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Abstract: Additive manufacturing is becoming one of the most utilized tools in an increasing number
of fields from Industry 4.0 concepts, engineering, and manufacturing to aerospace and medical
applications. One important issue with additive-manufactured components is their orthotropic
behaviour where mechanical properties are concerned. This behaviour is due to the layer-by-layer
manufacturing process and is particularly hard to predict since it depends on a number of factors,
including the manufacturing parameters used during the manufacturing process (speed, temperature,
etc.). This study aimed to create and train an artificial neural network-based predictive model using
empirical tensile strength data obtained from additive manufactured test parts using the FDM method
and PLA material. The predictive model was designed to predict mechanical characteristics for
different orientation axis, which were used to set the material properties for finite element analysis.
Results indicate a strong correlation between predicted finite element analysis behaviour and real-
world tests on additive-manufactured components. The neural network model was trained to an
accuracy of ~93% for predicting the mechanical characteristics of 3D-printed PLA material. Using
the predicted mechanical characteristics for defining a custom orthotropic material profile in finite
element analysis, the simulated failure mode and the behaviour of a complex geometry component
agreed with the real-world test.

Keywords: machine learning; finite element analysis; artificial neural network; additive manufacturing;
high-precision metrology; CAD; predictive model

1. Introduction

The advantages of additive manufacturing technologies make them an attractive
option in a variety of fields. Direct CAD to finished product manufacturing, the ability to
fabricate components of high geometric complexity, and the overall flexibility and versatility
of additive manufacturing techniques have contributed to an increase in the exploitation of
these technologies. For all the advantages, additive manufacturing also suffers from a series
of disadvantages, for example, low dimensional accuracy and surface quality. One of the
most limiting factors of additive manufacturing is the orthotropic mechanical behaviour of
the components fabricated using these technologies. Due to the layer-by-layer fabrication
process intrinsic to additive manufacturing, the parts obtained present different mechanical
properties for different orientation planes. As such, any given additive manufactured
component tends to have a lower tensile strength in the direction perpendicular to the
planes of the deposited layers. The tensile strength of additive manufactured components
in the direction parallel to the deposited layers can also differ drastically from the tensile
strength of the bulk material, mostly because the walls and, thus, the contours of the
fabricated parts are generated by lines which are fused by sintering (in the case of selective
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laser sintering), melting (for fused deposition modelling and selective laser melting), or
polymerisation (in the case of SLA).

Due to the nature of additive manufacturing technologies and the strategy of fusing
lines to form walls and layers to build up the parts, the mechanical behaviour of additive-
manufactured components is hard to model since it depends on a large number of factors,
for example, the different process parameters (manufacturing speed, temperature, part
orientation, etc.) and interactions between factors.

Previous studies by A.D. Sterca et al. [1] determined by statistical methods that there is
a correlation between FDM process parameters and the dimensional accuracy of the printed
parts. Further studies by S.D. Grozav et al. [2] tested, with good results, the feasibility of
employing neural-network-based models for predicting the dimensional accuracy as well
as the mechanical properties of components obtained by FDM additive manufacturing.

Work by Rodriguez et al. [3] used statistical methods with good results to determine
the influence of parameters such as nozzle diameter, layer height, infill density, printing
speed, layer orientation, and infill pattern on the mechanical characteristics of components
fabricated using FDM from PLA material.

