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Abstract: Near-infrared (NIR) spectroscopy is a widely used technique for determining the composi-
tion of textile fibers. This paper analyzes the possibility of using low-cost portable NIR sensors based
on InGaAs PIN photodiode array detectors to acquire the NIR spectra of textile samples. The NIR
spectra are then processed by applying a sequential application of multivariate statistical methods
(principal component analysis, canonical variate analysis, and the k-nearest neighbor classifier) to
classify the textile samples based on their composition. This paper tries to solve a real problem
faced by a knitwear manufacturer, which arose because different pieces of the same garment were
made with “identical” acrylic yarns from two suppliers. The sweaters had a composition of 50%
acrylic, 45% wool, and 5% viscose. The problem occurred after the garments were dyed, where
different shades were observed due to the different origins of the acrylic yarns. This is a challenging
real-world problem for two reasons. First, there is the need to differentiate between acrylic yarns
of different origins, which experts say cannot be visually distinguished before garments are dyed.
Second, measurements are made in the field using portable NIR sensors rather than in a controlled
laboratory using sophisticated and expensive benchtop NIR spectrometers. The experimental results
obtained with the portable sensors achieved a classification accuracy of 95%, slightly lower than
the 100% obtained with the high-performance laboratory benchtop NIR spectrometer. The results
presented in this paper show that portable NIR sensors combined with appropriate multivariate
statistical classification methods can be effectively used for on-site textile quality control.

Keywords: near-infrared spectroscopy; sensors; quality control; textile classification

1. Introduction

Textile consumption in Europe has the largest impact on climate change and the
environment after food, housing, and mobility, as Europeans throw away an average of 11
kg of textiles per person per year [1]. Europeans consume an average of 26 kg of textiles per
person per year. The need to increase the share of reused and recycled textiles requires the
development of more strictly controlled production processes to guarantee the expected
quality of the final textile products.

Quality control approaches based on optical sensors are attractive due to their non-
contact nature [2,3]. Infrared spectroscopy is often combined with multivariate chemo-
metric methods for classification, sorting, material characterization, and quality control in
various industrial sectors, including raw materials, pharmaceutical and chemical indus-
tries, or the food industry, among others [4,5]. Infrared spectroscopic techniques allow fast
and non-intrusive acquisition of spectral data, so they can be applied to control various
quality-related parameters in different industrial sectors [6].
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The textile industry applies strict quality controls, which can be improved by using
state-of-the-art spectroscopic sensors that provide fast and non-intrusive control without
the use of chemical reagents or the need for expert technicians. Although most of the
information in the infrared spectrum of textile samples comes from the main textile fibers,
the presence of other products tends to mask this spectral information. Therefore, when de-
signing a classification method, it is necessary to extract and select the relevant information
from the textile spectrum while removing the background noise. This can be achieved by
applying appropriate multivariate statistical methods, making their application essential.

NIR spectroscopy (wavelength range: 750 to 2500 nm) was chosen as the analytical
tool for quality control in this study because of its ability to penetrate solid samples and
obtain important information about them. In the NIR, the absorption of radiation is due to
the combination of overtones and bands from the fundamental vibrations produced in the
mid-infrared [7]. The most common bands in the NIR are due to bonds containing light
atoms such as C-H, N-H, O-H, P-H, and S-H due to their greater harmonicity. The NIR
bands are less intense, broader, and not as well defined as the mid-infrared bands. NIR
spectroscopy is an analytical technique that has been widely applied in various fields, such
as healthcare [8,9], medicine [10], agriculture [11], plastic pollution detection in soil [12],
agrifood [13–16], the oil and fuel industry [17], or the textile industry [3,18–21], among
others. Information can be obtained from the sample quickly, non-invasively, and non-
destructively. These characteristics make NIR spectroscopy an efficient technique for
solving quality control problems. However, NIR spectroscopy must be combined with
powerful mathematical techniques because small differences in the spectra of different
samples cannot be analyzed by the human eye alone.

