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Abstract: The marine engine is a complex-structured multidisciplinary system that operates in a 

harsh environment involving high temperatures and pressures and gas/fluid/solid interactions. 

Many malfunctions and faults can occur to the marine engine and efficient condition monitoring is 

critical to ensure the expected performance. In this paper, a marine engine test rig is established and 

its process data are recorded, including various temperatures and pressures. Two data-driven mod-

els, i.e., principal component analysis and the sparse autoencoder, and a physics-based model are 

applied to the marine engine for two classic faults, i.e., lubrication oil filter blocking and cylinder 

leakage. Comparative studies and discussions are conducted regarding their performance in terms 

of anomaly detection and fault isolation. The data points collected for the filter blocking fault are 

generally two times higher than the fault thresholds set by the data-driven models. In the physics-

based model, it is observed that the lubrication oil pressure falls from the predicted 3.2–3.8 bar to 

around 2.3 bar. For the cylinder leakage fault, the fault test data are nearly four times higher than 

the thresholds in the data-driven models. The exhaust gas temperature of the leaked cylinder falls 

from an estimated 150–200 °C to about 100 °C. The transferability and interpretability of these mod-

els are finally discussed. The findings of the present study offer insights into the two types of models 

and can provide guidance for the effective condition monitoring of marine engines.  
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1. Introduction 

Marine engines are crucial components in various ships and provide the power re-

quired. However, many faults can occur in marine engines due to their extreme working 

environments and complicated structures, as well as the gas/fluid/solid coupling nature. 

Although different types of process data can be monitored and used for status assessment, 

online novelty detection and fault diagnosis are awkward in practice and it is often diffi-

cult to accurately locate fault positions. As a result, massive losses can occur due to the 

late detection of typical malfunctions and delayed maintenance [1–3].  
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The modern approaches to the condition monitoring of marine engines can be di-

vided into physics-based modeling methods [4–6] and data-driven machine learning 

models [7–9]. Yan et al. [10] proposed to use tribological information for the effective mon-

itoring of the abnormal wear of critical components in marine engines. A new online re-

mote health monitoring method and a facility set were constructed, which experimentally 

proved to be useful for industrial applications. Wang et al. [11] established an integrated 

system-level early fault identification and isolation methodology based on the bond graph 

and applied the method to a marine engine simulator subject to lubrication system issues. 

In fact, due to various errors and surface roughness in components, non-stationary work-

ing conditions, and noise in measurement [12], there are inevitable uncertainties in the 

engine’s dynamic characteristics and the collected data sets [13,14]. A Bayesian inference 

model was proposed for the uncertainty quantification and performance prognostics of 

marine engines based on probability distributions [15]. The operational data sets from a 

marine engine were tested and the results showed promising potential regarding the ap-

plicability of the method for online health monitoring. Zhang et al. [16] delivered a sys-

tematic review of health condition monitoring as an efficient maintenance strategy for the 

prognostics and health management of marine systems and equipment. Wang et al. [17] 

adopted variational mode decomposition to assist the Rihaczek time–frequency represen-

tation. The physics-based health monitoring methods are fundamental approaches to nov-

elty detection in marine engines and their major advantage is that the mechanism behind 

a fault is clear and can be derived from the practical working principles.  

Nowadays, data-driven models are introduced into the health monitoring of diesel 

engines, benefiting from the rapid development of modern data science. These types of 

models exploit the evolution of data sets and do not rely on the mechanisms of the physics 

behind them, showing their black-box nature and versatility. Xi et al. [18] proposed inde-

pendent component analysis for the feature extraction and visualization of marine diesel 

engines. Comparisons to other data-driven methods also showed the superiority of the 

proposed approach. The long short-term neural network [19] combined with the attention 

mechanism were employed to predict the exhaust air temperature of a marine diesel en-

gine. The residual between the predicted and measured values was applied to a process 

control method to generate the fault threshold. Essentially, machine learning algorithms 

can be classified into supervised and unsupervised ones depending on whether there are 

labels attached to the training data. Supervised methods need pre-defined data set labels 

to train the models for maximum performance. However, this is not easy in engineering 

scenarios. On the other hand, unsupervised algorithms attempt to learn the patterns in 

