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Abstract: Based on data-driven and mixed models, this study proposes a fault detection method
for autonomous underwater vehicle (AUV) rudder systems. The proposed method can effectively
detect faults in the absence of angle feedback from the rudder. Considering the parameter uncertainty
of the AUV motion model resulting from the dynamics analysis method, we present a parameter
identification method based on the recurrent neural network (RNN). Prior to identification, singular
value decomposition (SVD) was chosen to denoise the original sensor data as the data pretreatment
step. The proposed method provides more accurate predictions than recursive least squares (RLSs)
and a single RNN. In order to reduce the influence of sensor parameter errors and prediction
model errors, the adaptive threshold is mentioned as a method for analyzing prediction errors.
In the meantime, the results of the threshold analysis were combined with the qualitative force
analysis to determine the rudder system’s fault diagnosis and location. Experiments conducted at sea
demonstrate the feasibility and effectiveness of the proposed method.

Keywords: autonomous underwater vehicle (AUV); recurrent neural network (RNN); singular value
decomposition (SVD); adaptive threshold method; qualitative force analysis; fault diagnosis

1. Introduction

The development of autonomous underwater vehicles (AUVs) over the past three
decades has exhibited a high security, high controllability, and low cost [1]. AUVs are
utilized extensively in hydrological surveys, seabed surveys, environmental assessments,
and other fields today. Due to the complexity of and variation in the circumstances, it is
difficult for AUVs to avoid all faults caused by events or the AUV itself [2]. As the primary
source of motion control for AUVs, excluding the thrusters, the rudder is also the leading
source of AUV malfunctions. In the event of rudder defects, the motion control of AUVs
is compromised. Therefore, detecting rudder failure is critical to improving the safety
of AUVs.

In recent years, the methods for detecting AUV faults have primarily incorporated
three aspects: signal processing, an analytical model, and a data-driven model [3]. En-
hanced fractal features integrated with the wavelet decomposition identification method
were proposed for AUVs with a thruster fault, and the time-domain and frequency-domain
data were utilized to identify thruster malfunctions [4]. In order to address the issue that
there is no useful feature in the frequency domain, Yu et al. [5] proposed a new method
for calculating the weak fault severity of thrusters’ features. Maleki et al. [6] devised the
discrete wavelet transform as a method for monitoring machine vibrations and employed
the DWT-FFT signal processing method to detect the fault of the rotating shaft. Signal
processing techniques are widely utilized in rotating machinery fault detection [7], but,
for AUVs, the signal processing technique is impacted by random ocean currents and
intense measurement noise [8]. After signal processing, it is difficult to distinguish the fault
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feature from the disturbance feature for a weak fault [9]. As a result, the issue of incorrect
diagnosis arises.

The analytical model-based implementation is relatively simple. Sun et al. [10] devel-
oped a fault diagnosis (FD) scheme based on a Gaussian particle filter (PF) and demon-
strated the practicability and validity of the developed method for estimating the AUV
failure model and motion state. In their study, Lv et al. [11] proposed a fault-tolerant control
(FTC) method integrated with thrust allocation based on the sliding mode theory to reduce
the error caused by thruster faults when using a conventional sliding mode controller. In
order to solve the unknown effects of multiple autonomous underwater vehicles (AUVs)
system actuator failures, Xu et al. [12] designed a fault-tolerant control method based on
extended state observers (ESOs) and an adaptive strategy. Abdollahi [13] established a
method that decouples the entire system into two subsystems and designed two indepen-
dent sliding mode observers (SMOs) to estimate sensor and actuator faults for correspond-
ing subsystems. A particle filter (PF)-based robust navigation system with FD was designed
for an underwater robot [14]. A method for fault localization was proposed that calculated
the pole-to-pole voltage as diagnostic variables and designed an error-based threshold [15].
Chu et al. [16] proposed an observer-based fault detection method for magnetically coupled
undersea thrusters. Yin et al. [17] designed an FD method based on the current observer
that used fault residuals to detect and locate faults and an adaptive threshold to reduce
error interference. Due to the complexity of the ocean environment and other factors, it is
difficult to create an accurate model [18]. In contrast, the model-based method is sensitive to
system parameters and dependent on the traditional experience threshold, which reduces
its robustness, and it also has stricter control system requirements [19].

The data-driven fault diagnosis methods do not require models. Compared to tra-
ditional model-based diagnosis, this method significantly reduced the time required for
diagnosis and increased efficiency. An example of using recurrent neural networks (RNNs)
is given by Nascimento and Valdenegro-Toro [20], who presented a data-driven fault
detection and diagnosis scheme for underwater thrusters.

Fabiani et al. [21] presented a method for fault detection and isolation on the thrusters
of an over-actuated AUV based on non-linear principal component analysis (NLPCA)
and an off-line artificial neural network (ANN). Combined with motor current signals, Li
et al. [22] proposed a new scheme based on a deep extreme learning machine for roller
bearing fault diagnosis. Ji et al. [23] investigated a novel fault diagnosis method based
on convolutional neural networks (SeqCNN). Although the data-driven fault diagnosis
methods are accurate, their adaptability is weak [24].

Increasing numbers of FD studies employ a combination of signal processing and ana-
lytical model-based and data-driven approaches in order to ensure the accuracy of FD and
improve the diagnostic feasibility. Chu et al. [25] developed an RBF neural-network-based
adaptive sliding mode control scheme. The state space equation was used to describe the
dynamic model of ROVs. When the propeller is saturated, this hybrid model approach
combines a neural network and sliding mode control to ensure the stability of the adaptive
trajectory tracking system. Wang et al. [26] designed a method for extracting features
from raw vibration signals and used 1D-CNN-based networks for bearing FD, combining
signal processing techniques with a data-driven approach. A fault-tolerant control method
based on adaptive and radial basis function neural networks (RBFNN) was proposed by
Wang et al. [27] for autonomous underwater vehicles exposed to dynamic uncertainties
and potential unknown thruster failures. Xu et al. [28] designed a novel robust Gaussian ap-
proximation smoother based on the expectation–maximization (EM) algorithm, combining
data-driven and model-building methods.

