
Citation: Savur, C.; Sahin, F. Survey

on Physiological Computing in

Human–Robot Collaboration.

Machines 2023, 11, 536. https://

doi.org/10.3390/machines11050536

Academic Editor: Dan Zhang

Received: 4 April 2023

Revised: 28 April 2023

Accepted: 7 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Review

Survey on Physiological Computing in
Human–Robot Collaboration
Celal Savur 1,* and Ferat Sahin 2

1 Intel Labs, Hillsboro, OR 97124, USA
2 Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;

feseee@rit.edu
* Correspondence: celal.savur@intel.com

Abstract: Human–robot collaboration has emerged as a prominent research topic in recent years.
To enhance collaboration and ensure safety between humans and robots, researchers employ a
variety of methods. One such method is physiological computing, which aims to estimate a human’s
psycho-physiological state by measuring various physiological signals such as galvanic skin response
(GSR), electrocardiograph (ECG), heart rate variability (HRV), and electroencephalogram (EEG).
This information is then used to provide feedback to the robot. In this paper, we present the latest
state-of-the-art methods in physiological computing for human–robot collaboration. Our goal is to
provide a comprehensive guide for new researchers to understand the commonly used physiological
signals, data collection methods, and data labeling techniques. Additionally, we have categorized
and tabulated relevant research to further aid in understanding this area of study.

Keywords: physiological computing; human–robot collaboration; data collection methods; data
labeling

1. Introduction

The proliferation of robots is rapidly transforming the way we live, work, and interact
with technology. The International Federation of Robotics (IFR) reports that the number
of robots worldwide has increased by 11% between 2019 and 2020, with collaborative
robots being a significant contributor to this growth [1]. This expansion can be attributed
to two primary factors: cost and capabilities. The price of robots per unit has decreased
by 50% over the last five years, while their abilities have been significantly enhanced
through advances in machine learning, enabling them to perform more sophisticated
tasks [2]. Consequently, robots have become more intelligent and talented, and companies
are increasingly utilizing them in the production environment.

As robots have become more integrated into the workforce, safety measures have
become a top priority. The International Standard Organization (ISO) recognizes the need
for safety guidelines, as outlined in ISO/TS 15066, which specifies that human–robot
collisions should not cause pain or injury [3]. Consequently, safety protocols have become
a central focus in industrial applications, with physical and electronic safeguards being
implemented to ensure worker safety. Despite these precautions, new strategies and
approaches are necessary for human–robot collaboration, where fewer standards exist to
implement complex protection schemes. To address this, a new category of robots known
as “collaborative robots” or “cobots” has emerged in the market. These robots, such as
Universal Robots, Kuka lbr-iiwa, and Rethink Robotics Sawyer, are intentionally designed
to work in direct cooperation with humans in a defined workspace, reducing the severity
and risks of injury due to collisions. In-depth research by Kumar et al. [4] provides insight
into human–robot collaboration in terms of the awareness, intelligence, and compliance of
the systems, highlighting the need for a more comprehensive understanding of the safety
protocols required for human–robot interactions. As such, it is vital to continue developing
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safety standards and guidelines that enable humans and robots to work together seamlessly
and safely.

This paper presents a comprehensive review of state-of-the-art methods in physio-
logical computing for human–robot collaboration. The primary objective of this review
is to provide new researchers with a deep understanding of physiological computing, its
various categories, widely used physiological signals, data collection methods, and data
labeling methods. To achieve this, we have conducted an extensive literature survey and
classified the relevant research based on the questionnaire approach and physiological
signal used.

Our contributions in this paper are as follows:

• Presenting a comprehensive overview of the latest research in physiological computing.
• Classifying the research based on the questionnaire approach and physiological sig-

nals used.
• Providing an in-depth analysis of widely used physiological signals and their charac-

teristics.
• Discussing common data collection techniques and data labeling techniques.

Moreover, the paper highlights the challenges associated with physiological computing
and provides insight into recent advancements in this field.

The paper is structured as follows: Section 3 provides an introduction to physiological
computing and its categories. Section 4 presents a detailed analysis of commonly used
physiological signals and their applications. Section 5 discusses various data collection
methods used in physiological computing. Section 6 provides an overview of common
data labeling techniques. Section 7 summarizes related works. Finally, Section 8 provides
the discussion.