data sets and cluster them without the pre-specification of labels, which is more conven-

ient in general cases in practice. Principle component analysis (PCA) is a popular tool in 

novelty detection for marine engines [20,21]. Zhong et al. [22] used a semi-supervised PCA 

for fault identification in marine diesel engines, which included labeled and unlabeled 

data at the same time. Results indicate that the method is robust to false alarms. A com-

bined principle component analysis and back propagation (PCA-BP) neural network 

scheme was proposed for intelligent fault diagnosis [23], in which PCA was used to ana-

lyze the thermal fault, and the back propagation (BP) neural network was trained to iden-

tify the failure mode. The PCA itself can act as a dimension-reduction tool, projecting 

massive data to low-dimensional spaces, enabling more efficient anomaly detection. An-

other popular tool is the sparse autoencoder (SAE), which is a variant of the autoencoder 

and can be viewed as a neural network [24]. In the method, the overfitting issue is dealt 

with by setting the sparsity constraint on hidden units. Qu et al. [25] proposed a predictive 

model based on the echo state network and deep autoencoder. The relative error and root 

mean square of the established model were found to be lower than in other approaches. 

In the context of missing sensor data, Velasco-Gallego and Lazakis [26] analyzed the per-

formance of the variational autoencoder. The common imputations were comparatively 

studied for a high determination coefficient. 
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This paper focuses on the applications and comparative studies of both the physics-

based models and data-driven algorithms in marine diesel engine condition monitoring. 

Their performance and accuracy in novelty detection and fault isolation are comparatively 

studied for two typical faults, i.e., a lubrication filter blockage and cylinder leakage. It 

aims to reveal the feasibility and interpretability of different types of health monitoring 

methods for marine engines, which will enable assessments of these methods in practical 

applications to a marine system, closer to real scenarios. The results can aid method selec-

tion, application assessment, and fault simulations. In addition, the observations of the 

present study can help to identify the bottlenecks of marine engine condition monitoring 

and guide future studies. The rest of this paper elaborates on the theories of data-driven 

models and physics-based models, experimental setup descriptions, and results analyses 

and discussions. The merits and drawbacks of both types of models are summarized.  

2. Theory of Data-Driven Models 

This section describes the theory of two unsupervised data-driven models for anom-

aly detection and health indicator extraction serving as a fault threshold.  

2.1. Principle Component Analysis 

PCA [27] utilizes an orthogonal transformation, projecting the correlated data set 

onto a set of independent orthogonal bases. From the algebraic point of view, this orthog-

onal transformation makes the covariance matrix of data vectors diagonal. Geometrically, 

it is represented by a change from the old coordinate system to another orthogonal coor-

dinate system, directing it to the most orthogonal directions scattered among the data 

points. Thus, it actually serves as a dimension-reduction scheme. According to this theory, 

the correlation coefficient between two variables Xi and Xj can be calculated as 

𝑟𝑖𝑗 =
∑ |(𝑋𝑘𝑖 − 𝑋�̅�)||(𝑋𝑘𝑗 − 𝑋�̅�)|
𝑛
𝑘=1

√∑ (𝑋𝑘𝑖 − 𝑋�̅�)
2𝑛

𝑘=1 ∑ (𝑋𝑘𝑗 − 𝑋�̅�)
2𝑛

𝑘=1

 
(1) 

where the over bar denotes the mean value of a variable and n is the number of samples. 

𝑋𝑘𝑖 represents the k-th sample of the i-th feature. Then, the correlation matrix can be ob-

tained by 

𝐑 = [

𝑟11 ⋯ 𝑟1𝑝
⋮ ⋱ ⋮
𝑟𝑝1 ⋯ 𝑟𝑝𝑝

] (2) 

where p is the number of features. The eigenproblem is  

𝐑𝐮 = λ𝐮 (3) 

where λ and 𝐮 are the eigenvalue and eigenvector. Based on the eigensolutions, the ob-

tained eigenvectors can be written as 

𝐮𝟏 = [

𝑢11
𝑢21
⋮
𝑢𝑝1

], 𝐮𝟐 = [

𝑢12
𝑢22
⋮
𝑢𝑝2

], ⋯ , 𝐮𝒑 = [

𝑢1𝑝
𝑢2𝑝
⋮
𝑢𝑝𝑝

] (4) 

