of the rotor, due to the effects of gravity, unbalance and other external
excitations, the crack will present a breathing phenomenon of opening and closing [1],
making the stiffness caused by the crack change periodically with time. The appearance
of the breathing phenomenon makes the rotor response more complex and enriches the
information that can be used for crack diagnosis. The issue of how to simulate the crack
breathing behavior reflecting the real situation, and utilize the nonlinear characteristics
induced by crack breathing for crack monitoring and diagnosing, is of vital importance.
Much research has been carried out on the dynamic behavior of cracked rotors in order to
identify cracks in rotors [1–6].

To realize crack identification in rotors, the key is to obtain accurate measurement
data. Because of the difficulty in creating breathing cracks in rotors, most research is based
on theoretical models such as finite element models and analytical models. Therefore,
a model which has the ability to reflect the essential behavior of a crack is particularly
important. During modelling, crack breathing models directly affect the accuracy of
dynamic responses. Crack breathing models can be mainly divided into rotation-dependent
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models and response-dependent models. The rotation-dependent breathing models assume
that crack breathing is determined by the rotating of the rotor, and it is generally assumed
that the static deformation of the rotor is much larger than the vibration response of the
rotor, that is, gravity dominates; examples include the switch model [7], cosine model [8],
truncated Fourier series expansion model [9], etc.

The response-dependent breathing models hold that the crack breathing state is
determined by the local response of the crack, so it is applicable not only in the case of
gravity dominance, but also in the case of non-gravity dominance. Response-dependent
breathing models mainly include: the three-dimensional nonlinear contact model [10],
which is recognized as a most accurate numerical model but with heavy computation; the
analytical three-dimensional contact model [11]; the rigid finite element model [12,13]; the
zero stress intensity factor model [14]; and the neutral axis model [15–17]. Although the
first three models are relatively accurate, complex computation is demanded for simulation.
Of the latter two models, the neutral axis model is mainly applicable to straight cracks
without considering the influence of the crack tip, while the zero stress intensity factor
model can be more accurate due to considering the crack tip effects, and can be applied to
cracks with any angles under general excitations.

In the zero stress intensity factor model, the crack closure line position (CCLP) breath-
ing model [18–21] is the one most widely used. In this method, a series of discrete points
are used to equally divide the crack front, and the opening and closing boundary positions
of the crack are determined according to the positive and negative stress intensity factors
of each point on the crack front. Meanwhile, the closing line of the crack is assumed to be a
straight line segment passing through the position and perpendicular to the crack front,
so as to determine the opening and closing region of the crack. Then, the crack stiffness
under the current opening and closing state is calculated using the strain energy release
rate theory [4]. The greatest advantage of this method is the ability to simulate cracks
with any crack angle action and with any excitations. By comparing the rotor nonlinear
dynamic response based on the crack-switch breathing model and the response-dependent
CCLP breathing model, Patel et al. found that the breathing model had a great influence
on the nonlinear characteristics of the response [22]. Bachschmid et al. simulated the
breathing of cracks through three-dimensional nonlinear contact [23], and the research
showed that the crack closure line and the crack front are not perpendicular but present a
certain angle. Theoretically, the 3D nonlinear finite element method is the most accurate
crack simulation method; therefore, it is not that reasonable to assume that the crack closure
line is perpendicular to the crack front edge in the traditional CCLP model. It is necessary
to improve the crack model considering its accuracy and complexity.

The crack identification methods can be classified as vibration-based methods, modal
testing methods and non-traditional methods [5]. Vibration-based methods include model-
based methods and signal-based methods. Additionally, modal testing methods mainly
consist of modal parameters and their derivatives-based methods, coupling mechanism-
based and nonlinear combined resonance-based methods. As for the non-traditional
methods, they include those that cannot be classified as the previous two types. They
generally need to extract features based on varied signal processing methods, and always
need to apply the modern optimism method or machine learning method to solve the
inverse problem of identification.

In [24], a modern model-based technique with the proportional-integral observer was
put forward for crack identification in an operating rotor, which was compared with a
signal-based technique with wavelets and the support vector machine. In [25], principal
component analysis was utilized to construct a damage index for crack detection and
localization. In [26], orbit morphological characteristics were extracted for crack detection.
Both the model-based and signal-based methods have their strengths and weaknesses, thus
a combination of these methods may be helpful to improve the diagnosis performance.