2. Methodology

This survey paper aims to provide a comprehensive overview of the physiological
signals used in human–robot collaboration, along with the data collection methods and
data labeling techniques used in related studies. To achieve the objective of the study, the
following research methodology was followed:

• Literature: A systematic review of the literature was conducted to identify all of
the relevant research studies in the field of human–robot collaboration. The search
was conducted using various academic databases. The search terms used included
“human–robot collaboration”, “physiological signals”, “data collection methods”, and
“labeling techniques”.

• Categorization: All of the identified articles were screened based on their relevance to
the study objective. The articles that met the inclusion criteria were further analyzed,
and data were extracted related to physiological signals, stimuli types, data collection
methods, labeling techniques, algorithms, and their applications. The extracted data
were then categorized based on the identified criteria.

• Limitations: The study has some limitations; we include articles that we do have
access to, which may have limited the comprehensiveness of the study. Additionally,
the study only focused on physiological signals and did not consider other modalities
used in human–robot collaboration.

3. Physiological Computing

Physiological computing is a multi-disciplinary field that aims to use human physio-
logical signals to simulate and understand the psycho-physiological state of individuals.
This involves recognizing, interpreting, and processing physiological signals to dynam-
ically adjust and adapt to the user’s psycho-physiological state. Areas of study within
physiological computing include human–computer interaction, brain–computer interaction,
and affective computing, as noted by Fairclough [5]. The ultimate goal of physiological
computing is to enable programs and robots to modify their behavior in response to a
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user’s psycho-physiological state, which will allow them to interact in a socially intelligent
and acceptable manner. A visual representation of physiological computing is shown in
Figure 1.

Figure 1. Physiological computing can play a role in the field of human–robot collaboration (HRC),
where it is assumed that the behavior of the robot will affect the human’s physiological response,
such as changes in velocity or acceleration. By monitoring human physiological responses during
collaboration, valuable information can be obtained about the human’s psycho-physiological state,
which can then be used to enhance collaboration, making it safer and more seamless. Therefore,
physiological computing is an essential component of HRC that facilitates effective human–robot
interaction by providing critical insight into the user’s physiological state, which can guide the robot’s
behavior accordingly.

Physiological computing has affected many fields, such as human–computer interac-
tion, E-learning, automotive, healthcare, neuroscience, marketing, and robotics [5]. As an
example of E-learning, physiological computing can help the tutor modify the presentation
style based on students’ affective states such as interest, boredom, and frustration. In the
automotive field, it can be used as an alert system in for surrounding vehicles when the
driver is not paying attention to the road. In social robotics, physiological computing can
help robotic pets to enhance realism.

According to NSF Research Statement for Cyber Human Systems (2018–2019), “im-
prove the intelligence of increasingly autonomous systems that require varying levels of
supervisory control by the human; this includes a more symbiotic relationship between
human and machine through the development of systems that can sense and learn the
human’s cognitive and physical states while possessing the ability to sense, learn, and
adapt in their environments” [6]. Thus, to have a safe environment, a robot should sense
human’s cognitive and physical state, which will help to build the trust between humans
and robots.

In a human–robot interaction setup, a change in a robot’s motion can affect human
behavior. Experiments such as [7,8] revealed similar results. The literature review in [9]
highlights the use of the ‘psycho-physiological’ method to evaluate human response and
behavior during human–robot interactions. In our opinion, the continuous monitoring
of physiological signals during human–robot tasks is the first step in quantifying human
trust in automation. The inferences from these signals and incorporating them in real-time
to adapt robot motion can enhance human–robot interactions. Such a system capable
of ‘physiological computing’ will result in a closed human-in-the-loop (also known as a
‘biocybernetics loop’ [10]) system where both humans and robots in an HRC setup are
monitored and information is shared. This approach could result in better communication,
which would improve trust in automation and increase productivity.

According to Fairclough, physiological computing can be divided into two categories.
The first category is a system of sensory-motor function, which is related to extending body
schema [10]. In this category, the subject is aware that he/she is in control. For example,
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an electromyography (EMG) sensor placed on the forearm can be used as an alternative
method for typing [11], or it can control a prosthetic arm. Similarly, brain–computer interac-
tion (BCI) provides an alternative way to type via an electroencephalogram (EEG) headset.