This paper tries to solve a real problem faced by a knitwear manufacturer by using
portable NIR sensor-based instruments combined with appropriate mathematical treatment
of the raw spectral data. The problem arose because different parts of the same garment
(sleeves, front, back, neck, etc.) were supposed to be made with “identical” yarns from
two suppliers. The sweaters had a composition of 50% acrylic, 45% wool, and 5% viscose.
After dyeing the garments, different shades were observed in the different parts, as shown
in Figure 1. This problem was attributed to the different origins of the acrylic yarns,
which, according to the company experts, did not show any visual differences before the
garments were dyed. This information has been obtained directly from the company that
has the quality problem in question. Therefore, the challenge is to be able to identify the
fabrics obtained from the two types of acrylic origins (Dralon versus Aksa acrylics) in dyed
garments in order to distinguish both types of origins in the raw pieces of the sweaters and
to minimize problems during the manufacturing process. The goal is to identify the two
origins using a portable NIR spectroscopic module combined with appropriate statistical
processing methods so that the company can apply this quality control procedure routinely.
The proposed solution should make it easier to control the quality of the final product by
identifying the origin or composition of the acrylic yarns, preventing two pieces of the
same garment from having acrylic yarns of different origins.
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Most of the identification studies found in the technical literature are based on sophisti-
cated and expensive benchtop NIR spectrometers, which have several limitations, especially
when field analysis or on-site quality control are required. However, with the commercial-
ization of miniaturized portable spectrometers, NIR spectral analysis has become feasible
for field applications [22], and in some applications, low-cost portable NIR instruments
are replacing benchtop spectrometers [23]. This paper evaluates the performance of three
portable, low-cost spectrum analyzers for the classification of textile samples. These sensors
include an InGaAs PIN photodiode array detector, a tunable filter, a built-in lamp, and
a USB port for communication. This is a challenging real-world problem because of two
different aspects that make this work innovative. The first is the need to solve a real-world
problem in the shortest possible time and with a limited number of samples. The second
point is that this problem was not clearly susceptible to being solved using NIR spectral
data due to the same composition of the samples to be discriminated. Finally, we propose a
methodology for solving similar challenges, i.e., first assessing whether a high-performance
benchtop NIR spectrometer combined with appropriate mathematical methods is capable
of solving the problem and then identifying the most convenient portable sensor to solve it
on site at the company premises. This work aims to evaluate the performance of portable
NIR sensors for textile quality control when combined with an appropriate multivariate
statistical treatment of the spectral data. Such mathematical treatment first normalizes the
spectral information, then reduces the number of independent variables by applying the
principal components analysis (PCA) followed by the canonical variate analysis (CVA) algo-
rithms. Finally, the k-nearest neighbor (kNN) algorithm is applied to classify the unknown
input textile samples into one of the classes predefined in the problem. Although various
machine learning approaches have been proposed to identify textile samples, including
support vector machines, genetic algorithms, or deep learning neural networks [18,24,25],
the mathematical tools proposed in this paper are easy to apply and require very little
computational effort. This allows them to be embedded in portable instruments. The
approach presented in this problem can be applied to many other areas requiring on-site
spectroscopic measurements.

The paper is divided into four sections. Section 2 describes the NIR spectroscopy,
details the analyzed NIR sensors, and describes the mathematical methods applied to the
NIR spectra to classify the unknown input samples according to their origins. Section 3
describes the textile samples analyzed and describes and discusses the experimental results
obtained with the different sensors. Finally, Section 4 concludes this paper.

2. Materials and Methods

This section proposes a new methodology to quickly solve a real-world problem that
can be applied on site to discriminate between samples of the same composition. The
method consists of first analyzing the feasibility of using a high-performance benchtop NIR
spectrometer coupled with appropriate statistical methods to solve the problem. Next, if
the problem can be solved using NIR technology, a screening of commercial portable NIR
sensors must be carried out. Then, the performance of the selected sensor(s) has to be tested
according to different constraints such as cost, accuracy, sensitivity, and rapid availability,
among others, using the same statistical methods. Finally, the proposed solution will be
implemented in the company.

