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Abstract: As an alternative to conventional mechanical fans, EHD fans and/or EHD gas pumps,
which generate less noise, were investigated for cooling systems, such as in electronic equipment and
automobiles. Wire-parallel plate electrode type EHD fans, which have greater design freedom and
potential for practical application, have been suggested. This study clarifies the characteristics of a
wire-partially insulated parallel plate electrode type EHD fan under DC positive applied voltage. In
order to understand the characteristics of the EHD fan more deeply, visualizations of the air flow in
the flow channel and the exit area were conducted by using PIV and CFD analyses. In the experiment,
air at atmospheric pressure and room temperature was used as a working fluid. The experimental
results for fan characteristics of the EHD fan, such as the velocity profile, cross-sectional average
velocity, volumetric flow rate in the flow channel or at the exit area, power, and so on, are considered
in detail. In addition, the flow visualization and the instantaneous and time-averaged velocity profiles
from the PIV analysis are discussed. A comparison with the experimental results described above,
and differences of flow regime for different locations, are also presented and discussed. Furthermore,
a two-dimensional steady state flow simulation by means of CFD analysis was conducted and its
experimental results analyzed.

Keywords: EHD fan; wire-partially insulated parallel plate electrode; velocity profile; volumetric
flow rate; PIV; CFD

1. Introduction

In recent years, heat and/or fluid transportation have become more important in the
cooling of electronic equipment. Studies on applications of the electrohydrodynamic (EHD)
phenomenon, caused by corona discharge, have been conducted [1–4]. EHD gas flow is
induced by the exchange momentum arising from collisions between gas molecules and
ions travelling between a high voltage electrode and a grounded electrode (GND), due
to the applied electric fields. In this study, an EHD fan is investigated for its potential to
replace a gas fan in a thermal management system [5–8]. When compared to a traditional
gas transportation system containing moving parts, such as a fan or diaphragm, the fact
that an EHD fan contains no moving components is an excellent advantage. Therefore,
EHD fans have potential in their simple design, low noise, long life, and fast control of gas
flow. These attributes are becoming more important, as, for example, in the case of electric
and hybrid cars, wherein the cabins are becoming quieter as a result of less engine-related
noise, and so fan noise from the air-conditioner becomes relatively more noticeable and,
thus, requires reduction. Therefore, the necessity for noiseless fans has gradually increased.

In the last ten years, a variety of EHD fans have been experimentally and analytically
investigated and developed [9–22]. For example, wire-parallel plate electrode type EHD
fans with their high design freedom and potential of practical application have been
suggested [21,22]. Since visualization and numerical simulation of the internal flow of
EHD fans have not yet been conducted, details of the internal flow profile and the flow
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around the wire electrode have not been clarified. Although there have been attempts at
numerical simulations for some EHD fans or pumps, with a variety of electrode and flow
channel configurations [23–25], numerical simulations have not been conducted for the
wire-partially insulated parallel plate electrode type EHD fan.

In this study, the fan characteristics of the wire-partially insulated parallel plate
electrode type EHD fan under DC positive applied voltage are investigated. In addition, in
order to understand the fan characteristics at certain velocity profiles, the visualizations of
air flow in the flow channel and the downstream area near the exit section were observed
using a high-speed video camera, tracer particles and a YAG laser sheet. Furthermore,
instantaneous and time-averaged velocity profiles, obtained by means of PIV analysis, and
two-dimensional steady state air flow, obtained by means of CFD analysis, are compared
with the experimental data. These experimental and analytical results are presented and
discussed here in detail.