Therefore, the principal components can be expressed by 

{
 

 
𝑦1 = 𝑢11𝑋1 + 𝑢12𝑋2 +⋯+ 𝑢1𝑝𝑋𝑝
𝑦2 = 𝑢21𝑋1 + 𝑢22𝑋2 +⋯+ 𝑢2𝑝𝑋𝑝

⋮
𝑦𝑝 = 𝑢𝑝1𝑋1 + 𝑢𝑝2𝑋2 +⋯+ 𝑢𝑝𝑝𝑋𝑝

. (5) 
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2.2. Sparse Autoencoder Model 

The SAE [28] avoids directly copying the input from the input layer to the hidden 

layer, as often done in traditional autoencoders, and extracts the hidden distribution char-

acteristics of data based on multi-layer nonlinear transformations. The sparse features are 

obtained by the sparse penalty term. Thus, the SAE is efficient and has more promising 

application possibilities. In fact, the SAE can be regarded as a special neural network with 

equal numbers of inputs and outputs, as shown in Figure 1. In the diagram, a circle indi-

cates a neuron. The data transmitted by the input layer are encoded and reconstructed in 

the hidden layer, transforming the high-dimensional input into low-dimensional encod-

ing characteristic vectors. Thus, there is an encoder connecting the input layer and hidden 

layer and a decoder linking the hidden layer and output layer. For an unlabeled sample 

set {𝑥1, 𝑥2, … , 𝑥𝑛}, the sigmoid function is chosen as the neuron activation function. 

Take a 𝑛 × 1 sample vector as the input, and define the i-th neuron activation amount 

𝑎𝑖
(2)

 as 

𝑎𝑖
(2)
= 𝑓(∑𝑊𝑖𝑗

(1)𝑥𝑗 + 𝑏𝑖
(1)),

𝑛

𝑗=1

 (6) 

where 𝑥𝑗  is the j-th neuron value in the input layer, 𝑊𝑖𝑗
(1)

 represents the connection 

weight between the j-th neuron and the i-th neuron in the hidden layer, n is the number 

of neurons in the input layer, 𝑏𝑖
(1)

 denotes the bias of the input layer i-th neuron, and f 

has the following expression: 

𝑓 (𝑧) =
1

1 + 𝑒−𝑧
. (7) 

 

Figure 1. Structure of the sparse autoencoder. 

The hidden layer extracts the data features and the feature expression can minimize 

the errors in reconstructions. The feature expression in the hidden layer can be described 

as 
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ℎ𝑊,𝑏(𝑥) =

[
 
 
 
 𝑎1
(2)

𝑎2
(2)

…

𝑎𝑆2
(2)
]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑓(∑𝑊1𝑗

(1)
𝑥𝑗 + 𝑏1

(1)

𝑆1

𝑗=1

)

𝑓(∑𝑊2𝑗
(1)
𝑥𝑗 + 𝑏2

(1)

𝑆1

𝑗=1

)

…

𝑓(∑𝑊𝑆2𝑗
(1)
𝑥𝑗 + 𝑏𝑆2

(1)

𝑆1

𝑗=1

)
]
 
 
 
 
 
 
 
 
 

, (8) 

where ℎ𝑊,𝑏(𝑥) is the input layer feature matrix and 𝑆2 is the number of neurons in the 

hidden layer. To minimize the reconstruction errors, a sparsity penalty function is intro-

duced: 

𝐽𝑠 (𝑊, 𝑏) = [
1

𝑚
∑

1

2
||ℎ𝑊,𝑏(𝑥

(𝑖)) − 𝑥(𝑖)|| 2
𝑚

𝑖=1

] +
𝜆

2
∑∑∑(𝑊𝑗𝑖

(𝑙)
)2

𝑆𝑙+1

𝑗=1

𝑆𝑙

𝑖=1

𝑛−1

𝑙=1

+ 𝛽∑𝐾𝐿(𝜌||𝜌𝑖)