As regards modal testing methods, in [27], highly accurate modal parameters were
obtained to identify a crack in rotors by combining the empirical mode decomposition with
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Laplace wavelets. In [28], the first four natural frequencies were utilized to diagnose a
crack in a rotor under the stationery condition. In [29], a wavelet was used to extract the
mode shape of a rotor when it passed the critical speed, and the crack was localized by the
extracted modes.

In [30], flexural vibration characteristics of rotor with a transverse or slant crack
under external torsional excitation were investigated to identify the crack type. In [31],
an active magnetic bearing technique was put forward to detect an early stage crack in
a rotating rotor based on the bending–torsion coupling induced by the crack. In [32], a
multi-sine excitation technique was proposed to detect a crack in a rotor based on the
nonlinearity of the cracked rotor. In [33], combination resonances due to a nonlinear
crack in a rotor were utilized to realize the location and depth identification of the crack.
In [34], a crack in a rotor was detected by time-frequency signal processing methods
such as short time Fourier transform, continuous wavelet transform and Hilbert–Huang
transform under the accelerating condition. In [35], approximated entropy theory was used
to detect cracks with the interference of misalignment in rotors, which showed very good
performance. In addition, the appearance of super-harmonic frequency components were
the obvious features for breathing cracks which had the potential for crack monitoring and
diagnosing [36–38].

As for the non-traditional methods, the convolutional neural network was adopted
for crack localization via vibration responses in time domain from an experimental rig
in [39]. The convolutional neural network and deep metric learning method was proposed
for crack position diagnosis in a hollow shaft rotor system using the amplitude–frequency
responses [40]. Based on a convolutional neural network and the transfer learning method,
crack features were automatically extracted for crack diagnosis [41]. Artificial neural
networks were trained for crack position and depth identification by using the discrete
wavelet transforms coefficients of operating deflection shapes as inputs [42].

From the literature of crack identification, it can be seen that there is a trend that more
and more published works are using a combination of several kinds of methods together
to improve the performance of crack identification. Additionally, the super-harmonic
features are recognized as obvious indicators for cracked rotors, which are generated by
the crack-induced asymmetry and the breathing-introduced nonlinearity. However, from
the literature, little research has been carried out to quantify crack locations and depth
simultaneously in a rotor with super-harmonic features.

Based on the brief literature review above, this paper will seek to make contributions
in two aspects. Firstly, focusing on the unreasonable assumption in the original CCLP crack
model, an improved model called the ICCLP model is proposed, using the distribution of
stress intensity factor at the crack front and the current angular position of the rotating shaft
to determine the crack opening and closing boundary line. By comparing the ICCLP model
with the traditional CCLP model and the three-dimensional nonlinear crack contact model,
the correctness of the proposed model is verified. Secondly, based on the established model
for cracked rotors, the super-harmonic characteristics are investigated, and the sensitive
features are utilized to identify the crack locations and depths simultaneously using an
artificial neural network.

2. Modelling of a Rotor–Bearing System with a Breathing Crack

The dynamics of a rotor with a breathing crack are the fundament of crack identifi-
cation, which could help to elucidate the response characteristics and select the sensitive
features for crack identification. In this part, an improved crack breathing model is pro-
posed and integrated into the rotor–bearing system using the finite element method to
generate the required vibration signals. Based on the established rotor–bearing system
model, the dynamic characteristics and sensitive features are investigated.
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2.1. Crack Stiffness Matrix Calculation