2.1. Samples

The textile samples have a composition of 50% acrylic, 45% wool, and 5% viscose.
The acrylic yarn had two different origins (suppliers), which were identified as “Aksa”
and “Dralon”. Approximately 15,000 sweaters were woven and assembled prior to dyeing.
The problem occurred after dyeing some of the sweaters, when parts of the same sweater
appeared with different color intensities (see Figure 1). Defective sweaters could not be sold.
Therefore, a classification method has to be prepared from dyed samples, whose colors
reveal their origin (dark = “Dralon” and light = “Aksa”), in order to be able to correctly
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classify the raw sweaters before dyeing. The identification “in raw” of sweaters combining
the two origins would allow the company to dye them with softer colors (less affected by
the problem).

A set of 40 dyed samples was provided by the company (20 samples of each type,
labeled A1 to A20 and D1 to D20 for the Aksa and Dralon samples, respectively).

2.2. The Analyzed Sensors

Optical spectroscopy has been applied for decades to determine the chemical compo-
sition of different materials [26]. However, these analyses are typically performed using
expensive benchtop spectrometers, which limits the possible applications. Recently, the
need for in situ detection has forced the rapid development of portable spectral sensors
with lower costs and a smaller footprint [23,27–29], which have expanded the areas of
application. The fabrication of compact spectrometers is a major challenge, especially in
the infrared region, where chemical information is most relevant [26]. Due to the maturity
of silicon processing, significant progress has been made in the visible region and up to
1100 nm [23,28]. However, progress in integrating NIR spectrometers is more challenging.
Due to its high sensitivity in the NIR spectrum [30], indium gallium arsenide (InGaAs)
is one of the most promising candidates as a NIR sensor, among various semiconductor
materials [31].

The portable spectroscopic modules C15713 and C15714 from Hamamatsu (Hama-
matsu City, Japan) [32] are analyzed in this paper together with the NIR-Q device from
Phase Photonics (Morpeth, UK). These spectroscopic modules are based on an InGaAs
PIN photodiode array detector, a tunable filter, a built-in tungsten incandescent lamp for
reflection measurement, and a USB port for communication. The analyzed spectroscopic
modules include a MEMS-FPI (Fabry-Perot Interferometer) tunable filter that can vary
its transmission wavelength by changing the applied voltage. Specific details of these
modules are shown in Table 1. To maximize reproducibility and minimize noise, spectra
are averaged over four scans.

Table 1. Details of the portable spectroscopic modules analyzed.

Manufacturer Designation Spectral Range Resolution Built-In Lamp

Hamamatsu C15713 1550–1850 nm 20 nm Tungsten
Hamamatsu C15714 1750–2150 nm 22 nm Tungsten

Phase Photonics NIR-Q 900–1700 nm 6 nm Tungsten

In this paper, the measurements of the three portable instruments mentioned above
are compared with the measurements of a FOSS spectrometer (XDSTM OptiProbe An-
alyzer from Foss NIRSystems, Hillerød, Denmark) equipped with a fiber optical probe
for reflectance measurements. The instrument is controlled by Vision SoftwareTM. The
measurement interval ranges from 400 nm to 2499.5 nm (including visible and NIR), with
a resolution of 0.5 nm, using an average of 32 scans. The NIR ranges from 1100 nm to
2500 nm. However, we work in the 1100–2200 nm range because there is more noise beyond
2200 nm, so each spectrum consists of 2201 data points.

2.3. The Proposed Multivariate Statistical Approach

This section describes the mathematical processing of the NIR spectral data to build
the classification model.

First, the spectra of the textile samples are registered in absorbance mode, so the raw
spectral data are transformed to absorbance mode as

xabsorbance = − log10

(
x − xdark

xwhite − xdark

)
(1)
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where x is a (1,m) vector with the data provided by the NIR sensor of an input textile
sample, xdark and xwhite are the spectra of the dark and white references, respectively, and
m is the number of data points corresponding to the wavelengths considered in the NIR
spectrum.