𝑆2

𝑖=1

. (9) 

where the first term 
1

𝑚
∑

1

2
||ℎ𝑊,𝑏(𝑥

(𝑖)) − 𝑥(𝑖)|| 2𝑚
𝑖=1  denotes the mean squared error, and it 

is used to minimize the error between the input data and the output data. The second term 
1

2
∑ ∑ ∑ (𝑊𝑗𝑖

(𝑙)
)2

𝑆𝑙+1
𝑗=1

𝑆𝑙
𝑖=1

𝑛−1
𝑙=1  represents the regularization and this term is used to avoid over-

fitting. The last term ∑ 𝐾𝐿(𝜌||𝜌𝑖)
𝑆2
𝑖=1  in the equation is called sparsity regularization, and 

it imposes a sparsity constraint on the hidden units. 𝜆 is the coefficient for the regulari-

zation term. 𝛽 is the coefficient for the sparsity regularization term. 𝐾𝐿(𝜌||𝜌𝑖) measures 

the difference between two distributions, and this term can be given by the Kullback–

Leibler divergence function. 

2.3. Status Indicator for Machine Health 

The Mahalanobis distance (MD) [29–31] synthesizes all the monitored variables and 

generates a threshold to determine the health status of the marine engine during the train-

ing process. It is a unitless measure with correlations between variables being included. 

Its advantage is that a single distance quantity is provided for multi-dimensional data 

sets. The Mahalanobis distance is calculated as 

𝑀𝑑𝑖 = √((𝑌𝑖 − 𝑌�̂�) − �̅�) 𝑆
−1((𝑌𝑖 − 𝑌�̅�) − �̅�)

𝑇 , (10) 

where 𝑌𝑖 represents the i-th feature, 𝑌�̂� is a reconstruction of the feature, and �̅� and S 

are the mean and covariance of the samples.  

Next, the fault detection threshold 𝑀𝑑𝑡ℎ can be obtained from the probability den-

sity function (PDF) of ℎ for a given confidence level 𝛼 by solving Equation (11): 

𝑃(ℎ < 𝑑) = ∫ 𝑝(ℎ)𝑑ℎ = 𝛼
𝑑

−∞

, (11) 

where 𝑝(ℎ) is the PDF function of ℎ. The kernel density estimation (KDE) method is ap-

plied for distribution fitting. The KDE method is a well-established approach in statistical 

distribution fitting and has been successfully applied to the field of process monitoring 

and fault detection. According to the KDE method, 𝑝(ℎ) can be written as 

𝑝(ℎ) =
1

𝑁𝜎
∑𝐾(

ℎ − ℎ𝑖
𝜎

𝑁

𝑖=1

), (12) 

where 𝑁 is the total number of ℎ. 𝐾(⋅) is the kernel function and 𝜎 is the bandwidth. 

The selection of the optimal value for 𝜎 is described in [32]. Here, the Gaussian kernel 

[28] is used. 
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3. Physics-Based Multivariate Models 

The physics-based models for monitored variables are linked with the working status 

of the marine engine. They rely on the inherent mechanism analysis of different faults to 

determine a group of dependent variables. Often, the grouped variables are key indicators 

of a specific fault. In general, the multivariate model for a monitored variable can be ex-

pressed by a least-term r-order surrogate function as 

𝐻(𝑥1, 𝑥2, ⋯ , 𝑥𝑘) = 𝜑0,…,0 + 𝜑1,0,…,0𝑥1 + 𝜑0,1,0…,0𝑥2 +⋯+ 𝜑0,…,0,1𝑥𝑘, +𝜑1,1,0,…,0𝑥1𝑥2 +⋯+𝜑1,1,0,…,0𝑥𝑚
2 +⋯

+ 𝜑𝑟,0,…,0𝑥1
𝑟 +⋯+ 𝜑0,…,0,𝑟𝑥𝑘

𝑟 , 
(13) 

where 𝑥1, 𝑥2, ⋯ , 𝑥𝑘 are the variables used to build the model, and the number of variables 

is k; r represents the order of the surrogate model function; 𝜑𝑖1,𝑖2,⋯,𝑖𝑘 is the model coeffi-

cient, respectively. To reduce the computational effort, the number of terms in the model 

function is kept to the minimum, which is realized by setting 0 ≤ 𝑖1 + 𝑖2 +⋯+ 𝑖𝑘 ≤ 𝑟.  