A typical crack shaft element is described in Figure 1. X–Y–Z and x–y–z are the global
and local coordinate system, respectively. The crack element is considered with two nodes,
and each node has three translational and three rotational degrees of freedom. The general
forces applied in the crack element are denoted as P1−P12. The length and radius of the
crack element is l and R, respectively. The crack angle is shown as θc, the distance between
the crack center and the end of shaft element equals to l/2 in this work.
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ui is denoted as the displacement along the direction of force Pi. According to Cas-
tigliano’s theorem and the Paris equation, the flexibility coefficients of crack element can be
expressed as

gij =
∂ui
∂Pj

=
∂2

∂Pi∂Pj
(U0 + Uc) =

∂2U0

∂Pi∂Pj
+

∂2Uc

∂Pi∂Pj
= g0

ij + gc
ij (1)

where g0
ij are the flexibility coefficients of the un-cracked element, and gc

ij the additional
flexibility coefficients of the cracked element. The strain energy of un-cracked element
U0 and the additional strain energy Uc due to crack can be expressed according to strain
energy release rate [4],

U0 =
1
2

∫ [P1
2

EA
+

αsP2
2

GA
+

αsP2
3

GA
+

P4
2

EIp
+

(P3x + P5)
2

EIy
+

(P6 − P2x)2

EIz

]
dx (2)

Uc =
1− v2

E

x

Ac

( 6

∑
i=1

KIi)

2

+ (
6

∑
i=1

KIIi)

2

+ (1 + v)(
6

∑
i=1

KIIIi)

2
dAc (3)

where E and G are the Young’s modulus and the shear modulus; Ip is the polar moment of
inertia; Iy and Iz are the area moment of inertia about axis y and z; αs is the shear coefficient;
v is the Poisson’s ratio; KIi,KIIi and KIIIi are the opening, sliding and tearing type stress
intensity factors (SIFs), respectively; A is the area of the element cross-section; Ac is the
crack section whose variation with time can describe the crack breathing phenomenon.
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From Equations (1)–(3), the flexibility coefficients matrix G of the cracked element (which
is a symmetric matrix) can be expressed as

G =



l
EA + gc

11 gc
12 gc

13 gc
14 gc

15 gc
16

gc
21

αsl
GA + l3

3EIz
+ gc

22 gc
23 gc

24 gc
25 − l2

4EIz
+ gc

26

gc
31 gc

32
αsl
GA + l3

3EIy
+ gc

33 gc
34

l2

4EIy
+ gc

35 gc
36

gc
41 gc

42 gc
43

l
EIp

+ gc
44 gc

45 gc
46

gc
51 gc

52
l2

4EIy
+ gc

53 gc
54

l
EIy

+ gc
55 gc

56

gc
61 − l2

4EIz
+ gc

62 gc
63 gc

64 gc
65

l
EIz

+ gc
66


(4)

According to the static equilibrium of crack element,

P1 + P7 = 0
P2 + P8 = 0
P3 + P9 = 0
P4 + P10 = 0
P5 + P3l + P11 = 0
P6 − P2l + P12 = 0

⇒ {P1, P2, . . . , P12}T = T{P1, P2, . . . , P6}T (5)

where T corresponds to the transformation matrix,

TT =



1 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 l
0 0 1 0 0 0 0 0 −1 0 −l 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1

 (6)

According to the Hooke’s law,

G{P1, P2, . . . , P6}T = TT{u1, u2, . . . , u12}T (7)

Hence,
{P1, P2, . . . , P12}T = TG−1TT{u1, u2, . . . , u12}T (8)

Then, crack stiffness matrix of a crack element can be derived as

Kce = TG−1TT (9)

2.2. Improved Breathing Crack Model

From Equation (9), one can obtain the crack element matrix under a fixed open state.
However, the crack is breathing with the operating of the rotor, which will lead to the crack
section Ac in Equation (3) changing with time. Therefore, the issue of how to accurately
describe the changing rule of crack opening and closing, e.g., the crack breathing model,
is vitally important for dynamic modelling of a breathing crack rotor. The crack closure
line position (CCLP) crack model [14] is one reliable crack breathing model. However, the
assumption in the original model that the crack closure line is perpendicular to the crack
front has a certain difference from the fact that the angle between the crack closure line
and the crack edge is constantly changing. In order to simulate the breathing behavior of
cracks more truly and accurately, the original CCLP crack breathing model is improved.
It is assumed that the crack closing line and the crack edge have a certain angle, and that
the angle is consistent with the current angular position of the shaft. Meanwhile, the
starting point of the crack closing line is located by the boundary position of the positive
and negative opening mode stress intensity factor KI at the crack front edge. The KI is the
sum of opening mode stress intensity factor along the six directions of the six degrees of
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freedom expressed in Equation (10). When KI is positive, it means the position in the crack
front is open, otherwise the position is closed.