The second category concerns creating a representation of physiological state through
monitoring and responding to simultaneous data originating from a psycho-physiological
interaction in the central nervous system [10]. This category is also known as biocybernetics
adaptation. The biocybernetics adaptation needs to detect spontaneous changes in the
user’s physiological state. Thus, the system can respond to this change. The biocybernetics
adaptation has many applications such as emotional detection, anxiety detection, and
mental workload estimation. For example, based on mental workload, the amount of data
displayed can be filtered to reduce the workload in flight simulation. A computer game
can change difficulty levels based on the player’s anxiety levels.

4. Physiological Signals

The representation of a human’s psycho-physiological state requires a complex analy-
sis of physiological signals. Hence, to estimate the psycho-physiological state, a variety of
physiological signals were used such as electrocardiogram (ECG), photoplethysmography
(PPG), galvanic skin response (GSR) (also known as electrodermal activity (EDA)), electroen-
cephalography (EEG), electromyography (EMG), respiration rate (RSP), and pupil dilation.

In addition to the commonly used physiological signals in human–robot interactions
(HRCs), there are several other signals that have potential usage in HRC research. These
include arterial blood pressure (ABP); blood volume pulse (BVP); phonocardiography
(PCG) signals; electrooculogram (EOG); functional near-infrared spectroscopy (fNIRS); and
biomechanical/biokinetic signals such as acceleration, angular velocity, angle near joints,
and force, which are generated by human movements. However, these signals are either
not very common or difficult to collect. Therefore, in this survey paper, we have chosen to
focus solely on the commonly used signals in HRC.

4.1. Electroencephalogram (EEG)

The EEG is a method to measure the electric activity of the neurons in the brain. The
EEG signal is a complex signal; thus, extensive research is presently conducted in the field
of neuroscience psychology. The EEG signal can be collected in invasive or non-invasive
methods. The non-invasive method is widely used to collect the brain’s activity. The
invasive method has started to become more available, and it is promising [12]

Researchers categorized EEG signals based on the frequency band: delta band (1–4 Hz),
theta band (4–8 Hz), alpha band (8–12 Hz), beta band (13–25 Hz), and gamma band
(>25 Hz). The results showed that the delta band has been used in several studies such as
sleeping [13]. The theta band is related to brain processes, mostly mental workload [14,15].
It has been shown that alpha waves are associated with relaxed wakefulness [16], and beta
waves are associated with focus attention or anxious thinking [17]. Finally, in the gamma
band, it is not clear what the gamma band oscillation reflects.

It can be argued that wearing an EEG cap while working can be uncomfortable.
However, it must be noted that in industry, workers are required to wear a helmet or a hat.
With the advent of IoT systems and wireless communication, the size of the EEG sensors
shrinks; hence, they can be embedded into a headphone [18].

4.2. Electrocardiogram (ECG)

The ECG is a widely used non-invasive method for recording the electrical activity of
the heart, first developed by Dr. Willem Einthoven in 1902 [19]. By measuring the electrical
signals generated by the heart, the ECG can provide valuable information about the heart’s
function and detect diseases such as atrial fibrillation, ischemia, and arrhythmia.

The ECG signal is characterized by a repeating pattern of heartbeats, with the QRS
complex being the most prominent and recognizable feature. Typically lasting between 0.06
and 0.10 s in adults [20], the QRS complex is used to determine heart rate (HR), which is
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the number of R peaks observed in one minute. While other methods exist to measure HR,
the ECG is the most accurate and reliable as it directly reflects the heart’s electrical activity.

Another valuable metric extracted from the ECG is heart rate variability (HRV), which
measures the time elapsed between consecutive R peaks. HRV has been shown to be
useful in detecting heart disease, such as atrial fibrillation (AF), and can also be affected
by an individual’s state, such as exercise or rest. Sudden changes in HRV may indicate a
change in emotional state or heart disease. Recent research has shown a positive correlation
between HRV and emotion, indicating that it may have potential applications in emotional
detection [21].

4.3. Photoplethysmography (PPG)

The photoplethysmogram (PPG) is a low-cost and convenient method that provides
an alternative to the traditional ECG approach for measuring heart rate and heart rate
variability. Using a light source and photon detector placed on the skin, PPG technology
measures the amount of reflection of light, which corresponds to the volumetric variations
of blood circulation. Unlike the ECG signal, which uses the QRS complex, the PPG signal
relies on the inter-beat-interval (IBI) for heart rate and HRV calculations.

The PPG method offers several advantages over the ECG approach. The ECG electrode
placement is complicated and is prone to the effects of motion noise. However, PPG can be
easily and non-invasively measured on the skin. Lu et al. demonstrated the feasibility of
using PPG for heart rate and heart rate variability measurements, indicating its potential as
an alternative to the ECG method [22].