The unknown model coefficient vector 𝜑 is determined by the nonlinear regression 

based on the least-square technique using the baseline data. When new data are collected, 

they will be evaluated via the surrogate function by comparing the predicted value with 

the measured one. Taking a variable p as an example, this process can be described by 

�̂� = 𝐻𝑝(�̃�1, �̃�2, ⋯ , �̃�𝑘), (14) 

𝑅𝑒(𝑝) = 𝑝 − �̂�,  (15) 

where 𝐻𝑝  represents the multivariate model for variable p, ∙̃  denotes the measured 

value, and ∙ ̂ denotes the predicted value, respectively. Re (p) is the residual between the 

model prediction and measurement for variable p. The fault threshold, 𝛾𝑝, is generated in 

the prediction step by the confidence interval measure. Thus, the health status of the var-

iable can be determined by 

𝑅𝑒(𝑝) = 𝑝 − �̂�,  (16) 

To avoid false alarms, a variable is diagnosed as abnormal when consecutive data 

points fall outside of the predicted confidence interval or the residual exceeds the permit-

ted limits. 

4. Marine Engine Test Rig 

A marine engine test rig is set up, as demonstrated in Figure 2. The marine power 

system has a Beta 14 diesel engine, a gearbox, and a propeller immersed in water. It can 

be used to simulate many typical faults in a marine power system. The temperatures and 

pressures of the internal and external coolants at the inlet and outlet, lubrication systems, 

and gearbox are measured. The average rotating speed of the engine is calculated by the 

engine parameters and flywheel instantaneous angular speed. The water pressure in the 

water tank is recorded as an indicator of the load level, which is adjusted by a valve on 

the tank. Thus, the load level on the propeller and the rotating speed of the engine can be 

used to reflect the key working condition parameters. A complete list of monitored pro-

cess data and the descriptions are provided in Table 1. The sensor placement and sensor 

models with their sensitivities are exhibited in Figure 3. These data can satisfy the require-

ments in observing the running status and health condition of the marine power system. 

The acquisition rate for data collection is 1 Hz, i.e., there is one data point for each variable 

per second. The experimental tests are completed by using in-house software, including 

main modules such as the data connection, history analysis and visualization, measure-

ment parameter setting, and further data processing. Data processing for the results in 

this study is implemented in Matlab. Baseline testing is conducted for many combinations 

of rotating speeds and load levels to enable sufficient training of the models. In the present 

study, the lubrication filter blockage and cylinder leakage faults in the marine engine are 

investigated based on the previously described methods.  
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Figure 3. Monitored variables in the marine system. 

Table 1. Variables monitored in the test rig. 

No. Short Form Detail 

1 Pressure Intake Air Intake air pressure of engine 

2 Pressure Coolant In Internal coolant water pressure at inlet 

3 Pressure Coolant Out  Internal coolant water pressure at outlet 

4 Pressure Cy1 Exhaust Exhaust air pressure of cylinder 1 

5 Pressure Cy2 Exhaust Exhaust air pressure of cylinder 2 

6 Pressure Fuel Supply Pressure of fuel supply to engine 

7 Pressure Ex Water In External coolant water pressure at inlet 

Beta 14 Engine 

 
Water Tank 

Sensor Power 

Gearbox 

Propeller 

Fuel 
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8 Pressure Ex Water Out External coolant water pressure at outlet 

9 Pressure Lub Oil  Lube oil pressure  

10 Pressure Water Tank Water pressure in water tank/load level 

11 Engine Speed RPM Averaged rotating speed of shaft 

12 Temperature Gearbox Gearbox housing temperature 

13 Temperature Bushing Journal bearing (before propeller) oil temperature 

14 Temperature Coolant in Internal coolant water temperature at inlet 

15 Temperature Coolant Out Internal coolant water temperature at outlet 

16 Temperature Cy1 Exhaust Exhaust air temperature of cylinder 1 

17 Temperature Cy2 Exhaust  Exhaust air temperature of cylinder 2 

18 Temperature Ex Water In External coolant water temperature at inlet 

19 Temperature Ex Water Out  External coolant water temperature at outlet 

20 Temperature Lub Oil  Lube oil temperature 

5. Case Studies 

5.1. Filter Blockage 

The lubrication oil filter keeps the oil clean and ensures the lubrication performance 