KI =
6

∑
i=1

KIi (10)

The evolution process of the transverse crack breathing is depicted in Figure 2 (assum-
ing that the external loads cause the shaft to bend downward in the X–Y plane, without
losing generality). In Figure 2, YOZ and yOz are the global and rotation coordinates of the
crack section, respectively, and θ is the angular position of the rotor, which is assumed to be
0 at the initial time. AB is the crack front line. The hatched region corresponds to the crack
closure region; The crack closure lines determined by the improved CCLP (ICCLP) and the
original CCLP breathing models are represented by solid and dotted lines, respectively. It
should be noted that the evolution process of the crack breathing is similar to the neutral
axis breathing model in [43]. However, the proposed breathing model takes the status of
crack tips into consideration using the stress intensity factor, which will be more accurate.
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Once the crack closure line is ascertained, the corresponding crack region Ac can be
determined. By using the superposition of the flexibility and dividing the crack region
reasonably, the crack flexibility matrix can be easily solved, and the corresponding stiffness
matrix can then be obtained. The crack section is divided as shown in Figure 3 with three
regions, S1, S2 and S3. Additionally, the crack calculation region Ac can be obtained using
the combination strategy described in Equation (11).

Ac =


0 θ = 0◦, θ = 360◦

S/2 θ = 90◦, θ = 270◦

S θ = 180◦

S1 + S2 θ ∈ (0◦, 90◦) ∪ (270◦, 360◦)
S− (S1 + S2) θ ∈ (90◦, 180◦) ∪ (180◦, 270◦)

(11)
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where S = S1 + S2 + S3.
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The calculation process is shown in Figure 4. For the initial state, the static deformation
of the rotor without cracks is used to calculate the node force of the crack element.
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2.3. Finite Element Model of the Cracked Rotor–Bearing System

The finite element method was adopted to establish the cracked rotor–bearing system.
The main idea was to assemble the crack element into the intact rotor–bearing system. The
crack stiffness matrix and crack breathing model have been described above. The intact
rotor–bearing system is shown in Figure 5, and has been established and experimental
validated by the authors in [44]. The shaft is discretized into 60 two-node Timoshenko beam
elements, and each node has three translational and three rotational degrees of freedom.
The discs are assumed to be rigid and consider the gyroscopic effects, and the inertias are
added to the corresponding node. A spring-damping model is used to simplify the bearing.
The finite element model of the cracked rotor–bearing system can be derived by assembling
all the element matrices as:

M
..
q + (C + ΩGy)

.
q + K(q)q = Fe + Fg + Fex (12)

q = {q1, q2, . . . qi, . . . , qn}
T (13)

qi =
{

xi, yi, zi, θxi, θyi, θzi
}T (14)

where M, C, K, Gy are the system mass matrix, Rayleigh damping matrix, stiffness matrix
and gyroscopic matrix; q and qi are the total displacement vector and displacement vector
of node i; Fe, Fg, Fex are the eccentric excitation vector, gravitational force vector and
external excitation vector. Ω is the rotating frequency.
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2.4. Model Validation

We consider the rotor system as shown in Figure 5 with a transverse crack located at
the 30th element and with a depth of 0.25D. Figures 6 and 7 are the crack stiffness obtained
by the improved CCLP model and the original CCLP model during a one-circle rotation of
the shaft.