4.4. Galvanic Skin Response/Electrodermal Activity

Galvanic skin response (GSR) or electrodermal activity (EDA) is a physiological signal
obtained by measuring skin conductivity. The conductivity of skin changes whenever
sweat glands are triggered. This phenomenon is an unconscious process controlled by
the sympathetic division of the autonomic nervous system. The sympathetic division is
activated when exposed to emotional moments (fear, happiness, or joy) or undesirable
situations. Hence, it triggers the sweat glands, heart, lungs, and other organs; as a result, the
hands become sweaty, the heart rate increases, and the breathing rate becomes excessive.

The GSR signal is used in various fields such as physiological research, consumer
neuroscience, marketing, media, and usability testing. The GSR signal is a non-invasive
method that uses two electrodes placed on the palms of the hands, fingers, or foot soles,
which are the commonly used locations for emotional arousal. The GSR signal has two
components: tonic level; skin conductance level (SCL); and phasic response, known as
skin conductance response (SCR). The tonic level changes and varies slowly. It also may
vary between individuals and their skin dryness, and hydration. Thus, it does not provide
valuable information about the sympathetic division. Unlike the tonic level, the phasic
response changes and alternates faster. All of these changes and deviations are directly
related to reactions coming from the sympathetic division under the autonomic nervous
system. The phasic response is sensitive to emotional arousal and mental load. Thus, the
phasic response provides essential information about the physiological state.

The GSR signal provides valuable information about the strength of arousal, whether
it is decreasing or increasing. However, positive and negative events (moments) may have
similar GSR signal outputs. Therefore, the GSR signal should be used with another sensor
such as EEG, ECG, EMG, or pupil dilation.

4.5. Pupil Dilation/Gaze Tracking

Human visual attention can be detected by eye movement, and this information is crit-
ical for neuromarketing and psychological study [23]. Gaze tracking provides information
about where the subject is looking. This information also can be used in other fields such
as robotics. For example, if the robot knows a co-worker is not paying attention in a critical
operation, the robot can take an action to notify the co-worker.
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The eye not only provides information about where we are looking but also provides
information about pupil dilation. Pupil dilation is a measurement of change in pupil
diameter. Although pupil dilation can be caused by ambient or other light-intensity
changes in the environment, it has been shown that it can dilate due to emotional change
as well [24].

4.6. Electromyography (EMG)

The EMG is a non-invasive method that measures electrical activity generated by a
muscle. The EMG has been used in biocybernetics loop applications as a control input
for a system or robot [25]. Another example of EMG is using facial muscles to provide
information about sudden emotional changes or reactions [26,27].

4.7. Physiological Signal Features

Deep learning algorithms can learn from raw data, but they require a large dataset,
which can be difficult to obtain. Compared to deep learning models, classical machine
learning (ML) algorithms usually require features for training. Hence, features need to be
extracted from signals. There are different methods of extracting features from a signal,
such as the time and frequency domain. There are open-source libraries that simplify
feature extraction tasks, such as the time series feature extraction library (TSFEL), tsfresh,
and NeuroKit2. These libraries offer a range of automated feature extraction capabilities,
with TSFEL extracting up to 60 different features [28–30]. In Table 1, commonly used
features based on signal types are listed. Additionally, discrete wavelet transform can also
be used as a feature extractor. Al-Qerem et al. have extensively studied the use of wavelet
transform for EEG signals [31].

Table 1. Commonly used physiological metrics extracted from the ECG, GSR, pupillometry, and
EEG signals.

Signal Type Feature Description

ECG

MeanNN The mean of the RR intervals.

SDNN The standard deviation of
the RR intervals.

RMSSD

The square root of the
mean of the sum of successive
differences between adjacent
RR intervals.

SDSD
The standard deviation of
the successive differences
between RR intervals.

pNN50
The proportion of RR intervals
greater than 50 ms, out of
the total number of RR intervals.

pNN20
The proportion of RR intervals
greater than 20 ms, out of the
total number of RR intervals.

LF The spectral power of
low frequencies.

HF The spectral power of
high frequencies.
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Table 1. Cont.