A study by Tura et al. [4] used predictive models to determine, to a good degree of
accuracy, the effects of parameters such as raster angle, orientation angle, air gap, raster
width, and layer height on the mechanical properties of FDM-manufactured parts using
ABS material. Studies by Yadav D. et al. [5] were carried out on improving the tensile
strength of additive manufactured parts by employing neural networks trained on pa-
rameters such as infill density, extrusion temperature, and material density, showing a
4.54% improvement in subsequent samples. Saleh et al. [6] performed a study using
mathematical and neural-network-based predictive models to determine the mechanical
characteristics of lattice structures fabricated using carbon fibre/PLA material, reaching a
prediction accuracy of ~93%. Jatti et al. [7] performed research on optimising the tensile
strength of FDM-manufactured components by using machine learning algorithms and the
desirability approach with great results, showing a good correlation between predictions
and real-world data. Ding et al. [8] conducted studies on special plastics for engineering,
e.g., PEI and PEEK, showing a strong correlation between process parameters and me-
chanical behaviour, allowing them to optimize the mechanical characteristics by adjusting
the process parameters. Studies [9] performed on components printed using different
orientation angles were also performed by Khosravani et al., evidentiating the orthotropic
behaviour of additive-manufactured components. Zhang et al. [10] performed a study
on reducing dimensional error and warping of 3D-printed components by optimizing
the process parameters using the Taguchi method and fuzzy comprehensive evaluation,
showing that the most influential factor in the study is the extrusion speed of the material.
Alhazmi et al. [11] performed a study on the influence of raster angle and infill density,
showing different mechanical behaviour and failure modes for different combinations
of parameters. Omiyale et al. [12] studied the effects of process parameters using the
Taguchi method, predicting combinations of parameters that can be optimized for different
mechanical characteristics of the 3D-printed components. Tran et al. [13] researched the
possibility of improving 3D-printed components’ quality and mechanical behaviour by
varying the process parameters according to experimental data and results reported in the
literature, showing that the components produced using the recommended parameters
presented good dimensional and geometric characteristics as well as good mechanical
behaviour. Peng et al. [14] applied genetic algorithms for the prediction of optimized
process parameters for the manufacturing of 3D-printed components, showing an increase
in part quality. Chacon [15] studied the effects of process parameters on the mechanical
properties of 3D-printed structures, leading to a mathematical model for the selection of the
optimal combination of parameters for a given geometry. Ayatollahi et al. [16] performed
an in-depth analysis of the mechanical properties of 3D-printed parts using advanced
techniques such as scanning electron microscopy, showing and explaining the different
failure modes of the test samples.
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As can be seen from these studies, the behaviour of 3D-printed components can be
characterized using predictive models and statistical techniques with varying degrees of
accuracy, encouraging further research in the field.

The study presented in this paper attempted to address the issue of modelling the
mechanical behaviour of additive-manufactured components by employing an artificial
neural network-based predictive model to determine the mechanical characteristics of
3D-printed parts which can be used to inform material profiles for use in finite element
analysis, enabling the simulation of the behaviour of these components under load.

The study was performed on a set of 48 test samples fabricated using fused deposition
modelling (FDM) with different parameters and combinations of parameters (nozzle tem-
perature, printing speed, orientation). The material used for testing was PLA (polylactic
acid), and all the test samples were fabricated from the same roll of material. The fabricated
components were subjected to tensile strength measurements, providing empirical data
on the mechanical characteristics of different process parameter combinations. PLA was
chosen because in a previous study [2] it was shown to have the highest variability of me-
chanical properties for different process parameter combinations and because it is one of the
most popular 3D-printing materials. Another reason for choosing PLA is the availability of
more data from previous studies on components manufactured using this material. These
data can be used to average out the noise and outliers in the measurements, increasing the
statistical significance of the data and the accuracy of the predictive mathematical model.

In order to predict the mechanical characteristics of a given set of process parameters, a
predictive model needs to be devised. Because mechanical characteristics of the 3D-printed
components depend on the bonding strength between both the layers and the lines which
form the wall, the predictive model needs to be able to approximate very complex functions;
therefore, the model used in this study employed an artificial neural network which was
trained on the empirical data obtained from tensile strength measurements of the test
samples. The predicted mechanical characteristics, together with empirical data obtained
from strain–stress measurements, were used to create an orthotropic material profile for
finite element analysis, which can be used for modelling the behaviour of complex additive
manufactured components.