Next, the raw spectral data is transformed using the standard normal variate (SNV)
transform, which normalizes by subtracting each point of the spectrum by its own mean
value (mean) and dividing it by its own standard deviation (std).

xabsorbance,SNV =
xabsorbance − mean(xabsorbance)

std(xabsorbance)
(2)

After applying the SNV transform, the SNV spectrum has a mean of 0 and a standard
deviation of 1. Once the SNV absorbance of each sample is calculated, the next step is to
divide the entire set of samples into two data sets, i.e., the calibration data set (also known
as the training data set) and the prediction data set, which is completed randomly in a
50–50% ratio in this paper. This strategy allows the calibration of the classification model
using the samples from the calibration set, while evaluating the performance of this model
using the samples not used in the calibration step, i.e., the samples from the prediction set.

The model is then calibrated (or trained) using the samples from the calibration set.
The classification models are based on a sequential application of three algorithms, i.e.,
principal component analysis (PCA), canonical variate analysis (CVA), and the k-nearest
neighbors (kNN) algorithm.

Figure 2 outlines the multivariate statistical methods used to classify unknown textile
samples, showing the calibration and prediction steps.
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This paper proposes to apply a combined PCA + CVA + kNN dimensionality reduction
and classification strategy. PCA and CVA are multivariate statistical methods that are
applied to reduce the dimensionality of the problem, i.e., the number of independent
variables considered, in order to facilitate the classification stage. In addition to reducing
the noise contained in the original variables, the latent variables compress the analytically
relevant spectral information into a reduced set of latent variables [4,33] obtained by linearly
combining the original variables. Finally, the kNN algorithm is the classifier used in this
problem; it classifies the unknown input samples into one of the classes predefined in the
problem by assigning a score between 0 and 1 to the sample. This is a supervised process,
as both CVA and kNN are supervised algorithms.

CVA is a powerful method for multiclass dimensionality reduction. It attempts to
compute new latent variables called canonical variates (CVs) that maximize the distances
between different datasets or classes and minimize the distances between samples belong-
ing to the same class [34], so it is specifically designed for classification purposes. CVA
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computes a number of CVs equal to the number of classes defined in the problem minus
one. Its main disadvantage is that it requires datasets with more samples than the original
variables. However, this is not the case for most classification problems based on spectral
data, where the spectrum is composed of hundreds or thousands of variables. This fact
forces the application of the unsupervised PCA dimensionality reduction algorithm to
reduce the dimensionality of the problem before applying CVA [35]. PCA attempts to
concentrate the significant information found in the spectra into a set of uncorrelated and
orthogonal latent variables known as principal components (PCs) [36]. The PCs are usually
ranked in descending order by the amount of variance explained [37]. Although PCA
calculates the same number of PCs as the number of original variables in the problem, it
retains only a reduced number of PCs [38] that explain the greatest amount of variance
(99.99% in this paper), so the remaining PCs are ignored. The application of the PCA + CVA
algorithms greatly reduces the dimensionality of the problem and calculates new latent
variables, the CVs that are optimal from a classification point of view, so that the classifier
can be applied. In this case, the widely used kNN algorithm is proposed because of its
simplicity and accurate results [34,39,40]. kNN is a supervised classifier, which means that
it is guided by a previous training process in which an “expert” has classified the training
samples into different classes, thus ensuring classification accuracy. kNN computes the
same number of normalized class membership values in the interval [0,1] as the number
of classes previously defined in the problem. A given input sample is assumed to belong
to the class associated with a membership value greater than 0.5. kNN finds the k-nearest
neighbors of the input sample in the space defined by the CVs among the different samples
in the calibration set. Next, kNN assigns k votes to the nearest neighbor class, k-1 votes to
the second nearest neighbor class, and so on, until one vote is assigned to the k-th most
distant neighbor class. Finally, all the votes are summed, and kNN assigns the analyzed
sample to the class with the most votes.

Figure 3 shows the mathematical details of the PCA, CVA, and kNN algorithms.
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Full details of these methods can be found in [3]. All computer codes were pro-
grammed by the authors of this paper in the Matlab® environment.

3. Experimental Results and Discussion

In order to build a classification model to classify the samples according to the type
of acrylic (Aksa versus Dralon), it is necessary to have enough samples of both types of
acrylic. The company provided a total of 40 samples, 20 samples of each type, which were
named A1 to A20 and D1 to D20 for the Aksa and Dralon samples, respectively.