to extend the life of critical friction pairs. In practice, external elements, such as water, dust 

and particles, and oil oxide, will cause the blocking of the filters. When a filter blockage 

fault happens, insufficient lubrication oil is circulated into the engine, decreasing the per-

formance of the marine engine. A direct consequence of filter blocking is a drop in the 

lubrication oil pressure. Two strategies are used to simulate this fault on the marine engine 

test rig. As can be seen in Figure 4, a circular device is designed to guide the oil flow and 

provide space to control the oil volume. The oil will circulate from the cooler into the 

circular passage and then enters the engine from the central hole. On the one hand, the 

circular holes on the cover are partially blocked manually. On the other hand, the hole 

size at the center is adjusted and reduced by additional bolts. The oil pressure is measured 

after the clog and the tests are conducted at around 1300 RPM. 
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Figure 4. Filter blockage simulation. 

Figure 5 shows the fault detection results using the PCA- and SAE-based methods 

when the machine runs under healthy conditions. As can be seen, the fault detection mod-

els believe that the machine works normally, because almost all the points are below the 

thresholds. The training process using the baseline data by PCA (upper figure) and the 

fault diagnosis process (lower figure) using the fault simulation test data are shown in 

Figure 6. A fault threshold is generated in the training process and data points with an 

MD index higher than the threshold are deemed abnormal. It is observed that 99% of the 

data collected in the health status are treated as normal, while the remaining 1% are 

treated as abnormal, bearing in mind that there still can be extreme points and uncertainty 

during normal conditions. Figure 6 suggests that the diagnosis process has successfully 

identified anomalies when the filter blockage fault happens, evidenced by the fact that all 

fault data points are above the threshold line. The Q-statistic method is employed to in-

spect the contributions of variables in the detection process and the contribution map is 

plotted in Figure 7. Furthermore, the residual map of all variables is plotted in Figure 8, 

in which the sign of the residual of a variable indicates whether the variable is higher or 

lower than normal. It can be noticed from Figure 7 that the first three major contributors 

in the PCA model for the diagnosis of the filter blockage fault are the external coolant 

water pressure at the outlet, the averaged engine rotating speed, and the internal coolant 

water temperature. Figure 8 shows that the residual for the lubrication oil pressure is pos-

itive, suggesting that the measured values are higher than the predicted values. It can be 

concluded that the PCA model has detected the filter blockage fault and can inform users 

that the marine engine is abnormal. However, neither the contribution map nor the resid-

ual map provides the correct classification of variable evolutions. In other words, the PCA 

model can detect novelties but is incapable of isolating the filter blockage fault. 
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Figure 5. Anomaly detection results when the machine runs under healthy conditions based on the 

PCA and SAE methods. 

 

Figure 6. Training and anomaly detection process for filter blockage based on the PCA. 
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Figure 7. Contribution map for filter blockage fault based on the PCA. 

 

Figure 8. Residual map for filter blockage fault based on the PCA. 

The training and detection process for the filter blockage fault using the SAE model 

is demonstrated in Figure 9. The MD indices for fault data points are obviously higher 

than the threshold in the SAE model, showing that the SAE method detects the abnormal-

ity in the marine engine system. On this point, the SAE has a similar ability to PCA. The 

contribution map and residual map of the SAE model for the filter blockage fault are given 

in Figures 10 and 11. From Figure 11, it is found that the residual for the lubrication oil 

pressure is negative, meaning that the measured data are lower than the predicted value, 

which is consistent with reality and proves that the SAE outperforms the PCA in this re-

gard. However, as can be seen from Figure 10, the lubrication oil pressure does not appear 

either in the first three major contributors in the SAE model, which are the external coolant 
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water pressure at the inlet, the internal coolant water temperature at the inlet, and the 

exhaust air temperature of the cylinders. Thus, the SAE model is able to detect the filter 

blockage and reveals the drop in the lubrication oil pressure. However, it cannot accu-

rately isolate the filter blockage fault in the marine engine. The above results reflect a com-

mon issue in data-driven models, i.e., poor interpretability. These methods use pure data 

sets and explore their patterns, and do not rely on the physics of the marine engine, which 

leads to contribution analysis results that are unreasonable. 