2. Materials and Methods
2.1. Test Sample Preparation

The study was performed on 48 test samples which were manufactured according
to the ISO527-2 standard [17] using the FDM additive manufacturing technique. The test
sample used with relevant dimensions for the ISO527-1B tensile test sample can be seen
in Figure 1.
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Manufacturing of the test samples was performed in pairs of two, one horizontal and
one vertical, positioned in the central area of the machine build platform, ensuring the
same manufacturing conditions in both orientations. The process parameters (speed and
nozzle temperature) were varied according to Table 1.
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Table 1. FDM process parameter combinations used to manufacture the tensile test specimen pairs.

Speed (mm/s) 30 60 90 120 150 180

Nozzle temperature
(◦C)

190 190 190 190 190 190

200 200 200 200 200 200

210 210 210 210 210 210

220 220 220 220 220 220

The fabrication of the test samples was performed using an Anycubic Mega X 3D
printer [18], which is presented in Figure 2. The test samples were manufactured using
a 0.4 mm diameter nozzle at a layer height of 0.2 mm. The infill was 100%; however, a
strategy of printing the samples using only concentric walls instead of an infill pattern was
chosen, to further evidentiate the orthotropic behaviour.
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An image of the manufactured tensile test specimens is presented in Figure 3a, while
an image of the test specimens after tensile testing is presented in Figure 3b. The principal
physical and mechanical characteristics of the PLA material in bulk are presented in Table 2.
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Figure 3. Manufactured tensile test specimens (a); test specimens after tensile testing (b).

Table 2. Mechanical and physical characteristics of bulk PLA.

Property Value

Heat Deflection Temperature (HDT) 126 ◦F (52 ◦C)

Density 1.24 g/cm3

Tensile Strength 50 MPa

Flexural Strength 80 MPa

Impact Strength (Unnotched) IZOD (J/m) 96.1

Shrink Rate 0.37–0.41% (0.0037–0.0041 in/in)

2.2. Tensile Testing

Tensile testing of the samples was performed on an Instron 3366 machine [19] seen in
Figure 4. The test is performed on a measuring length of 50 mm at the speed of 6.6 m/s and
provides both tensile strength measurements and strain measurements, which are needed
for training the predictive model and creating the material profile for finite element analysis.
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The test parts after tensile testing are presented in Figure 3b, where the failure mode
can be observed.
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2.3. Neural Network Development and Training

The predictive model has at its core an artificial neural network which takes process
parameters (speed, temperature, orientation) as inputs and empirical data in the form
of tensile strength from tensile testing as outputs for the training process. The neural
network architecture choice was informed by previous studies [2], where a number of
neural network architectures were developed and tested for performance and compared to
statistical techniques and models from other studies [1]. The presented neural network was
tested against the best model from the study [2] as a reference point, and the parameters
and architecture were adjusted to increase prediction accuracy.

The neural network was developed in the Python [20] programming language using
the PyCharm community edition IDE [21]. In order to ensure cross-platform compatibility
and to make use of efficient machine learning algorithms and functions, the Tensorflow [22]
machine learning library was employed with the Keras [23] front-end.

Performance analysis and graphing for the neural network were performed using the
Tensorboard [24] module from Tensorflow.