However, the majority of research on AUV FD has focused on thruster and sensor
failures. Few studies have been conducted on the FD of AUV rudder systems, and the
ones that have are frequently concerned with fault-tolerant control. Liu and Xu [29]
addressed the issue of fault localization (FL) and fault-tolerant control (FTC) for AUV
rudders when deformation faults occur. Liu et al. [30] were primarily concerned with the
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development of FTC based on active compensation in rudder fault mode. Che and Yu [31]
designed two neural network estimators to estimate rudder faults and ocean current
disturbance, respectively, to solve the fault-tolerant tracking control problem. However, the
aforementioned methods were only validated through simulation. A PF-based method for
estimating rudder effect deduction and the unscented Kalman filter (UKF) were proposed
for proposal distribution, respectively [32]. By analyzing the pertinent indicators, the
rudder’s fault type could be determined and experimentally confirmed; however, the
current focus of this method is on the response of the AUV to the dynamics control under
ideal conditions; the parameter error of the sensor was not considered, and the sensor’s
usability must be enhanced.

This paper, inspired by prior research, presents a data-driven and hybrid-model FD
scheme for the AUV rudder system. Given this, the following are the principal contributions
of this paper.

(1) Aiming at the fault problem of an AUV rudder without feedback, a new rudder
fault detection method combined with an AUV dynamic model is proposed in this
paper. Considering the uncertainty of AUV dynamic model parameters, this paper
proposes an RNN-based method for identifying the nonlinear parameters of an AUV
dynamic model. At the same time, the singular value decomposition (SVD) method
was used to denoise the original data. Compared with the parameter identification
methods based on RLS and the traditional RNN, the proposed method has a higher
identification accuracy.

(2) In order to reduce the influence of sensor parameter errors and prediction model errors
on fault detection results, this paper developed an adaptive threshold for analyzing
prediction results. Compared with the method of fault diagnosis based on an empirical
threshold, the proposed method adapts to changes in environmental parameters and
has a higher reliability, thereby reducing the incidence of misdiagnosis.

The remainder of the paper is structured as follows. In Section 2, a description of the
problems is provided. Section 3 discusses the models and algorithms. The experiments and
their results are presented in Section 4. The conclusion is presented in Section 5.

2. Problems Description

This section focuses primarily on the AUV rudder system and rudder faults.

2.1. Rudder System of AUV

The AUV rudder system consists of horizontal and vertical rudders, as shown in
Figure 1. Included in horizontal rudders are the left and right rudders. The vertical rudders
consist of the up rudder and the down rudder. The Sailfish-210 AUV’s rudder control
system (Ocean University of China, Qingdao, China) includes electric rudders, a signal
collection system, a power system, an industrial personal computer system, etc. As depicted
in Figure 2, the AUV’s rudder control system is described in detail.

Each electric rudder within the AUV comprises electric steering gear, a controller, and
rudder mounting devices (including rudder blades). For collecting the rudder current,
the signal acquisition system includes a sampling resistor, an operational amplifier, and a
filter circuit. The IPC system includes both the AUV’s internal industrial computer and an
industrial computer located on land. The industrial computer system serves as the AUV’s
brain, controlling the delivery and acceptance of instructions. The power supply system
supplies the AUV with power.
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Figure 1. Layout of cross-rudder and thruster in Sailfish-210 AUV.
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Figure 2. Rudder control system of AUV.

2.2. Problem Formulation

The rudder utilized by the AUV analyzed in this paper lacks angle feedback. Due to
the rudder’s instability and external damage, the rudder may fail, resulting in a decrease in
the AUV’s mobility. As an essential actuator for AUVs, rudder fault diagnosis is essential.
In the fault mode of the AUV rudder system—for instance, where the expected rudder
angle does not match the actual rudder angle, or where the rudder blade is damaged,
etc.—it can be difficult to determine the cause. Combining the AUV’s pitch, roll, yaw angle,
and other data is necessary to complete the rudder FD. We divided rudder fault types into
the following categories:

(1) The rudder blade falls off. Due to structural deterioration or external impact interfer-
ence, the rudder blade detaches.

(2) Rudder jam. The rudder becomes stuck in a fixed position, reducing maneuverability.
This category of faults includes a stuck rudder gear, seaweed clogging the rudder
shaft, etc.
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(3) Rudder blade deflection failure or rudder blade damage. The fault type of rudder
blade deflection manifests itself when the expected rudder angle differs from the
actual rudder angle as a result of the aging of the rudder blade and the decreased
accuracy of the internal potentiometer, etc. In this article, the deflection fault type
is set to a value greater than 10◦. Additionally, the effectiveness of the rudder will
be diminished if the rudder blade is damaged by impact or scratches. This type of
control surface damage resembles a deflection fault in its behavior. Consequently, no
distinction will be made.

According to the degree of risk posed by various types of faults, fault types are
classified into distinct fault levels. Then, the emergent operations corresponding to those in
Table 1 are applied. In a real-world scenario, an accurate diagnosis is necessary to enable a
more effective response to the occurrence of these faults and to ensure AUV safety [24].

Table 1. Fault types and emergency operations.

Fault State Including Fault Types Recovery Operation

Normal State Rudder healthy Continue to work

Small Fault Rudder blade deflection failure or
control surface damage

Continue to work and wait for the
emergent cooperation

Middle Fault The rudder blade falls off Continue to work and let the
AUV surface using the thrusters

Large Fault Rudder jam
Turn off the power supply and let

the AUV surface using its
own buoyancy

3. Models and Algorithm

This section primarily establishes the method of model parameter identification,
including the AUV dynamic model and RNN structure, as well as introducing the SVD,
adaptive threshold methods, and algorithm flow.

3.1. Dynamic Model of AUV

According to the Society of Naval Architects and Marine Engineers (SNAME), the
Earth-fixed frame {b} and body-fixed frame {e} are intended to characterize the 6-DOF
dynamic equations of motion of an AUV. Figure 3 depicts the AUV’s appearance and two
coordinate systems.

η

 

ζ

ξ

 

ө 

X-axis

Z-axis

Y-axisφ 

ψ 

Earth-Fixed Coordinate System

X Z

Y

o

E {N}

p

r

q

Figure 3. The body-fixed and Earth-fixed coordinate systems of AUV.