 

Figure 9. Training and anomaly detection process for filter blockage based on the SAE. 

 

Figure 10. Contribution map for filter blockage fault based on the SAE. 
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Figure 11. Residual map for filter blockage fault based on the SAE. 

In physics-based modeling, the average rotating speed and load level are used as 

working condition parameters, i.e., other variables are deemed to be dependent on these 

two parameters. In this regard, all the monitored variables have their own models. Simi-

larly, the baseline data are used to train the models and the data collected for fault simu-

lation tests are then evaluated by the models to check whether any novelty occurs. For the 

filter blockage fault, the lubrication oil pressure is the most important quantity. The train-

ing and diagnosis process based on its physics-based model is plotted in Figure 12, where 

dashed lines in different colors indicate the model’s predicted 99% confidence intervals, 

while solid lines plot the measured data. It is observed from the results that the measured 

lubrication oil pressure is below 2.5 bar, while the predicted band is around 3.2–3.7 bar. 

The values are significantly lower than the predicted confidence interval, suggesting the 

fault status of the marine engine. Other monitored variables fall within their respective 

confidence intervals, indicating that they are healthy. For brevity, the results are not pre-

sented here. From the above analysis, it can be found that the physics-based monitoring 

involves mechanism inference before the diagnosis and the filter blockage fault is success-

fully isolated. Moreover, the evolution characteristics agree with the principles of the ma-

rine engine. Compared with the PCA and SAE models, the physics-based models are more 

accurate in isolating fault types as they all identified the anomalies.  
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Figure 12. Training and anomaly detection process for filter blockage using the physics-based 

model: dashed lines—predicted 99% confidence intervals; solid lines—measured data. 

5.2. Cylinder Leakage 

The cylinder leakage fault refers to the leakage of gas in the cylinder and can be 

caused by the loosening of the valve and fuel injector seal, wear of the piston ring, cylinder 

liner and piston wear, and cylinder pad damage. It will affect the power generated by the 

engine and the lubrication oil consumption and produce more harmful particles. To sim-

ulate the cylinder leakage fault, grooved bolts are designed to allow leakage from the cyl-

inders. The specimen is then installed to replace the original bolt in cylinder 2, as shown 

in Figure 13. The test for fault conditions is carried out for the marine engine under a 

rotating speed of around 1600 rpm. The same data sets are used for the data-driven mod-

els and physics-based models for fault detection and isolation.  
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Figure 13. Cylinder leakage simulation. 

The training and fault diagnosis process for the cylinder leakage fault based on the 

PCA model is given in Figure 14. The same strategy as in the previous subsection, where 

1% of the healthy data are deemed abnormal, is used for the training. Any red cross mark-

ers suggest a fault data point. All the points above the threshold line are diagnosed as 

faulty. It can be noticed that the fault status of the marine engine with the cylinder leakage 

fault is secured by the PCA model, evidenced by the data points being higher than the 

threshold. Figures 15 and 16 plot the contribution map and residual map for monitored 

variables based on the Q-statistic method. It is found that the identified first three varia-

bles that contribute to the detection are the lubrication oil temperature, the internal cool-

ant water pressure at the inlet, and the gearbox temperature. The results are unreasonable 

according to the physics of the marine engine, except for the first contributor. The residual 

of the leaked cylinder exhaust air temperature is negative, indicating that its measured 

values are lower than normal values. This is natural due to the fault implemented. The 

residual of the lubrication oil temperature is negative as well. However, this result does 

not agree with the fault mechanism of the cylinder leakage. Therefore, the PCA model 

again can only detect the fault status of the system, while it cannot isolate the cylinder 

leakage fault.  
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Figure 14. Training and anomaly detection process for cylinder leakage fault based on the PCA. 

 

Figure 15. Contribution map for cylinder leakage fault based on the PCA. 
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Figure 16. Residual map for cylinder leakage fault based on the PCA. 