The NIR spectra of these samples were recorded and then mathematically processed
according to the procedure described in Section 2.3. The total set of samples was then
randomly split 50–50% between the calibration and prediction sets.

3.1. Spectra Recorded by the Different NIR Instruments

The absorbance spectra of all the analyzed samples were transformed to the standard
normal variable (SNV) mode by applying the transformation described by Equation (2).

Figure 4 shows the spectra of four samples from the calibration set recorded with the
four NIR instruments.
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which were recorded with the high sensitivity FOSS spectrometer in the 1100–2200 nm 

Figure 4. Spectra of samples A1, A3, D1, and D3 of the calibration set recorded by each NIR
instrument and the instruments. (a) Spectra obtained with the FOSS laboratory spectrometer.
(b) Spectra obtained using the Hamamatsu C15713 spectroscopic module. (c) Spectra obtained
using the Hamamatsu C15714 spectroscopic module. (d) Spectra obtained using the Phase-Photonics
spectroscopic module.
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Figure 4a shows a clear overlap of the NIR spectra of Aksa and Dralon samples, which
were recorded with the high sensitivity FOSS spectrometer in the 1100–2200 nm wavelength
range. It should be noted that the fibrous composition of these two types of samples is the
same (50% acrylic, 45% wool, and 5% viscose), and the only difference between them is the
origin of the acrylic fiber. In Figure 4b–d, where the NIR spectra presented were obtained
with the portable sensors (Hamamatsu C15713, Hamamatsu C15714, and Phase-Photonics,
respectively), a clear similarity between the spectra of the two types of samples is also
observed (although their sensitivity is lower than that of the FOSS spectrometer).

The great similarity between the spectra of the Aksa and Dralon samples makes
it very difficult to distinguish them. Therefore, it is absolutely necessary to develop a
powerful and robust mathematical method to accurately and exhaustively analyze the
spectral information obtained from the different sensors in order to accurately discriminate
between the two types of samples.

3.2. Results Obtained with the Laboratory Spectrometer

Firstly, the 40 samples were recorded using the accurate and expensive laboratory
XDSTM OptiProbe Analyzer from Foss NIRSystems, which is equipped with a fiber optic
probe to perform reflectance measurements.

Figure 5 and Table 2 show the results obtained. Figure 5 shows the classification
results in the space of the unique canonical variate (CV1) resulting from the PCA + CVA
approach. It can be seen that all acrylic samples are clearly separated in the space defined
by CV1. The results presented in Table 2 show that all the samples in the prediction set are
correctly classified.
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Figure 5. Prediction results obtained with the FOSS XDSTM OptiProbe Analyzer spectrometer.

Table 2. Prediction results obtained with the FOSS XDSTM OptiProbe Analyzer spectrometer.

Prediction Samples Classification Results
Aksa Dralon

A2 1.000 0.000
A4 1.000 0.000
A6 1.000 0.000
A8 1.000 0.000
A10 1.000 0.000
A12 1.000 0.000
A14 1.000 0.000
A16 1.000 0.000
A18 1.000 0.000
A20 1.000 0.000
D2 0.000 1.000
D4 0.000 1.000
D6 0.000 1.000
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Table 2. Cont.

Prediction Samples Classification Results
Aksa Dralon

D8 0.000 1.000
D10 0.000 1.000
D12 0.000 1.000
D14 0.000 1.000
D16 0.000 1.000
D18 0.000 1.000
D20 0.000 1.000

3.3. Results Obtained with the Portable NIR MEMS-FPI C15713

The 40 samples were then recorded with the Hamamatsu C15713 MEMS-FPI portable
spectroscopic module, which is sensitive in the 1550–1850 nm spectral range.

Figure 6 shows the classification results in the space of the unique canonical variate
(CV1) resulting from the PCA + CVA approach. It is clearly seen that some acrylic samples
from Aksa and Dralon are not well separated in the space defined by CV1. The results
presented in Table 3 show 7 misclassifications out of a total of 20 prediction samples,
corresponding to a misclassification rate of 35%.
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Table 3. Prediction results obtained with the MEMS-FPI C15713 spectroscopic module.