According to [33], the transformation between the body-fixed frame and the Earth-
fixed frame is as follows:

η̇ = J(η)ν (1)
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where η ∈ R6×6 denotes the vector of position and orientation in the Earth-fixed frame;
J(η) ∈ R6×6 is the transformation matrix; ν ∈ R6 is the vector of velocity and angular
velocity expressed in the body-fixed frame.

The dynamic equation for an AUV is given by:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + τd (2)

where M denotes the inertia matrix; C(ν),D(ν) and J(η) present the Coriolis-centripetal
matrix, damping matrix, and vector of gravity forces, respectively; ν̇ is described in frame
{b} respective to the linear and angular acceleration vectors; τd denotes the constant and
time-varying disturbances induced by waves and ocean currents; τ is the vector of the
control input. According to [34], the 6-DOF dynamic model of the AUV in (2) can be
expanded as:

m
[
u̇− vr + wq− xG

(
q2 + r2)+ yG(pq− ṙ) + zG(pr + q̇)

]
= ∑ Xext

m
[
v̇− wp + ur− yG

(
r2 + p2)+ zG(qr− ṗ) + xG(qp + ṙ)

]
= ∑ Yext

m
[
ẇ− uq + vp− zG

(
p2 + q2)+ xG(rp− q̇) + yG(rq + ṗ)

]
= ∑ Zext

Ixx ṗ +
(

Izz − Iyy
)
qr + m[yG(ẇ− uq + vp)− zG(v̇− wp + ur)] = ∑ Kext

Iyy q̇ + (Ixx − Izz)rp + m[zG(u̇− vr + wq)− xG(ẇ− uq + vp)] = ∑ Mext

Izz ṙ +
(

Iyy − Ixx
)

pq + m[xG(v̇− wp + ur)− yG(u̇− vr + wq)] = ∑ Next

(3)

where ∑ Xext, ∑ Yext, ∑ Zext, ∑ Kext, ∑ Mext, and ∑ Next are the sum of the components of
the force and moment acting on the AUV; m is the mass of the AUV; (xG, yG, zG) denotes
the center of gravity; Ixx, Iyy, and Izz represent inertial moments about the x, y, and z axes,
respectively. (u, v, w) represents the AUV speed in O− x, O− y, and O− z. (p, q, r) denotes
the AUV angular velocity in O− x, O− y, and O− z.

In the 6-DOF dynamic model, compared with the force equations, it is easier for the
torque equations to reflect the internal relationship between the AUV attitude information
and the rudder angle. We simplified the equations of motion and identified the system
model parameters using the roll, pitch, and yaw moment equations. According to [35,36],
the sum external moments of the AUV in (3) can be expanded as:

∑ Kext = K ṗ ṗ + (Zẇ −Yv̇)wv +
(
Zq̇ + Yṙ

)
vq−

(
Zq̇ + Yṙ

)
wr + (Nṙ −Mq̇

)
qr

+Kp|p|p|p|+ (yGW − yBB) cos θ cos ϕ−
(
zGW−zBB) cos θ sin ϕ + Kprop + Krud

∑ Mext = Zṗẇ + Mq̇ q̇− (Zẇ − Xu̇)uw−Yṙvq +
(
K ṗ − Nṙ

)
rp− Zq̇uq + Mw|w|w|w|

+Mq|q|q|q|+
(

Muwl + Muw f

)
uw + (yGW − yGB) cos θ sin ϕ

−(zGW − zBB) sin θ + Mrud
∑ Next = Nv̇v̇ + Nṙ ṙ− (Xu̇ −Yv̇)uv + Zq̇wq−

(
K ṗ −Mq̇

)
pq + Yṙur + Nv|v|v|v|

+Nr|r|r|r|+ Nuvluw + (xGW − xBB) cos θ sin ϕ− (yGW −yBB) sin θ + Nrud

(4)

where K ṗ, Zẇ, Mw|w|, etc., represent the hydrodynamic coefficient. In order to describe the
attitude information vividly, combining (3) and (4), the pitch angle, roll angle, and yaw
angular acceleration can be expressed as [37,38]:

cos θ(a1 cos ϕ + a2 sin ϕ) = a3 ṗ + a4ẇ + a5v̇ + a6qr + a7uq + a8vp + a9wp
+a10ur + a11wv + a12 p|p|+ a13wr + a14Kprop + a15Krud

b1 sin θ + b2 cos θ cos ϕ = b3q̇ + b4u̇ + b5ẇ + b6rp + b7vr + b8wq + b9uq
+b10vp + b11uw + b12Mrud

ṙ = β1v̇ + β2u̇ + β3r + β4uv + β5ur + β6wp + β7 pq + β8v|v|+ β9r|r|
+β10vr + β11wq + β12 cos θ sin ϕ + β13 sin θ + β14Nrud

(5)

where θ and ϕ denote the vehicle’s pitch and roll angle, respectively; ṙ represents the yaw
angular acceleration; parameters (a1−15, b1−12, and β1−14) represent the weights of various
variables. From (5), we can see that (cos θ(a1 cos ϕ + a2 sin ϕ), b1 sin θ + b2 cos θ cos ϕ, and
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ṙ) are determined by the thirteen, ten, or fourteen variables on the right side of the equation,
respectively. These variables, with the exception of Kprop, Krud, Mrud, and Nrud, are obtained
directly from the AUV sensors. Kprop denotes the torque generated by the propeller about
the X-axis, expressed as [39]:

Kprop = KQρDprop
5|n|n (6)

where ρ denotes the seawater density; KQ is the torque coefficient; Dprop represents the pro-
peller diameter; n represents propeller speed. Krud, Mrud and Nrud represent the pitch, roll,
and yaw torque generated by the rudder system in AUV coordinate system, respectively,
expressed as [40,41]: 

Krud = 1
2 ρV2

E A f inL(mδv
x δv + mδh

x δh)

Mrud = 1
2 ρV2

E A f inLmδh
y δh

Nrud = 1
2 ρV2

E A f inLmδv
z δv

(7)

where VE=
√

u2 + v2 + w2 denotes the speed of the vehicle, as shown in Figure 4; A f in is
the side projection area of the rudder blade; δv and δh represent the vertical rudder angle
and horizontal rudder angle, respectively; L is the total length of the vehicle; mδv

x , mδh
x ,

mδh
y , and mδv

z are the position derivatives of the torque factors with respect to relevant
rudder angles. Table 2 gives the parameters of the Sailfish-210 (Ocean University of China,
Qingdao, China).