The architecture of the neural network employed in the study consisted of three fully
connected hidden layers containing eight nodes each. For the inputs and outputs of the
neural network, there were two possible configurations, one where the layer orientation
parameter was used as a categorical input variable, and the output of the neural network
consisted of one node for tensile strength values. The second configuration took as inputs
the temperature, speed, and intrinsic tensile strength of the material, while the output
consisted of two nodes, one for tensile strength in the horizontal orientation and the
other in the vertical orientation, providing predictions for both orientations given a set of
process parameters. Both architectures were tested; however, the first configuration was
preferred since it allows training on uneven datasets where the number of data points for
one orientation may differ from the other. A graphical representation of the neural network
architecture for both configurations is presented in Figure 5.
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The inputs for the neural network consisted of the main process parameters, printing
speed, nozzle temperature, and the intrinsic tensile strength of the bulk material. The
intrinsic tensile strength of the bulk material is relevant only if the neural network is trained
on data obtained from test samples fabricated from a variety of materials, which is the
subject of a future study. The bulk material tensile strength can be obtained by subjecting
a section of filament to tensile strength measurements. In the case of this study, all test
samples were manufactured from the same roll of filament; therefore, the bulk material
tensile strength was the same for all components, in which case, the neural network will
ignore it or normalize it to 1 during training.
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The outputs of the neural network use empirical tensile test data during training and
provide predicted tensile strength values in MPa during inference.

The optimizer [25] used in the neural network was Adamax [26] and the loss function
was MeanAbsolutePergentageError. The neural network weights and biases were initialized
as zeroes. The activation function [27] for the hidden layer was ReLU (rectified linear unit),
and for the output layer, a linear activation function was implemented. The activation
function was chosen based on performance evaluation and the input/output data ranges.
Performance evaluations of neural networks developed for this study and previous work [2]
show better generalization and convergence as well as increased accuracy when using the
ReLU activation function for hidden layers and a linear function for the output layers. This
may be due to the range of the input and output variables not being constrained between a
min and max value.

The tensile test data were split into 80% for training and 20% for validation. The
percentages of data used for training and validation were chosen to optimize the training on
a sparse dataset with a limited number of input and output values; reducing the percentage
of available training data could lead to overfitting of the model during sparse-data scenarios.
The validation data are never seen by the neural network during training, which ensures
that the model can predict real-world values, giving an unbiased evaluation of the neural
network performance. The neural network was trained until the mean absolute percentage
error for the validation predictions reached the lowest point (highest accuracy) and the
model with the best accuracy was saved.

2.4. Finite Element Analysis Using Predicted Mechanical Properties

The tensile strength predictions obtained from the neural network can be used together
with empirical data from tensile testing to define a custom orthotropic material profile. By
applying the custom material profile to the CAD model of a functional component, finite
element analysis can be employed to determine the behaviour of the part during the design
stage. Finite element analysis was performed using the simulation module available in the
Solidworks software suite [28]. The material profile definition using values predicted by
the artificial neural network is presented in Figure 6.
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2.5. Corroborating Predicted Results with Real-World Data

Finite element analysis was performed on the CAD model of a part which was fabri-
cated using the FDM method and subjected to tensile testing. A blended-curvature type
mesh was applied to the part with a maximum element size of 3 mm and minimum ele-
ment size of 0.15 mm, containing 12,443 elements and 22,236 nodes. The external load was
1000 N applied on the internal surface of the 15 mm diameter holes, in opposite directions,
simulating a tensile strength test. The average simulation time was ~30 s. The predicted
behaviour and tensile strength were compared to the observed real-world test.

The CAD model of the part used for testing is shown in Figure 7. The geometry is the
same as for the components used for previous studies, allowing the use of previous data to
further evaluate the predictive model.
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Because the failure mode of 3D printing components is dependent on factors such as
infill pattern and density, wall line count, and top/bottom thickness, the CAD model used
for finite element analysis was designed to include these features, as can be observed in the
section presented in Figure 8a.
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The material for the test part was chosen to have the same mechanical characteristics
as the material for the test samples, with a tensile strength of ~60 Mpa (average over
10 measurements). The process parameters used for fabricating the test part were 195 ◦C
nozzle temperature, 45 mm/s printing speed, and horizontal orientation. An image of the
manufactured test part is presented in Figure 8b.