2. Experimental Apparatus
2.1. EHD Fan Characteristic Experiments

The schematic of the experimental setup used in this study is shown in Figure 1. In
the experiment, air at atmospheric pressure and room temperature was used as a working
fluid. The corona discharge was obtained by applications of a high positive voltage at the
wire electrode with a DC high voltage power supply (Glassman, model PS/ER20R15.0-10).
The applied voltage at the wire electrode and the discharge current to GND electrodes
were measured with a high voltage probe (Tektronix, model P6015A, ±3%) and a digital
ammeter (Iwatsu, model VOAC86A, ±0.5%). A hot-wire anemometer (Kanomax, model
6006-D0, ±0.1 m/s) was used to measure the air flow velocity profile at an area 10 mm
downstream from the flow channel exit. The measurements of the local air flow velocity
at the exit area were conducted at each location at intervals of 2 mm and 1 mm on the
x and y axes, respectively. The volumetric flow rate at the exit section of the EHD fan was
estimated by multiplying the cross-sectional area of the flow channel by the averaged air
flow velocity.
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Figure 1. Schematic of the experimental setup for investigation of fan characteristics.

Figure 2 shows the detailed configurations of the wire-partially insulated parallel plate
electrode type EHD fan used in this study. The flow channel was rectangular. with 60 mm
length, 14 mm height and 40 mm width. The hydraulic diameter of the cross section of the
flow channel, dh corresponded to 20.74 mm. Two brass GND electrode plates were placed
above and below the wire electrode as part of the flow channel. The side wall of the flow
channel was made of transparent acrylic resin. A 0.1 mm diameter wire electrode, made of
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stainless steel, was placed at the center of the flow channel parallel to the GND electrodes.
In order to induce the net unidirectional air flow, part of the GND electrodes was covered
by 0.12 mm thick insulating polyester tape at the location shown in Figure 2.
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Figure 2. Detailed configurations of wire-partially insulated parallel plate electrode type EHD fan:
(a) Front view; (b) Side view.

2.2. Visualization and PIV Analysis Experiments

In this study, visualizations of the flow fields in the channel and downstream near
the exit area were performed, as shown in Figure 3. The arrangement consisted of a YAG
laser (Seika Digital Image, CDY-5000-A, Bunkyo-ku, Tokyo, Japan) and a high-speed digital
video camera (Photron, Nova S9, Bunkyo-ku, Tokyo, Japan). The wavelength of the laser
was 532 nm and the size of the laser sheet was 1 mm in thickness. The high-speed video
camera was operated at 9000 Hz with 1024 × 1024 pixel resolution. In the experiment, once
the EHD fan was in operation, the laser sheet was radiated horizontally, or perpendicularly,
to the wire and GND electrodes in the flow channel and near the exit area. Then, oil
mist, generated by a seeding generator (Seika Digital Image, CTS-1000, Bunkyo-ku, Tokyo,
Japan) as tracer particles with an average diameter of 4 µm, as is generally used for flow
visualization, was supplied to the chamber in which the EHD fan was placed. The oil mist
was naturally sucked to the inlet of the EHD fan under a steady state in order to obtain the
visualized motion images. In addition, after obtaining visualization images, PIV analysis
(Seika Digital Image, Koncerto II, Bunkyo-ku, Tokyo, Japan) was conducted by using
5 × 103 pairs of the photographs in 111 µs intervals in order to obtain the two-dimensional
air flow velocity profiles at 7 and 9 kV for the EHD fan.
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3. Experimental Results and Discussions
3.1. The EHD Fan Characteristics

The time-averaged discharge current, I, and input power, W, as a function of the
positive applied voltage, V, for the wire-partially insulated parallel plate electrode type
EHD fan are shown in Figure 4. Basically, the time-averaged discharge current quadratically
increased with increasing applied voltage. The maximum time-averaged discharge current
and input power before onset of the spark discharge reached 144 µA at 10 kV, which was at
1.44 W. A glow corona discharge was observed for all positive applied voltages.
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Figure 5a,b provides the experimental results of the velocity profiles for the horizontal
and vertical axes of the flow channel at the exit area (z = 10 mm), respectively. In these
figures, the axis refers to the measuring point, x or y, positive applied voltage, V, and
local air velocity, u, respectively. Air flows at the exit area were initiated when the applied
voltage was at the onset of corona discharge or slightly higher. The local air velocities on
the horizontal and vertical axes at the exit area sharply increased with increasing applied
voltage to a maximum value of 2.95 m/s, when the applied voltage reached 10 kV for the
wire electrode. While the air velocity profiles on the horizontal axis were relatively uniform
in velocity profile, such as the partially turbulent flow in the area between x = −10 mm and
x = 10 mm, the air velocity profiles on the vertical axis approximated a parabolic profile.
Here, the range of the Reynolds numbers (=Uave × dh/ν) was between 7.25 × 102 and
3.07 × 103 for the applied voltages, where Uave is the average velocity at the exit area, dh is
the hydraulic diameter and ν is the kinematic viscosity of air.
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Figure 5. Local velocity profiles at the exit area (z = 10 mm) for the wire-partially insulated parallel
plate electrode type EHD fan: (a) horizontal axis; (b) vertical axis.