VE

x

z
u

βE

δh

w
VE

x

y
u

βE

δv

v

uu

Figure 4. Effective angle of attack of the horizontal rudders and vertical rudders (the left is the side
view of the AUV, and the right is the top view).

Table 2. Parameters of the Sailfish-210 AUV.

Parameter Value Unit Description

L 2.85 m Total length of the vehicle
Dprop 0.21 m2 Propeller diameter
ρ 1024 kg/m3 Seawater density
A f in 0.01675 m2 Side projection area of the rudder blade
n ±50 r/s Propeller speed
g 9.8 kg/m2 Gravity constant
M 70 kg Standard weight
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The actual AUV’s rudder angle control output can be described as follows (using the
vertical rudder as an example):

δv = sat(σ) =


δvm, σ > δvm
σ, −δvm ≤ σ ≤ δvm
−δvm, σ < −δvm

(8)

where σ is the design control input and δvm is the upper limit of the rudder angle, where
the upper limit rudder angle of the Sailfish-210 AUV is set to 40°. When the rudder blade
is in its original position, we define the rudder angle as 0°. For left and right rudders, the
angle when the rudder is turned down is typically defined as negative and the angle when
it is turned up is defined as positive. For up and down rudders, the angle defined when the
rudder is turned to the left is negative, and the angle defined when the rudder is turned to
the right is positive.

Considering (5) and (7), it could be inferred that

a14Kprop = a(.)ρDprop
5n2, a(.) = a14KQ

a15Krud = 1
2 ρA f inLu2[a1(.)δh + a2(.)δv]

{
a1(.) = mδh

x

a2(.) = mδv
x

b12Mrud = b(.) 1
2 ρA f inLu2δh, b(.) = mδh

y

β14Nrud = β(.) 1
2 ρA f inLu2δv, β(.) = mδv

z

(9)

Thus, we converted the parameters (a1–15, b1–12, and β1–14) to (a1–13, a(.), a1(.), a2(.),
b1–11, b(.), β1–13, and β(.)). The objective is to identify these parameter values. This paper
proposes a data-driven method for parameter identification based on a recurrent neural
network. The sensor values on the right-hand side of Equation (5) serve as the model’s
input. The model’s output is the pitch, roll, and yaw angular accelerations. In order to
improve the precision of parameter identification, the AUV’s normal-state data are used as
training data. The collected data are divided into a training set and a test set, the model is
constructed by learning from the training set, and then its performance is evaluated using
the test set. Considering the convergence speed of the LSTM network, a normalization
approach is used to pre-process the data for the work. The iterative training process
of the AUV pose motion model is evaluated with a loss function based on the known
relationships of the discrimination system parameters to obtain an AUV system model
with a high discrimination accuracy. This process of parameter identification is illustrated
as a flow chart in Figure 5.

3.2. RNN Structure

In this section, the parameter identification method is designed for the system equa-
tions of the previous subsection. There are more methods for parameter identification; for
example, the least squares method and the maximum likelihood method [42]. In contrast
to these two methods, neural networks with nonlinear mapping capability are selected to
identify the parameter of this system. The neural-network-based parameter identification
method aims to obtain a system equivalent to the theoretical model and is not concerned
with the actual dynamical parameters in the AUV model. It avoids using much test data as
training sample space in the identification process. The comparisons of specific methods
are described in later sections.
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Figure 5. Parameter identification process based on neural network.

A recurrent neural network (RNN) is a technology for deep learning designed to
process time-series data. However, it is well known that classical RNNs have problems
with long-range dependencies, which cause gradients to explode or vanish during back-
propagation. The success of RNNs with LSTM cells in capturing long-term dependencies
within a sequence has led to their increased prevalence in prediction applications. As
shown in Figure 6, LSTM was selected for use in our framework based on its superior
performance. The RNN-LSTM network cell can be represented as follows [43]:

ft = σ
(

W f · [ht−1, xt] + b f

)
it = σ(Wi · [ht−1, xt] + bi)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wc · [ht−1, xt] + bc)

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(10)

where ft, it, ot, and Ct represent the input, forget, output gate, and memory cell, respectively.
They are called gates because they are zero-valued sigmoid functions. Once trained, the
RNN-LSTM has the advantage of a lower computational overhead [44]. The RNN-LSTM
can solve the problem of long-term dependency. Due to these advantages, RNN-LSTM is
an excellent candidate for identifying AUV model parameters.

Figure 7 depicts the architecture of neural networks used in this paper when combined
with AUV sensors and actuators.
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Figure 6. The structure of the LSTM neural network.
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Figure 7. Architecture of neural networks (here, “pitch” and “roll” represent the pitch and roll angles,
respectively, and “yaw” represent yaw angular acceleration, not actual yaw angle).

In Figure 7, the input layer mainly imports the AUV velocity information obtained
by the Doppler velocity log (DVL) and the attitude and heading reference system (AHRS),
as well as the main thruster thrust and rudder angle in the motion control system. Using
LSTM to build a prediction model, the number of LSTM network layers significantly
impacts the speed and efficiency of training. Although the number of hidden layers will
improve the training effect, too many will reduce the prediction accuracy and increase
the time consumption. Considering the actual needs of the training time and the AUV
model, this paper used a single LSTM network hidden layer. The full connected layer is
mainly responsible for the dimensional transformation of the output information of the
LSTM layer and the retention of useful AUV state characteristic information. Finally, the
regression output layer takes the predicted AUV pitch, roll, and yaw information as the
LSTM model output. Based on the above, the main parameters of the LSTM network are
set as shown in Table 3:

Table 3. The setting value of the LSTM parameter.