From Figure 6 to Figure 7, it can be seen that the stiffness variation rules of the crack
element obtained by ICCLP and CCLP are generally consistent, and the overall breathing
behaviors are almost the same, except for stiffness differences in the partially open and
closed state. Therefore, the correctness of the proposed ICCLP crack breathing model can
be demonstrated. The main advantage of the ICCLP model is that its description of the
crack closure line is more accurate and reasonable. In order to further verify the rationality
of the improved model, the finite element model of the cracked rotor was established using
the currently recognized three-dimensional non-linear contact crack model in ABAQUS, as
shown in Figure 8. In the model, the C3D8R (in ABAQUS nomenclature) element is used
to mesh the rotor. The crack is simulated considering two shafts jointed by means of the
interaction ‘Tie’ (in ABAQUS nomenclature) between the surfaces that constitute the intact
part of the cracked section. To avoid interpenetration between the crack faces when the
crack is closed, a surface-to-surface contact interaction has been defined for the cracked
part of the section. The normal behavior of interaction property is selected as ‘hard contact’
(in ABAQUS nomenclature), which does not allow penetration between the crack faces and
prevents the transfer of tensile stress across the interface, and the tangential behavior is set
as ‘rough friction’ (in ABAQUS nomenclature), which has an infinite coefficient of friction,
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avoiding all relative sliding motion between two contacting surfaces. The crack breathing
state evolution within one cycle of rotor rotation is shown in Figure 9.
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By comparing the variation rules of vertical bending stiffness K22 determined by
CCLP model and ICCLP model in Figure 6 and the breathing states from ABAQUS in
Figure 9, several key breathing states are shown in Table 1. It can be seen that the maximum
error of the crack opening and closing rule determined by the ICCLP model and three-
dimensional contact model is less than 5◦ which is smaller than the maximum error between
the original CCLP model and three-dimensional contact model, and considering that the
results determined by three-dimensional contact model can be further refined, the final
error will be smaller. In addition, the ABAQUS simulation results show that there is a
certain angle between the crack closure line and the crack front edge, which also proves the
rationality of the hypothesis of the crack closure line in the proposed ICCLP model.

Table 1. Breathing state comparison between the ICCLP model, CCLP model and 3D contact model.

State of Crack Open
and Close ICCLP CCLP Three-Dimensional

Contact Model

Start opening 33◦ 30◦ 35◦

Fully open 130◦ 140◦ 125◦

Start closing 228◦ 220◦ 233◦

Fully closed 328◦ 330◦ 327◦

Through the above comparative study, the accuracy of the proposed ICCLP model is
fully verified. In order to further analyze its influence on the response of the rotor system,
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the lateral vibration response of the cracked rotor under the ICCLP and CCLP models was
compared as shown in Figure 10.
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From Figure 10, one can see that the responses obtained by the two breathing models
are similar in the time domain, but more local fluctuations appear in the responses from
the ICCLP breathing model, which corresponds more high frequency components. From
the frequency spectrum, the phenomenon is more obvious that there are more high order
super-harmonic frequencies in the spectrum of the responses from the ICCLP model, which
means that the ICCLP mode can capture the super-harmonic characteristics better than the
CCLP model. These super-harmonic components are always important for crack diagnosis,
and the ICCLP model can simulate the crack breathing more accurately.

Based on the established model, the super-harmonic components with different crack
positions and crack depths at 1/3 and 1/2 critical speeds were extracted, and the 1×, 2×,
3× components are shown in Figure 11, where× corresponds to the rotating frequency and
the relative amplitude is the ratio of the response between cracked rotors and un-cracked
rotors.

From Figure 11, one can see the 1× and 2× components with different crack positions
and depths at 1/3 and 1/2 critical speeds are gradually varied, while no obvious changing
rules can be found for 3× components at either speed. What is more, there are sudden
changes in 3× components with the variation of crack depth in Figure 11c,f, which are
generated by the nonlinearity induced by crack breathing. Therefore, it is better to choose
1× and 2× components for crack identification than 3× components. Hence, in the follow-
ing, the crack identification will be investigated using the 1× and 2× components with the
designed artificial neural network.
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3. Crack Identification Based on Artificial Neural Network

An artificial neural network is a kind of widely used artificial intelligence methodology
which can provide a nonlinear mapping between inputs and outputs. A three-layer network
can approximate any smooth mapping [45], so a three-layer backward propagation (BP)
neural network was created to identify the crack, Figure 12 presents its structure, where
X = {x1, x2, . . . , xn}T is the input vector, Y = {y1, y2, . . . , ym}T is the output vector, ωij is
the connecting weights of the ith input neuron to the jth hidden neuron, and ωjk is the
connecting weights of the jth hidden neuron to the kth output neuron.
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The relationship between inputs and outputs of the network can be expressed as

yk = foutput

{
l

∑
j=1

[
fhidden(

n
∑

i=1
ωijxi − aj)