Figure 6 shows the experimental results of the average velocity, Uave, and the corre-
sponding volumetric flow rate, Q, at the exit area as a function of the positive applied
voltage, V, for the EHD fan. The volumetric flow rate was determined by multiplying the
average velocity and the flow channel cross-sectional area. Although the average velocity
and volumetric flow rate sharply increased with increasing applied voltage, the increase
gradually became lower under higher applied voltage. The maximum values of average
velocity and volumetric flow rate achieved 2.23 m/s and 75.0 l/min at 10 kV, which was
equivalent to 1.44 W.

Figure 7 shows the transport efficiency, ηt, as a function of the applied voltage, V, for
the EHD fan. To evaluate the fan’s performance, transport efficiency was employed, which
is defined as the amount of air delivered per unit of input electric power used [23,26,27].
Liter per second per watt l/s/W or liter per joule l/J is generally used for the unit of this
parameter. The transport efficiency rapidly decreased with increasing applied voltage. The
maximum value was 6.27 l/s/W at 6 kV for the EHD fan. In order to assess the validity of
the magnitudes for this parameter, the transport efficiency of the EHD fan was compared
with other types of EHD fans and conventional fans [23,26]. It was noted that, depending
on the applied voltage, the value was almost similar to other types of EHD fans, and was
at the same level as, or at a level better than, those of current conventional fans used in
personal computers, which had values from 1.79 l/s/W to 3.67 l/s/W [28].
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Figure 6. Average velocity and volumetric flow rate at the exit area for the wire-partially insulated
parallel plate electrode type EHD fan.
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3.2. Flow Visualization and PIV Analysis

Figure 8 provides photographs of the x-z plane (y = 0 mm) in the downstream area
of the flow channel exit of the EHD fan at an applied voltage of 9.0 kV for each 2.22 ms
interval from 0 ms to 19.98 ms. The Reynolds number of the flow was 2.68 × 103. It can be
observed from the photographs that the air which drained from the exit of the EHD fan
basically flowed in a one-way direction from left to right. There is no large vortex motion
in the images.
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Figure 9 provides photographs of the y-z plane (x = 0 mm) in the inside flow channel
and the downstream area of the flow channel exit of the EHD fan at an applied voltage
of 9.0 kV for each 2.22 ms interval from 0 ms to 19.98 ms. It was observed that there
was an area having no oil mist downstream of the wire electrode in the experiments.
Although the reason is not clear at present, it may be that oil mists take an electrical charge
and move upward and downward simultaneously. Even if the oil mists flowed more to
the downstream side, perhaps the oil mist charged to plus was continuously separated
either upward or downward, and the separation was maintained due to the same polarity.
This needs further investigation. In the upstream area of the wire electrode, the flow
experienced little turbulence, as seen in the video from the high-speed camera. However,
in the downstream area large-scale turbulence in the flow channel was observed as a wavy
motion near the z axis. The higher the applied voltage, the stronger the wavy motion
observed in the experiments.
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Figure 9. Photographs of y–z plane (x = 0 mm) in the inside flow channel and the downstream area
of the flow channel exit of the wire-partially insulated parallel plate electrode type EHD fan at an
applied voltage of 9.0 kV for each 2.22 ms interval from 0 ms to 19.98 ms.