Parameter Value Parameter Value

Number of hidden layers 1 Regularization coefficient 0.01
Input size 41 Max epochs 500
Output size 3 Learning rate 0.001
Node numbers of hidden layers 7 Training optimization algorithm Adam
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3.3. Data Denoising Algorithm

Noise will inevitably interfere with the generation, acquisition, and transmission of
AUV sensor signals, necessitating denoising signal processing. The singular value de-
composition is widely utilized in signal denoising due to its excellent trend-extracting
properties [45]. Firstly, FN = ( f1, f2, · · · , fN) represents original input data, and is con-
verted to a matrix X that is made up of L-dimensional vector xi = ( f1, f2, · · · , fi+L−1)

T .

X =


f1 f2 · · · fM
f2 f3 · · · fM+1
...

... · · ·
...

fL fL+1 · · · fN

 (11)

where L is the window length and M = N− L + 1. L nonnegative eigenvalues are obtained
via singular value decomposition. The first R larger eigenvalues typically reflect the signal’s
primary energy, whereas the remainder are considered noise components. Consequently,
the initial input signal FN can be described as follows:

FN = Ftrend + Fnoise = F1 + F2 + · · ·+ FR + Fnoise (12)

where Ftrend represents the primary signal component, Fnoise represents the noise compo-
nents, and F1−R represents the components represented by their singular values. The SVD
includes two crucial parameters, the window length L and the reconstructed singular value
R, which have a significant impact on the effect of denoising. Based on the results of the
experiment, the window length L was set to 12 and the number of reconstructed singular
values was set to 6.

3.4. Adaptive Threshold Method

The adaptive threshold generally means that the threshold of the system can be
adjusted according to the changes in itself and the environment [46]. In this design, the
AUV adaptive threshold consists of two parts: the error from the identification model and
the error from the sensor accuracy.

A model identification error prevents the convergence of the prediction error to zero.
Model identification errors are caused by numerous factors, such as thrust model errors,
dynamic modeling uncertainty, and ocean current disturbance [47]. It is undeniable that
this method has a strong prediction effect. The error fluctuates within a small range around
0 as a result of the effect of prediction and, after analysis, it approximates the normal
distribution. The analysis process is shown in Algorithm 1.

Algorithm 1 Analysis process for normal distribution.
Require: prediction error sequence µ.
[h, p] = lillietest(µ) (The goodness-of-fit test for normal distribution).
If h = 0 and p > 0.05 then
Assume that it follows a normal distribution.
else
Assume that it does not follow a normal distribution.
end if

µ = (µ1, µ2, · · · µN)
T denotes prediction error sequence. The standard deviation of

prediction error can be expressed as:

σ =

√√√√√ N
∑

i=1
(µi − µ̄)

N
(13)
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where µ̄ represents the mean of the prediction error and N is the number of errors. In order
to express the actual size of the prediction error over a long period of time and reduce the
likelihood of significant errors, we employed the confidence interval method [48,49]. We
extracted the sequence of prediction errors from the trained model, set the confidence level
to 95%, and solved the confidence interval as (µ̄− zσ, µ̄ + zσ). At a confidence level of 95%,
z is 1.96. The µ̄ is close to 0; hence, we can set the adaptive threshold for the prediction
model error as 1.96σ.

In addition to the error of the trained prediction model, the sensor parameter error must
also be considered. Without considering the prediction model error, X = (x1, x2, · · · xn)T

represents the input parameters of the system, whereas y = f (X) denotes the output of
the system. Due to unavoidable measurement, noise, and other error factors, the input
parameters contain some error, expressed by κ = (κ1, κ2, · · · κn)T . The value of the error
κ is usually related to X, and the relationship can be obtained from the sensor manual.
Essentially, this relationship often depends on the accuracy error of the sensor itself. Take
the motion speed error obtained by the DVL device used by the AUV in the experiment as
an example, where its speed error is 2% of the speed. When u represents the DVL speed
value, the corrected output caused by the DVL speed error is f (u + 0.02u). Therefore, the
output of the system y should be corrected to y = f (X + κ).

According to the Taylor formula, the higher-order terms with smaller values are
ignored, and only the terms below the second order are retained; thus, the following can
be determined:

y = f (X + κ) ≈ f (X) +
n

∑
i=1

(
dy
dκi

κi) (14)

Therefore, the maximum error of the output, ∆ymax, can be expressed as follows:

∆ymax = | f (X + κ)− f (X)| =
n

∑
i=1
| dy
dκi

κi| (15)

According to (5), (13), and (15), the maximum error (λmax) caused by model identifica-
tion, sensor accuracy, and sampling errors can be obtained as:

λmax = 1.96σ +
n

∑
i=1
|ζiκi|, ζ = a, b, β (16)

where n is the number of test samples. In summary, we set λmax as the adaptive threshold.

3.5. Fault Detection Method

This paper primarily diagnoses three types of rudder faults and combines the moni-
toring of rudder current characteristics with the model prediction process.

3.5.1. The Fault Type of Rudder Jam

Rudder jam is a type of fault that directly affects maneuverability and may significantly
harm the AUV. This type of error is frequently evaluated based on the rudder current. When
the rudder receives the rotation signal, the rudder angle changes abruptly, and the rudder’s
start current is significantly larger than usual. When no external load is present, the rudder
current is minimal. When the rudder jam fault occurs, the rudder current rises to the rudder
jam current value until the external blocking force is no longer present. The rudder jam
fault can be diagnosed using this characteristic. According to the product manual, the
Sailfish-210 AUV’s rudder current can reach up to 2.5 A.