Prediction Samples Classification Results
Aksa Dralon

A2 1.000 0.000
A4 0.000 1.000
A6 0.000 1.000
A8 1.000 0.000
A10 0.000 1.000
A12 0.000 1.000
A14 1.000 0.000
A16 1.000 0.000
A18 1.000 0.000
A20 1.000 0.000
D2 0.000 1.000
D4 0.000 1.000
D6 1.000 0.000
D8 1.000 0.000
D10 0.000 1.000
D12 0.000 1.000
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Table 3. Cont.

Prediction Samples Classification Results
Aksa Dralon

D14 0.000 1.000
D16 0.000 1.000
D18 0.000 1.000
D20 1.000 0.000

3.4. Results Obtained with the Portable NIR MEMS-FPI C15714

The 40 samples were then recorded with the portable MEMS-FPI C15714 spectroscopic
module from Hamamatsu, which is sensitive in the 1750–2150 nm spectral range.

Figure 7 shows the classification results in the space of the unique canonical variate
(CV1) resulting from the PCA + CVA approach. It is clearly seen that some acrylic samples
from Aksa and Dralon are not well separated in the space defined by CV1. The results
presented in Table 4 show 3 misclassifications out of a total of 20 prediction samples,
corresponding to a misclassification rate of 15%.
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Figure 7. Prediction results obtained with the MEMS-FPI C15714 spectroscopic module.

Table 4. Prediction results obtained with the MEMS-FPI C15714 spectroscopic module.

Prediction Samples Classification Results
Aksa Dralon

A2 1.000 0.000
A4 1.000 0.000
A6 1.000 0.000
A8 1.000 0.000
A10 1.000 0.000
A12 1.000 0.000
A14 0.000 1.000
A16 0.000 1.000
A18 1.000 0.000
A20 1.000 0.000
D2 0.000 1.000
D4 0.000 1.000
D6 0.000 1.000
D8 1.000 0.000
D10 0.000 1.000
D12 0.000 1.000
D14 0.000 1.000
D16 0.000 1.000
D18 0.000 1.000
D20 0.000 1.000
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3.5. Results Obtained by Combining the Spectra of the Devices C15713 and C15714

Finally, the spectra of each sample were recorded with the portable spectroscopic mod-
ules MEMS-FPI C15713 and C15714 from Hamamatsu, which were directly combined into
a single spectrum. This data fusion approach was applied to see if further improvements
could be achieved.

Figure 8 and Table 5 show the classification results in the space of the unique canonical
variate (CV1) resulting from the PCA + CVA approach. The results obtained clearly
show that there are still 3 misclassifications out of a total of 20 prediction samples, which
corresponds to a misclassification rate of 15%.
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Figure 8. Prediction results obtained with the combined spectra of the MEMS-FPI C15713 and C15714
spectroscopic modules.

Table 5. Prediction results obtained with the combined spectra of the MEMS-FPI C15713 and C15714
spectroscopic modules.

Prediction Samples Classification Results
Aksa Dralon

A2 1.000 0.000
A4 1.000 0.000
A6 1.000 0.000
A8 1.000 0.000
A10 0.200 0.800
A12 1.000 0.000
A14 1.000 0.000
A16 0.000 1.000
A18 1.000 0.000
A20 1.000 0.000
D2 0.000 1.000
D4 0.000 1.000
D6 0.300 0.700
D8 1.000 0.000
D10 0.000 1.000
D12 0.000 1.000
D14 0.000 1.000
D16 0.000 1.000
D18 0.000 1.000
D20 0.000 1.000
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3.6. Results Obtained with the Portable NIR-Q Device from Phase Photonics

Finally, all 40 samples were recorded using the portable NIR-Q spectroscopic module
from Phase Photonics, which is sensitive in the 900–1700 nm spectral range.

Figure 9 and Table 6 show the results obtained. Figure 9 shows the classification results
in the space of the unique canonical variate (CV1) resulting from the PCA + CVA approach.
It can be clearly seen that there is only one acrylic sample, which is not well separated in the
space defined by CV1. The results presented in Table 6 also show only 1 misclassification
out of a total of 20 prediction samples, which corresponds to a misclassification rate of 5%.
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Figure 9. Prediction results obtained with the NIR-Q spectroscopic module.