Figure 10a–d provides the instantaneous vector diagrams of the x-z planes at y = 0
mm and 5 mm at different applied voltages of the EHD fan. In the case of the x-z plane at
y = 0 mm at 7 kV, the non-uniform velocity profile of the range between 0 m/s to 4 m/s
was estimated by means of PIV analysis. This tendency was similarly observed in other
locations and with other voltages. Basically, the higher the applied voltage, the higher the
velocity vectors which appeared.
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Figure 10. Instantaneous vector diagrams obtained by PIV analysis for x-z planes at different locations
at different applied voltages to the wire-partially insulated parallel plate electrode type EHD fan:
(a) y = 0 mm at 7 kV; (b) y = 5 mm at 7 kV; (c) y = 0 mm at 9 kV; (d) y = 5 mm at 9 kV.

Figure 11a–d provides the instantaneous vector diagrams of the y-z planes at x = 0 mm
or −15 mm at different applied voltages of the EHD fan. In the case of the y-z plane at
x = 0 mm at 7 kV, uniform air velocities were experienced in the area between the left
edge of the image and near the wire electrode. The flows at x = 0 mm, as shown in
Figure 9, separated upward and downward at the wire electrode, and, then, the central
flows accelerated toward the exit area. It should be noted that flow toward the non-
insulated GND electrodes was only observed near the GND electrodes downstream of the
wire electrode. This is because the ionized oil mist particles were attracted to each GND
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electrode, and then the particles separated into two lines that moved downstream together
with the main flow. In the case of x = −15 mm, regardless of the different applied voltages,
the flow strongly separated to upward and downward directions from the wire electrode
to GND electrodes. It is probable that these local velocity profiles with different tendencies
occurred due to the three-dimensional flow in the channel and exit area of the wire-partially
insulated parallel plate electrode type EHD fan.
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Figure 11. Instantaneous vector diagrams obtained by PIV analysis for y–z planes at different locations
at different applied voltages to the wire-partially insulated parallel plate electrode type EHD fan:
(a) x = 0 mm at 7 kV; (b) x = −15 mm at 7 kV; (c) x = 0 mm at 9 kV; (d) x = −15 mm at 9 kV.

Figure 12a–d shows the time-averaged local velocity profiles for only 1.21 s on the
x-z plane and for the x-z plane in the flow channel and exit area. In the case of the x-z plane
at 7 kV, a velocity profile having some difference at the x axis location was observed. This
tendency was basically similar to the case of 9 kV. In the case of the y-z plane, an increase
in air flow velocity around the wire electrode was observed. This is considered to be the
EHD effect.
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Figure 12. Time-averaged vector diagram obtained by PIV analysis for 1.21 s of x-z plane at y = 0 mm
or y-z plane at x = 0 mm at different applied voltages to the wire-partially insulated parallel plate
electrode type EHD fan: (a) x-z plane at 7 kV; (b) x-z plane at 7 kV; (c) y-z plane at 9 kV; (d) y-z plane
at 9 kV.

Figure 13a–d shows the local velocity profiles for the horizontal and vertical axes at
the exit area (z = 10 mm) at different applied voltages to the EHD fan. In the case of the PIV
analytical results at the x-z plane (y = 0 mm), the average velocity was 1.36 times higher than
that of hot-wire anemometer, and the value of the local velocity varied greatly in a wide
range from 0.81 m/s to 2.36 m/s. The reason is probably that the time-averaged value was
estimated by recording a time length of 1.21 s, depending on the record rate (9000 Hz) of the
high-speed video camera. This result could be guessed at from the phenomena mentioned
in Figure 9, where the velocity profile at the downstream area of the wire electrode and
flow channel exit had a large time variation. In the case of 9 kV, the velocity profiles of the
PIV analysis on the x and y axes agreed well with those of the hot-wire anemometer.
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Figure 13. Local velocity profile at the exit area (z = 10 mm) at the different applied volt-
ages to the wire-partially insulated parallel plate electrodes type EHD fan: (a) x-z plane at
7 kV; (b) y-z plane at 7 kV; (c) x-z plane at 9 kV; (d) y-z plane at 9 kV.