3.5.2. The Fault Type of Rudder Blade Falls Off

When the rudder blade falls off, the situation is comparable to the current-based
evaluation of a rudder blocking fault. Once the rudder blade falls off during an AUV sea
test, no load is applied to the rudder and the current is minimal.
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3.5.3. The Fault Type of Rudder Blade Deflection

This type of rudder fault is the most prevalent. This type of fault lacks notable
current abnormality characteristics. Frequently, it is necessary to make decisions using
the prediction model method proposed in this paper. First, to precisely locate the faulty
rudder of the AUV, a qualitative force analysis must be performed on the faulty rudder.
The vertical rudders work collaboratively to generate K(δv) and N(δv), where angles δu
and δd correspond to the inputs of the up and down vertical rudders, respectively. A fault
on a vertical rudder may bring multidimensional faulty influences to K(δv) and N(δv);
that is, [

K(δv)
N(δv)

]
=

1
4

ρV2
E A f inL

[
mδr

x + mδu
x mδr

x −mδd
x

mδr
z mδr

z

][
δu
δd

]
(17)

where δv and δh denote the vertical rudders and horizontal rudders, respectively; mδu
x , mδd

x ,
and mδr

z are position derivatives of the torque factors with respect to relevant rudder angles.
The horizontal rudders work collaboratively to generate K(δh) and N(δh), where the angles
of δri and δl correspond to the inputs of the right and left horizontal rudders, respectively.
A fault on a horizontal rudder may bring multidimensional faulty influences to K(δh) and
M(δh); that is, [

K(δh)
M(δh)

]
=

1
4

ρV2
E A f inL

[
mδr

x + mδri
x mδr

x −mδl
x

mδr
y mδr

y

][
δri
δl

]
(18)

In the rudder blade deflection mode of the AUV, the rudder blade is manifested to be
offset at the expected angle, which adds additional force/torque to the AUV’s movement
and affects the pitch, roll, and heading information. The additive fault factors may be
expressed as follows:

f+ = [ fX , fY, fZ, fK, fM, fN ]
T (19)

where fX , fY, fZ, fK, fM, and fN represent the force/torque generated by the fault rudder
angle of the AUV, respectively. According to (3), fZ and fM have the same polarity; fY and
fN have the same polarity; fX have the same polarity with fK. Therefore, only the polarities
of the deflection moment fK, fM, and fN are represented here, and the details are shown in
Table 4.

Table 4. The polarities of rudder fault force (moment).

Fault Rudder Deflection Type
Polarity

fK fM fN

Up Rudder
Leftward + −

Rightward − +

Down Rudder
Leftward − −

Rightward + +

Left Rudder
Upward − +

Downward + −

Right Rudder
Upward + +

Downward − −
Note: Leftward, Rightward, Upward, and Downward represent left, right, up, and down deflection, respectively.

According to Table 4, it can be concluded that the deflection of the horizontal rudders
has an apparent effect on the pitch angle and roll angle; the pitching moment variation
can usually be ignored, so only the pitch and roll angle errors must be evaluated when
diagnosing this fault type. The deflection of vertical rudders appears to have an effect on
the yaw angle velocity and roll angle; the yaw moment can be disregarded, so only the
pitch angle and yaw angle velocity errors must be evaluated when diagnosing such faults.
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3.6. Algorithm Flow

The experiment’s algorithm flow chart is arranged as shown in Figure 8. Currently,
this paper discusses the design of non-real-time system algorithms and focuses primarily
on AUV experiment historical data.

Collect Data

Training Model

Fault Localization

Fault Diagnosis

Up Rudder

Down Rudder

Left Rudder

Right Rudder

From DVL and 
AHRS

From Electric 
Control System   

Analyze Rudders  
Current  

Rudder Fault 
state1

Set Adaptive 
Threshold

AUV  Abnormal 
status

Rudder Fault 
state2

Rudder Fault 
state3

Figure 8. The algorithm flow chart of the experiment.

4. Experiments and Results Analysis

This section mainly introduces the experimental platform, model identification results,
and fault detection results.

4.1. Experimental Platform

Experiments on the AUV Sailfish-210, which was independently designed by the
Ocean University of China and depicted in Figure 9a, were conducted to test the efficacy
of the fault detection method proposed in this paper. Notably, although the algorithm is
based on offline historical data, the data collected are real. All experimental data presented
in this article originated from the Sailfish-210 AUV. Figure 9b depicts the Sailfish-210 AUV
conducting a sea test.

Navigation System Power System Communciation System Motion Control System  

(a) (b)

Figure 9. Experimental platform: (a) the Sailfish-210 AUV prototype and systems; (b) the Sailfish-210
AUV is conducting a sea test.
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4.2. Model Identification Results

In order to obtain stable motion data of AUV and verify the accuracy of the proposed
parameter identification method, sea areas with a small current and good sea conditions
were selected for the experiment. Through neural network training, the predicted value
was obtained. This model training used the data between 0 and 150 s as the training set
and the data between 384 and 451 s as the test set.

Figure 10 depicts the predicted effects of pitch, roll, and yaw acceleration. The
parameter-identified error prevents the convergence of the value of the prediction er-
ror to zero. For fault-free modes, the prediction error occasionally exceeds the range of the
adaptive threshold. We employed a 5 s time-window approach and tended to disregard
short-term outliers. After calculation, the determination coefficients of the three predictions
based on this method are 0.967, 0.873, and 0.807, respectively. This is a model with a high
degree of dependability. The forecast error sequence has standard deviations of 0.51, 0.63,
and 0.71.
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Figure 10. Model training effect for pitch angle, roll angle, and yaw angular acceleration. (a) Forecast
and real pitch value. (b) The error between forecast and real pitch data. (c) Forecast and real roll value.
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(d) The error between forecast and real roll data. (e) Forecast and real yaw angular acceleration.
(f) The error between forecast and real yaw angular acceleration.

In order to further validate the efficacy of the proposed method, prediction results
generated by recursive least squares (RLSs) and recurrent neural networks (RNNs) were
compared with the proposed method. The RLS-based AUV model parameter identification
method appeared earlier and has the advantages of fast and efficient identification, but it
also has the problem of data saturation [50]. The RLS parameter identification method often
obtains unsatisfactory results for AUV nonlinear factors. Neural networks for parameter
identification do not care about the size of the parameters while looking for a good fit. The
RNN neural network is improved from the traditional BP neural network. In this problem,
the RNN network was chosen because of the poor training effect of BP. The superiority
of RNN is that the concept of a time sequence is added to the network, which can learn,
and the training effect is improved. However, the disadvantage is that the traditional
RNN has the phenomenon of gradient explosion and disappearance [44].Therefore, an
improved RNN method, LSTM, was adopted in this paper. Meanwhile, the singular value
decomposition method deals with noise effects. As demonstrated in Figure 11, the pitch
angle prediction results based on SVD-RNN are closer to the sensor’s original values.