]
ωjk − bk

}
k = 1, 2, . . . , m; j = 1, 2, . . . , l; i = 1, 2, . . . , n
foutput(x) = finput(x) = 1

1+e−x

(15)

where k, l and m are the numbers of output neurons, hidden neurons and input neurons,
respectively; foutput and fhidden are the activation functions of output layer and hidden
layer separately; and aj and bk correspond to the thresholds of the neurons of hidden layer
and output layer.
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3.1. Samples Generating and Network Training

It is well known that suitable samples are critically important for pattern identification
using artificial neural networks. The nonlinearity of the crack is more obvious at the
rotating speed around the 1/2 critical speed and the 1/3 critical speed, and from Figure 11
above, the 1× and 2× components are good features for crack identification; hence, the 1×
and 2× components at the two speeds were selected to generate the samples for training
and testing.

Considering the spatial information needed for crack position identification, it is not
possible to realize the identification of crack position and depth simultaneously by only
utilizing the features in one measurement point, which would lead to the multi-solution
problem. Therefore, taking into consideration the convenience of measurement and the
fewest measurement points demanded, the features from two measurement points are
combined as inputs for the neural network. The measurement points can be installed
relatively conveniently near the bearings in application.

Specifically, the crack position varies from element 10 to element 52 with a step of
2 elements, and the crack depth is from 0 to 0.45D with a step of 0.05D. Hence, there are
22 crack positions and 10 crack depths, and 220 samples in total. The inputs include the
1× and 2× super-harmonic components from the vertical rotor response obtained by two
measurement points at 1/3 and 1/2 critical speed. So, each input feature vector has the
dimension of 8, which is the number of neurons in the input layer of the BP network.
Additionally, two output neurons corresponding to crack location and crack depth are set
in the output layer. Among the 220 samples generated at 1/3 and 1/2 of the critical speed
for different crack locations and depths, 180 samples were chosen randomly as training
samples, and the rest used for the network validation and testing with default proportion
in MATLAB.

The parameters of the BP network were obtained through a trial-and-error process, and
the final parameter values used in the Levenberg–Marquardt back-propagation algorithm
are as follows: 8 input layer neurons, 15 hidden layer neurons, 2 output layer neurons,
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learning ratio of 0.01, training goal of 0.00001, and 5000 epochs. Additionally, the training
processes is shown as Figure 13.
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From the training process, one can see that the speed of convergence is fast using the 
selected inputs and outputs, and the accuracy of training, validation and testing are all 
over 99%, which demonstrates the high training quality of the designed network. Addi-
tionally, the trained network can be used for crack identification. 

3.2. Crack Identification Results 
The remaining 40 samples were used for crack identification, and in order to evaluate 

the robustness of the network, different level of noise were added to the testing samples, 
which means the samples for network training were free of noise, while the samples for 
crack identification featured different levels of noise. Figure 14 presents the identification 
results based on the trained network under different noise levels. As can be seen from 
Figure 14, the identified crack locations and depths both match well with the actual crack 
parameters, even for shallow cracks, especially when there is no noise. 

In order to quantify the effectiveness of the method, some evaluation indexes were 
used which are defined as follows: detectable probability, which is defined as the ratio of 
identified cracked samples to all cracked samples, and represents the possibility that 
cracked samples will not be mistaken as un-cracked ones; false-alarm probability, which 
is defined as the ratio of un-cracked samples mistaken as cracked ones among all the un-
cracked samples; identified location probability, which is the ratio of correctly identified 
crack locations which have the errors no more than 1 (as the location is the position of 
element in this work) among all the samples; identified depth probability, which is the 
ratio of correctly identified crack depths which have errors no greater than 0.5 (as the 
output of depth is an integer, the resolution is one) among all the samples whose locations 
are identified correctly. 

The identification results calculated by the above evaluation indexes are shown in 
Table 2. It can be seen that the identification results are pretty good when there is no noise; 

Figure 13. Training process of the designed network: (a) convergence plot; (b) regression plot.