4. Simulation by COMSOL Multiphysics
4.1. Governing Equations

For a two dimensional steady-state incompressible flow, the continuity equation,
Equation (1), and the Navier–Stokes equation, Equation (2), were solved using COMSOL
Multiphysics 6.1, which is a commercial finite element method multiphysics solver.

∇·
→
U = 0 (1)

ρg

(→
U·∇

)→
U = −∇p + µg∇2

→
U +

→
Eq (2)

where U is the air velocity, p the pressure, µg the air viscosity, E the electric field and q the
space charge density.

Turbulent flow using the standard k-ε turbulent flow model was selected for the flow
model in the channel for the simulation because of the observed wavy motion, shown in
Figure 9, even if the range of the Reynolds numbers was between 7.2 × 102 and 3.1 × 103

in the experiments. The electrical potential and space charge density in the EHD fan
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were described by Poisson’s equation for electrostatics, Equation (3), and the ion transport
equation for charge transport, Equation (4).

∇2V = − q
ε0

(3)

∇·
(

µc
→
Eq

)
= 0 (4)

Here, V is the electric potential, ε0 the air permittivity and µc the ion mobility. Once
the values for space charge density, q and electric field, E were known, the Coulomb force
(F = Eq) on the ions, which equals body force in a neutral gas medium, could be calculated.
This body force was coupled with the electrostatic equation and the ion transport equation
to the Navier–Stokes equation governing the flow of the neutral gas medium.

4.2. Numerical Model

The wire-partially insulated parallel plate electrode geometry permits simplification
by employing a two-dimensional model. The program was operated using a personal
computer with a 3.70 GHz Inter (R) Core (TM) i9-10900X CPU and 64.0 GB of RAM.
Three modules were used in the computation: electrostatics, ion transport equation, and
incompressible Navier–Stokes equation.

4.3. Computational Domains and Procedure

Figure 14 shows the two-dimensional calculation domain in the flow channel. Wall
boundaries were GND electrodes, acd and jhg, wire electrode, opqr and insulating tape, klb
and mni. Inlet and exit of the flow channel, km and ef, were selected as boundaries without
backflow. The open boundaries were de and gf. Details of the boundary conditions for each
calculation are presented in Table 1. The number of the elements was 32,272, as shown in
Figure 14b. In this study, velocity profiles were compared by means of hot-wire anemometer
and PIV analysis, and simulations were conducted under the same experimental conditions.
In this study, the ion number density, Nn, was estimated using Equation (5).

Nn =
I

eµcES
(5)
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Table 1. Boundary conditions for the calculation domain.

Boundary Poisson’s
Equation

Ion Transport
Equation

Navier-Stokes
Equation

acd, jhg φ = 0 V N = 0 wall

ablk, mnij N = 0 wall

km N = 0 P = 0 Pa, Turbulence
intensity, 0.01

ef N = 0 P = 0 Pa

de, fg N = 0 Open boundary

opqr φ = Vapplied N = Nn wall

Here, e, µc and S are electric charge and ion mobility of air and surface area of wire
electrode per unit length, respectively. The absolute value of the electric field on the surface
of the wire electrode, E, was hypothesized to be 109 V/m at 10 kV in this simulation, which
was similar to the value estimated by Poisson’s equation in the case of the space charge
density, q = 0 C/m3. The electric fields on the surface of the wire electrode for the other
applied voltages were estimated by means of a ratio of the applied voltage for 10 kV. In
the case of 10 kV, the ion number density was 1.05 × 1015 1/m3, which was determined by
Equation (5), based on a discharge current of 143.5 µA, as measured in the experiment. The
model was implemented in the general procedure, as shown in Figure 15.
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4.4. Simulation Results