Table 6. Prediction results obtained with the NIR-Q spectroscopic module.

Prediction Samples Classification Results
Aksa Dralon

A2 1.000 0.000
A4 1.000 0.000
A6 1.000 0.000
A8 1.000 0.000
A10 1.000 0.000
A12 1.000 0.000
A14 1.000 0.000
A16 1.000 0.000
A18 1.000 0.000
A20 1.000 0.000
D2 0.000 1.000
D4 0.000 1.000
D6 0.000 1.000
D8 1.000 0.000
D10 0.000 1.000
D12 0.000 1.000
D14 0.000 1.000
D16 0.000 1.000
D18 0.000 1.000
D20 0.000 1.000

3.7. Summary of Results

Table 7 summarizes the classification results obtained with the different spectrometers
in this challenging problem. It shows that although the best results are obtained, as
expected, with the benchtop laboratory spectrometer, similar results can be obtained with
the NIR-Q instrument. The NIR-Q sensor gives better results because it covers a wider
range of wavelengths (900–1700 nm) and makes measurements with higher resolution
(6 nm instead of the ≈ 20 nm of the other two commercial portable sensors studied), offering
a more accurate spectra record. From these results, it is concluded that both spectral range
and resolution are important to achieve accurate classification results.
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Table 7. Prediction results. Summary of the results obtained with the different spectrometers.

Spectrometer Spectral Range
[nm]

Resolution
[nm]

Misclassification
Rate

Laboratory spectrometer 1100–2200 0.5 0%
MEMS-FPI C15713 1550–1850 20 35%
MEMS-FPI C15714 1750–2150 22 15%

MEMS-FPI C15713 + C15714 1550–2150 22 15%
NIR-Q 900–1700 6 5%

The results summarized in Table 7 are based on the application of the PCA + CVA + kNN
strategy, which has been shown in previous work to be close to optimal in terms of accuracy
and complexity [4,39]. The accuracy of this approach is validated by the 100% identification
accuracy achieved with the laboratory spectrometer and the 95% accuracy achieved with
the NIR-Q sensor.

A further implication of these results is that if a specific problem can be solved with a
high-sensitivity laboratory NIR spectrophotometer, it can be expected that a convenient
portable NIR sensor will also be able to solve it. Portable NIR sensors add versatility to
the technique, allowing quality control to be implemented directly on the production line
using inexpensive, easy-to-use equipment. With the integration of portable NIR sensors
and the appropriate software, an immediate interpretation of the result can be obtained.

The computational cost during the training phase is about 0.040 s, while during the
classification phase it is about 0.015 s using an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz
3.41 GHz.

4. Conclusions

In this paper, we have shown the versatility and adaptability of using NIR spectra with
further statistical processing to solve the challenges of differentiating samples not only by
composition but also by origin. Production systems usually have variables that are difficult
to control and that could affect the final quality of the product, with consequent economic
and environmental impacts. Therefore, the application of the proposed methodology will
be of great value.

The real and complex problem to be solved by a knitwear manufacturer was to identify
acrylic yarns of different origins using portable NIR sensors for on-site quality control. To
this end, three portable NIR sensors based on InGaAs PIN photodiode array detectors
were analyzed after verifying that the problem could be solved by combining NIR with
appropriate statistical methods. The results show that one of the portable instruments
analyzed can correctly classify acrylic yarns of different origins with an accuracy of 95%.
This solution helped the company solve the problem and save time, money, and defective
material. The results presented in this paper show that spectral range and resolution are
important factors to consider when selecting sensors, as the sensors with the wider spectral
range and finest resolution produce better classification results.

It is also concluded that each problem requires careful work in the development of the
method. First, the spectrum of the samples to be classified needs to be acquired with the
most sensible NIR spectrometer. Next, the most suitable portable sensor must be selected,
since this type of sensor does not record the full NIR spectrum of the samples. Finally, it is
necessary to apply robust classification methods that provide reproducible results and low
misclassification rates.
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