3. Results
3.1. Tensile Test Results

The tensile test results for the test samples are displayed in Figure 9. The graph
indicates that the tensile strength is much lower in the direction perpendicular to the layer
orientation, due to it being determined by the bonding strength between the layers, which
is in turn affected by the temperature of the deposited material and the printing speed.
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3.2. Neural Network Training and Prediction Results

The tensile test results were used as empirical data to train the neural network which
will provide predictions for future parameter combinations. Figure 10 shows a performance
plot for the trained neural network in the form of training data versus validation data
prediction mean absolute percentage error. The results show a prediction accuracy of ~93%,
indicating a strong correlation between process parameters and tensile strength and the
ability of the neural network to approximate the complex function needed to predict tensile
strength values for a given set of parameters.
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The predicted tensile strength value for the set of parameters used to manufacture the
test part (temperature 195 ◦C, speed 45 mm/s horizontal orientation) was 50.12 MPa.

3.3. Finite Element Analysis Results

The predicted values obtained from the neural network were used to create a custom
material with orthotropic properties for finite element analysis. A test part was manufac-
tured with the same process parameters used for making the prediction and was subjected
to tensile testing. The results of the finite element analysis are shown in Figure 11.
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For comparison, the results of the tensile test for the manufactured test part are shown
in Figure 12, where (a) is an image of the part after breaking and (b) is the stress–strain plot
generated while the part was under test.
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The test part failure mode shows that the contour walls broke away from the top and
bottom layers, indicating low bonding strength between them and a weak point for the
mechanical behaviour of the part. The same areas were identified by finite element analysis
as weak points with a high probability of failure under load. The results indicate that
the model can predict the behaviour of FDM-manufactured components for both tensile
strength and failure mode.

4. Discussion

The findings agree with results from other studies in the literature, with studies
performed by Khosravani et al. [9], Alhazmi et al. [11], and others showing the same strong
relationship between part build orientation and mechanical characteristics. Studies by Ding
et al. also showed a strong correlation between orientation and mechanical characteristics,
and at the same time, an influence of nozzle temperature was observed. Many of the studies
in the literature used statistical methods for characterizing the influence of parameters and
predicting mechanical behaviour; however, the results of this study and research performed
by Yadev et al. [5] show that artificial neural networks, due to their ability to approximate
complex functions, can provide higher accuracy predictions.

The results show that the simulated and actual behaviours are similar to within an
acceptable margin of error for the test part and the process parameters analysed. This
indicates that artificial neural network-based predictive models can be used to augment
finite element analysis by predicting the mechanical characteristics of materials in the
context of FDM manufacturing.

A degree of error in the predicted and simulated data is present and to be expected;
however, the accuracy of the predictions and the results are sufficient to prove the concept.
The source of the errors is the limited number of data points available and the noise which
is to be expected in a limited dataset. Another source of errors can be factors that influence
the mechanical behaviour of FDM-fabricated parts but were not included as parameters
for training the neural network. The inclusion of these factors (layer cooling, ambient
temperature, print bed temperature, etc.) may be the subject of a future study.

This study builds on and validates the results of previous studies carried out in the
field, with each study adding to the number of measurement data points leading to an
increase in the precision and complexity of predictive models, encouraging future research
in the field.

Future research is proposed to include more materials and process parameter combi-
nations as well as a more extensive dataset which helps in reducing the number of outliers
in the analysed data by averaging out the noise and increasing the precision and the versa-
tility of predictive models. The results are promising enough to warrant future research on
implementing neural-network-based models for predicting the mechanical behaviour of
materials in the context of other manufacturing technologies such as SLS, SLM, and SLA.

5. Conclusions

This study shows that using artificial neural networks to predict orthotropic, FDM,
3D-printed material mechanical characteristics can aid finite element analysis in simulating
the mechanical behaviour of 3D-printed components.

This kind of predictive model is useful for reducing the costs of additive manufac-
turing by predicting the mechanical behaviour of 3D-printed components during the
design phase and informing decisions on either redesigning the part or choosing different
process parameters.

Future research on more extensive datasets can increase the accuracy, complexity, and
versatility of the predictions.
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