From the training process, one can see that the speed of convergence is fast using the
selected inputs and outputs, and the accuracy of training, validation and testing are all over
99%, which demonstrates the high training quality of the designed network. Additionally,
the trained network can be used for crack identification.
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3.2. Crack Identification Results

The remaining 40 samples were used for crack identification, and in order to evaluate
the robustness of the network, different level of noise were added to the testing samples,
which means the samples for network training were free of noise, while the samples for
crack identification featured different levels of noise. Figure 14 presents the identification
results based on the trained network under different noise levels. As can be seen from
Figure 14, the identified crack locations and depths both match well with the actual crack
parameters, even for shallow cracks, especially when there is no noise.
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Figure 14. Comparison of identification results based on the trained network and actual results under
different levels of noise: (a) no noise; (b) 5% noise; (c) 10% noise.

In order to quantify the effectiveness of the method, some evaluation indexes were
used which are defined as follows: detectable probability, which is defined as the ratio
of identified cracked samples to all cracked samples, and represents the possibility that
cracked samples will not be mistaken as un-cracked ones; false-alarm probability, which
is defined as the ratio of un-cracked samples mistaken as cracked ones among all the
un-cracked samples; identified location probability, which is the ratio of correctly identified
crack locations which have the errors no more than 1 (as the location is the position of
element in this work) among all the samples; identified depth probability, which is the ratio
of correctly identified crack depths which have errors no greater than 0.5 (as the output
of depth is an integer, the resolution is one) among all the samples whose locations are
identified correctly.

The identification results calculated by the above evaluation indexes are shown in
Table 2. It can be seen that the identification results are pretty good when there is no noise;
with the increase in the noise level, the identification results gradually degrade to a limited
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degree, especially the crack location identification accuracy. While the identified depth
probability is robust, which represents the likelihood that the crack location is accurately
identified, the probability that the crack depth is also accurately identified is also robust to
noise. In addition, the false-alarm probability and the detectable probability are not affected,
which is a good indicator for application performance. Therefore, one can conclude that
crack identification based on the BP network is efficient for the crack locations and depths,
especially when the signal-noise ratio is enhanced by pre-processing methods.

Table 2. Identification results under different level of noise.

Evaluation Index No Noise 5% Noise 10% Noise

Detectable probability 100% 100% 100%
False-alarm probability 0% 0% 0%
Identified location probability 100% 92.5% 90%
Identified depth probability 97.5% 97.3% 97.2%

4. Conclusions

An improved crack breathing model and its application in crack identification using
super-harmonic features for rotors based on an artificial neural network (ANN) were
studied in this work. The main conclusions are the following.

(1) A cracked rotor with a response-dependent nonlinear breathing crack was modelled
using the finite element method, and the original CCLP crack breathing model was
improved by implementing a more reasonable crack closure line. The improved
breathing model was validated by comparison with the original CCLP model and
the 3D contact model. The dynamic responses were also compared, and the results
indicate that the improved model is accurate and can reflect the super-harmonic
nonlinear behavior of cracks better. The advantages of the improved crack model can
be summarized as follows: (i) The improved crack model can consider the effect of
stress intensity factor at the crack front, which makes the crack stiffness calculation
more accurate. (ii) It can describe cracks with any crack angle under arbitrary excita-
tions. (iii) It can describe the crack closure line more accurately and reasonably with
affordable computation burden.

(2) Variation rules of super-harmonic features with different crack positions and crack
depths at 1/3 and 1/2 critical speed were investigated. The results show that 1× and
2× components are good indicators to distinguish different crack parameters.

(3) A backward propagation (BP) artificial neural network was established using the
features of 1× and 2× super-harmonic components at 1/3 and 1/2 critical speeds
from two measurement points as inputs, and the corresponding crack locations and
depths as outputs. The identification results show that the established network is
efficient for crack position and depth identification, and, with the increase in the
noise level, the identification accuracy remains higher than 90% but degrades to some
degree. What is more, the detectable probability and false-alarm probability are robust
to noise, which shows good performance for engineering applications.

This work mainly focuses on the feasibility of crack parameter identification using the
artificial neural network method; because of the difficulty in breathing crack manufacturing
with a control depth, experiments have not yet been carried out, which will be performed
to evaluate the performance of the method in near future.
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