In this paper, in order to measure the performance of the prediction models, MAE and
RMSE were selected as the evaluation indexes for the model’s prediction accuracy [51]. The
formulas of these indexes are as follows:

EMAE = 1
n

n
∑

i=1
|yt − ŷt|

ERMSE =

√
1
n

n
∑

i=1
(yt − ŷt)

2
(20)

where yt respects the actual values, ŷt respects the predicted values, and n is the amount of
data forecasting.
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Figure 11. Comparison of different methods for predicting pitch angle.

Here, only the comparison of prediction effects of the pitch angle is listed in Figure 11.
The comparison of prediction results of different methods of the roll angle and yaw data
are similar to it, and no further graphical comparison is made. After a large number of
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training tests, the comparison between the model prediction by different methods and the
original model according to the evaluation indicators is shown in Table 5.

Table 5. Comparison of proposed methodology with RLS and RNN.

Method
Pitch Data Roll Data Yaw Data

MAE RMSE MAE RMSE MAE RMSE

RLS 0.686 0.873 1.038 1.323 1.042 1.334
RNN 0.558 0.728 0.784 0.982 0.749 0.954

SVD-RNN 0.383 0.505 0.521 0.633 0.572 0.706
Note: (1) The RNN used here mainly refers to the special structure RNN described in the previous section of this
paper; that is, LSTM. (2) The SVD-RNN is the improved method proposed in this paper.

As can be seen from the comparison results, for the pitch angle predicted by the
proposed method, compared with the prediction results using RLS and RNN, MAE is
reduced by 44.17% and 31.36%, respectively, and RMSE is reduced by 42.15% and 30.63%,
respectively. For the roll angle, MAE decreases by 49.81% and 33.55%, respectively, and
RMSE decreases by 52.15% and 35.54%, respectively. For the yaw data, MAE is reduced by
45.11% and 23.63%, respectively, and RMSE is reduced by 47.08% and 35.13%, respectively.
It can be seen that the MAE and RMSE of the prediction error using the proposed method
are significantly reduced compared with RLS and RNN.

The above results reveal that the identification model is convergent and bounded,
indicating that the proposed identification method is effective.

4.3. Fault Detection Results

In this subsection, several cases relating to different faults are carried out in order to
verify the proposed fault detection method.

4.3.1. Experiment of Rudder Jam Fault

Figure 12 reveals that, at 35 s, the rudder current is close to the locked-rotor current,
and the duration exceeds the predetermined threshold of 2 s. This fault is referred to as a
rudder jam fault.

Rudder 

Rotating

Rudder Almost 

blocked

Figure 12. The rudder current during rudder jam from external test.

4.3.2. Experiment of Rudder Blade Falling Off Fault

Figure 13 shows that only at the rudder start time is there a large current, close to 1 A,
whereas, for the rest of the time, the current is nearly zero. Consequently, this fault type is
diagnosed as a rudder blade falling off.
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Figure 13. The AUV rudder current when rudder blade falls off.

The fault diagnosis method for the rudder blade falling off and rudder jamming is
mainly used to collect current information through the current module designed in the
AUV cabin. This method is unsuitable for diagnosing rudder blade deflection faults because
this fault type has no prominent current characteristics. Therefore, this fault diagnosis must
be combined with the model method described above.

4.3.3. Experiment of Rudder Blade Deflection Fault

In the deflection fault experiments, different deflection angles of the rudder blade will
have different effects on the model prediction residual. The actual rudder angle range of the
AUV is (−45◦, 45◦) and, if the rudder blade deflection angle is less than 5° or even smaller,
the predicted residual is indeed very small, which will make judging the occurrence of
faults difficult. Therefore, in this experiment, combined with the actual fault situation of
the AUV, the fault type was set as the deflection angle of 15°, which is obvious enough for
realizing the diagnosis and location of the rudder deflection fault.

Figure 14 depicts the effect predicted by the model when the right rudder is deflected
downward by 15°.

In this fault mode, the MAE and RMSE of the pitch angle prediction results are 2.237
and 2.918, and those of the roll angle prediction results are 5.286 and 6.849, respectively. The
actual pitch value is greater than the value predicted by the model, the predicted roll value
is obviously greater than the actual roll value (calculated in absolute value), and the error
is significantly greater than the threshold value. In other words, the fault rudder produces
undesirable roll and yaw torque and adversely affects the control process. As can be seen
from Figure 14b,d, the prediction error lies within the set adaptation range at the moment
close to 1920 s. The actual set failure duration threshold is 5 s, so it is determined that this
phenomenon cannot be diagnosed as a normal state of the AUV rudder. This phenomenon
is often caused by anomalous phenomena, such as the AUV suddenly receiving wave
interference. Considering that this phenomenon is transient and does not occur frequently,
this abnormal prediction result can be ignored.

According to the results of adaptive threshold analysis, the pitch and roll angle
prediction errors of 90.6% and 91.9% in the fault mode are outside the range of the adaptive
threshold, respectively, which proves that the method has a high accuracy. In order to
illustrate the superiority of the method, it was compared with the commonly used RLS
with the empirical threshold method, as shown in Figure 15. Based on historical experience
reference, the threshold for this method was chosen to be 2°. The fault diagnosis accuracy
of these two methods is shown in Table 6.
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Figure 14. Model training effect when the right rudder has downward deflection. (a) Forecast and
real pitch value. (b) The error between forecast and real pitch data. (c) Forecast and real roll value.
(d) The error between forecast and real roll data.
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Figure 15. The errors between the RLS model and real data from AHRS when the right rudder has
downward deflection. (a) The error between the RLS model and real pitch data. (b) The error between
the RLS model and real roll data.

Table 6. Comparison of fault diagnosis accuracy of different methods when the right rudder has
downward deflection.