Based on the SAE model, the training and fault detection results are plotted in Figure 

17. Again, it is evident that the malfunctions of the marine engine are identified since all 

the measured data points exceed the fault threshold line. To further clarify the contribu-

tions of variables in the model, the contribution map and residual map are shown in Fig-

ures 18 and 19. Apparently, the order of major contributors in detecting anomalies is the 

interval coolant water pressure, the lubrication oil pressure, and the lubrication oil tem-

perature. The residual of the leaked cylinder exhaust air temperature is negative and that 

of the lubrication oil temperature is positive. Therefore, the leaked cylinder exhaust air 

temperature drops from the predicted value and the lubrication oil temperature is in-

creased, which is consistent with the physical principles of the marine engine. Thus, it is 

safe to conclude that the SAE model has successfully detected the fault and sorted out the 

variable evolutions correctly. However, the variable contribution of the leaked cylinder 

exhaust air temperature is not the largest, causing difficulties in isolating the fault type. 

From the above discussion, it is clear that the SAE and PCA can both report abnormalities 

of the marine engine regarding the cylinder leakage fault. The SAE predicts more accurate 

variable contributions than the PCA, while both of them fail to predict the fault type. 
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Figure 17. Training and anomaly detection process for cylinder leakage fault based on the SAE. 

 

Figure 18. Contribution map for cylinder leakage fault based on the SAE. 
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Figure 19. Residual map for cylinder leakage fault based on the SAE. 

The training and diagnosis process based on the physics-based model is exhibited in 

Figures 20–22. It can be observed that the exhaust air temperature of the leaked cylinder 

falls below the predicted 99% confidence interval significantly, reflecting the malfunctions 

in cylinder 2’s combustion. On the contrary, the exhaust air temperature of cylinder 1 is 

normal as the measured data are within the confidence interval. Moreover, the lubrication 

oil temperature is higher than the predicted range. These results agree with the fault 

mechanism of the cylinder leakage. Thus, the physics-based model can detect and isolate 

the cylinder leakage fault, as well as identify the fault location. From this point of view, 

the physics-based model is superior in isolating faults compared with the data-driven 

models, which can produce results with poor interpretability. The physics-based models 

are not intelligent or convenient enough compared with the data-driven models in terms 

of transferability, i.e., the physics-based models vary between engines.  

 

Figure 20. Training and anomaly detection process for cylinder leakage fault using the physics-

based model for exhaust gas temperature of cylinder 1. 

 

Figure 21. Training and anomaly detection process for cylinder leakage fault using the physics-

based model for exhaust gas temperature of cylinder 2. 
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Figure 22. Training and anomaly detection process for cylinder leakage fault using the physics-

based model for lubrication oil temperature. 

6. Conclusions 

In the present work, comparative studies on the condition monitoring and fault de-

tection of a marine engine are carried out based on unsupervised data-driven models and 

physics-based models. The lubrication oil filter blockage and cylinder leakage faults are 

investigated regarding the performance of both types of models. It is found from the re-

sults that the two categories of models can effectively detect abnormalities in the marine 

engine. The data-driven models classify the data points for faults to be 2–4 times higher 

than the thresholds. The physics-based model shows a sharp drop in the lubrication oil 

pressure from a confidence interval with a lower limit larger than 3 to 2.3 bar in the filter 

blockage fault, and a decrease of about 50 °C in the leaked cylinder exhaust gas tempera-

ture is detected in simulating the cylinder leakage fault. In the latter, the lubrication oil 

temperature also shows a value about 20 °C higher than the predicted upper limit of the 

99% confidence interval. The sparse autoencoder model predicts more accurate critical 

variable residual maps than the principal component analysis. However, they cannot 

identify the most significant contributors to faults and fail to isolate the faults. The phys-

ics-based model works well in detecting novelty and isolating faults. It can be concluded 

that the unsupervised data-driven models have excellent transferability, while they are 

prone to generating some results that have poor interpretability because they rely solely 

on data sets and are independent of the physics of the marine engine. On the other hand, 

the physics-based model shows results that are easy to interpret, but they are not trans-

ferable among different systems. The results and discussion in this paper provide a refer-

ence for the condition monitoring of marine engines and future directions for more accu-

rate fault detection.  
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