Figure 16 shows the steady state velocity profiles in the flow channel of the EHD
fan calculated for the applied voltages of 7 kV and 9 kV. The average velocities on the
y axis at the location of 10 mm from the exit of the flow channel were 0.88 m/s and
1.92 m/s, respectively. The maximum velocities obtained upward and downward of
the wire electrode were 1.21 and 2.84 m/s, respectively. Each whole flow profile in the
channel of the EHD fan was qualitatively similar to the PIV analysis results, as shown in
Figure 12b,d. As shown in Figure 13b,d, the velocity profiles calculated in the simulation
agreed reasonably well with the experimental results using the hot-wire anemometer.
Although the calculated velocity profile for the applied voltage of 7 kV was underestimated
by a mean relative error of about 19% in the experimental result, the velocity profile for
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9 kV was the mean relative error of 3.3%. The main reason was probably the turbulence
induced in the downstream area of the wire electrode, shown in Figure 9.
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Figures 17–19 show the comparisons of pressure, electric potential and space charge
density profiles of the simulation results at applied voltages of 7 kV and 9 kV. When
comparing applied voltages, it was observed that, as higher voltages were applied, larger
pressure differences in front of and behind the wire electrode were generated, as shown
in Figure 17. Since the electric potential and electric charge density at an applied voltage
of 9 kV were higher than those at 7 kV, this meant that the higher the voltage applied in
the wire electrode, the stronger the body force caused by the Coulomb force acting on the
whole flow in the channel of the EHD fan.
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Figure 20 shows the comparison of average velocities on the y axis at the exit area
(z = 10 mm) for the experiments with the hot-wire anemometer and the simulations for
the EHD fan. The average velocities of simulation results for any given voltage were
quantitatively in agreement with the experimental results at a mean relative error of
−12.6% and a root mean square error of 22.7%. As a whole, the velocities calculated by the
simulation were a little lower than those of the experiment at an applied voltage of 9 kV
or less. On the other hand, the average velocities at an applied voltage of 9.5 kV or more
in the simulation were overestimated. This was probably because at the higher applied
voltage, larger energy loss, associated with an increase in air temperature arose, due to the
corona discharge in the experiment. It is noted that this flow model should be improved
in the future by considering the flow condition of the low Reynolds number and/or the
energy loss for each applied voltage in a simulation in order to obtain a quantitatively more
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accurate velocity profile in reference to the visualization results of internal flow and PIV
analytical results.
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5. Conclusions

In this work, an experimental investigation was conducted to study discharge and flow
characteristics under DC positive applied voltages for a wire-partially insulated parallel
plate electrode type EHD fan in a rectangular flow channel. Particularly, velocity profiles on
the x and y axes were obtained, and the volumetric flow rate and transport efficiency were
evaluated from the experimental results. In addition, in order to obtain the velocity profiles
in the flow channel and the downstream area near the channel exit, the visualizations of
the air flow were obtained by using PIV analysis. Furthermore, details of the steady state
velocity profile, electrostatic field, and so on, were estimated by means of CFD analysis.
These experimental and analytical results are presented and discussed in detail in this
paper. The main results showed that:

(a) A maximum average air velocity of 2.23 m/s, by means of hot-wire anemometer at
an applied voltage of 10 kV (input power of 1.44 W) for the EHD fan, corresponding to a
volumetric flow rate of 75.0 l/min, was achieved;

(b) The average air velocity and volumetric flow rate almost logarithmically increased
with increasing applied voltage;

(c) From the visualization and PIV analysis of the air flow in the channel and near
the channel exit of the EHD fan, the velocity of the air flow mainly increased in the z axis
direction immediately following the downstream wire electrode, and periodic oscillation of
the main stream was observed toward the channel exit direction.

(d) The air flow downstream of the wire electrode near the side wall of the flow
channel was quite different from that on the y–z plane.

(e) By means of a two-dimensional simulation with COMSOL Multiphysics 6.1 for
the EHD fan, air flow profiles in the flow channel and near the exit area, induced by
corona discharge, qualitatively corresponded with the experimental results. In addition,
average velocities quantitatively agreed with the experimental results. However, in order
to improve the accuracy of calculation for the velocity profile, a simulation for the EHD fan,
which considers the oscillation of internal flow and three-dimensional flow, together with
the flow condition of the low Reynolds number and/or the energy loss for each applied
voltage, should be attempted through CFD analysis in the future.
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