Method
Fault Diagnosis Accuracy

By Pitch Data By Roll Data

Proposed method 90.6% 91.9%
RLS with the empirical threshold method 76.7% 65.3%
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Compared with the RLS with the empirical threshold method , the proposed method
can improve the diagnostic accuracy by 18.1% and 40.7%, respectively, using the predicted
pitch and roll results. Based on the results of the threshold analysis, the rudder is faulty. In
order to diagnose this fault as a right rudder deflection fault, we refer to Table 4. The left
rudder’s fault detection method is similar to that of the right rudder, and other types of
horizontal rudder deflection will not be described in detail.

Figure 16 depicts the effect predicted by the model when the down vertical rudder
is deflected leftward. This fault test was also carried out under the condition that the
deflection angle is set to 15°.
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Figure 16. Model training effect when the down rudder has leftward deflection. (a) Forecast and
real roll data. (b) The error between forecast and real roll data. (c) Forecast and real yaw angular
acceleration. (d) The error between forecast and real yaw angular acceleration. (e) Forecast and real
yaw angular velocity. (f) The error between forecast and real yaw angular velocity.

As shown in Figure 16a,b, the predicted value of the roll angle by the model deviates
significantly from the actual sensor value after 1885 s, and the error exceeds the adaptive
threshold for an extended period. Figure 16c,d reveal that the prediction error of the yaw
angular acceleration tends to fluctuate frequently, which makes it difficult to depict the
yaw effect caused by the defective rudder accurately. In order to represent the change in
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the yaw moment more accurately, the yaw angular acceleration was converted to the yaw
angular velocity using the following formula:

r(t) =
t∫

t0

ṙdt + r(t0) (21)

where r(t) represents the yaw angular acceleration and r(t0) denotes the corresponding
initial yaw angular velocity. The yaw rate is shown in Figure 16e,f. The actual yaw rate
value is less than predicted by the model, and the error exceeds the adaptive threshold. In
this failure case, the MAE and RMSE of the predicted results of the roll angle are 2.369 and
2.836, respectively; the MAE and RMSE of the predicted results of the yaw angular velocity
are 3.240 and 4.037, respectively.

In this fault mode, 92.3% and 92.7% of roll and yaw angular velocity prediction errors
are outside the adaptive threshold, respectively, which proves that the method has a high
accuracy. Similar to the analysis of the left rudder fault results, in order to illustrate
the superiority of the method, it was compared with the commonly used RLS with the
empirical threshold method, as shown in Figure 17. The fault diagnosis accuracy of these
two methods is shown in Table 7.

1040 1050 1060 1070 1080 1090 1100 1110 1120 1130

T/(s)

-2

-1

0

1

2

3

4

5

6

E
r
r
o

r
/
(
°
)

The error between RLS and real roll data

The error between RLS and real roll data

The error after mean filtering

The setting empirical threshold

(a)

1040 1050 1060 1070 1080 1090 1100 1110 1120 1130

T/(s)

-2

0

2

4

6

8

E
r
r
o

r
/(

°
/s

)

The error between RLS and real yaw angular velocity

The error between RLS and real yaw angular velocity

The error after mean filtering

The setting empirical threshold

(b)

Figure 17. The errors between the RLS model and real data from AHRS when the down rudder has
leftward deflection. (a) The error between the RLS model and real roll data. (b) The error between
the RLS model and real yaw angular velocity data.

Table 7. Comparison of fault diagnosis accuracy of different methods when the down rudder has
leftward deflection.

Method
Fault Diagnosis Accuracy

By Pitch Data By Yaw Angular
Velocity Data

Proposed method 92.3% 92.7%
RLS with the empirical threshold method 83.8% 78.2%

Compared with the RLS with the empirical threshold method, the proposed method
can improve the diagnostic accuracy by 10.1% and 18.5%, respectively, using the predicted
roll and yaw angular velocity results. This result shows that the proposed method has
a specific advanced performance. According to the predicted results of the roll and yaw
angular velocity, the down rudder is the type of fault that deflects to the left. It can be
observed that the prediction error occasionally falls within the threshold range for the
failure mode, and the AUV anomaly is responsible for this occurrence. Based on the sliding
window method, it is determined that this phenomenon is typically brief and infrequent, so
such anomalous prediction results can be disregarded. Other fault types of vertical rudders
will not be discussed in detail.
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In order to better support the effectiveness of the algorithm, we added a comparison
of turning radius data under the AUV rudder fault mode, as shown in Figure 18. This
fault test occurs when a part of the rudder force is lost in the down vertical rudder. It
is also the deflection fault experiment shown in Figure 16. With the rudder angle set to
45° in normal mode, the fault deflection angle is set to −15°, which means that the down
rudder angle after a fault is 30°. It can be seen from Figure 18 that the turning motion of
the AUV is not precisely circular, which is caused by the disturbance of waves and other
factors. After an approximate calculation, the turning radius of the AUV in the fault-free
mode is approximately 25 m, whereas, in the fault mode, the turning radius of the AUV is
approximately 15 m. This result indicates that the turning radius in the fault mode is much
larger than that in the fault-free mode. The result also shows the rationality of using the
AUV yaw angular velocity prediction results for fault diagnosis in yaw fault experiments.

Figure 18. Comparison of turning radius data under the AUV rudder fault mode.

The above experimental results indicate that, in the mode of rudder failure, the error
between the predicted value of the model and the actual value of the sensor exceeds the
adaptive threshold range, indicating that the proposed method is effective.

5. Conclusions

In this paper, the method for detecting rudder faults on an AUV in a marine envi-
ronment was examined. This paper proposes an RNN-based method for identifying the
nonlinear parameters of an AUV dynamic model using the trained model to predict the
AUV’s attitude information. SVD was used to preprocess the training data to improve the
accuracy of the model. In the meantime, an adaptive threshold method was developed to
analyze the error between model predictions and actual sensor values, thereby enhancing
FD precision.

This paper examined the common types of rudder deflection failure observed in AUV
experiments. The experimental results confirm that the proposed method for fault detection
is effective. Nevertheless, misdiagnosis may occur when relying solely on the adaptive
threshold; the fault detection accuracy must be enhanced. In the normal rudder mode, a
large roll angle or pitch angle can occur occasionally. Our future research will also focus on
reducing these factors and enhancing the control performance of autonomous underwater
vehicles. In this paper, data-driven and hybrid model methods were proposed to prepare
for the future FD and FTC of rudders.
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