Signal Type Feature Description

GSR

Amp. Mean Mean value of peak amplitude

Amp. Std Standard deviation of
peak amplitude

Phasic Mean Mean value of phasic signal

Phasic Std Standard deviation of
phasic signal

Tonic Mean Mean value of tonic signal

Tonic Std Standard deviation of
tonic signal

Onset Rate Number of onsets per minute

Pupillometry
Pupil Mean Mean value of pupil signal

Pupil Std Standard deviation of
pupil signal

EEG

MAV Mean absolute value

ZC Zero crossing

SSC Slope sign changes

SKE Skewness of EEG signal

Kurtosis Kurtosis of EEG signal

Entropy Entropy of EEG signal

SEntropy Spectral entropy of EEG signal

In addition to Deep Learning and Classical ML, there are other methods that rely on
subsequence search and similarity measurement and that are more suitable for real-time
applications. For example, time series subsequence search (TSSEARCH) is a Python library
that focuses on query search and time series segmentation [32]. Similarly, Rodrigues et
al. proposed a practical and manageable way to automatically segment and label single-
channel or multimodal biosignal data using a self-similarity matrix (SSM) computed with
signals’ feature-based representation [33].

5. Data Collection Methods

Collecting high-quality data is crucial in physiological computing systems since it
enables the extraction of desired information from signals. There are several methods
available for collecting physiological signals, and we will cover the most commonly used
ones in this section, as shown in Figure 2.

Figure 2. Four data collection methods: baseline, pre, during and post/after trial.
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5.1. Baseline

The baseline method is a way of defining what is considered normal or typical, which
is then used as a reference point during an experiment or study. This approach is often
used in biocybernetic adaptation applications, such as estimating anxiety levels during
computer games [34,35]. To apply the baseline method in this context, researchers typically
record a subject’s physiological signals before the game, marking this as the baseline. They
then use this information to create thresholds and make decisions during the game. For
instance, the game’s difficulty level may be adjusted automatically based on the player’s
anxiety levels, and the difficulty may be lowered to improve the player’s experience.
Overall, the baseline method provides a useful framework for measuring and responding
to physiological signals in real-time, which can enhance the effectiveness of interventions
in various domains.

5.2. Pre-Trial

Compared to the baseline data collection method, the pre-trial data collection method
involves collecting physiological data before each trial. These data describe the participant’s
physiological state before the trial. For instance, in a study conducted by Dobbins et al. [36],
participants were asked to complete a questionnaire before and after their commute for five
working days. The questionnaire was used to measure the participants’ stress levels while
driving. This approach enables researchers to identify changes in participants’ physiological
state before and after the trial, providing valuable information about their daily commute.

However, this approach has its limitations. It requires participants to answer the same
questions multiple times, which can be overwhelming and may affect the quality of the data
collected. Therefore, researchers need to find ways to minimize the burden on participants
while collecting accurate and reliable data.

5.3. Post/After Trial

Post-trial data collection is a commonly used technique in which a visual stimulus
is presented to the subject, and the subject evaluates the stimulus by answering a ques-
tionnaire after the trial. For instance, in a study by Kumar et al. [37], participants worked
with a UR-10 robot to perform an assembling task. The participants then completed a
post-questionnaire to provide feedback on their experience.

Although this approach is widely used and provides valuable insight into participants’
perceptions, it has some limitations. The subjective nature of post-questionnaires may lead
to biased responses, and participants may have difficulty recaling their experience accu-
rately. Therefore, researchers need to design their post-questionnaires carefully and ensure
that they are appropriate for the study’s objectives to obtain reliable and valid data. Addi-
tionally, researchers may consider using complementary data collection techniques, such as
physiological measurements, to validate the results obtained through post-questionnaires.

5.4. During Trial

The during-trial data collection method involves asking the same question to par-
ticipants during an ongoing trial, as depicted in Figure 2. This approach is valuable for
monitoring trial progress, as evidenced by Sahin et al. [38], who collected perceived safety
data during the trial and demonstrated that during-trial data collection provides more
information than the after-trial method.

To ensure the integrity of the experiment, two critical aspects of during-trial data
collection must be considered. Firstly, it is essential to limit the number of questions
asked since the trial has not yet concluded. Secondly, data entry should be effortless.
Instead of using pen and paper to collect participant data, it would be advantageous to
provide an app that enables participants to enter their responses using taps on a tablet’s
screen. Alternatively, recording participant audio feedback during the trial may improve
during-trial data collection.
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In conclusion, during-trial data collection methods provide additional information, but the
questionnaire should have a limited number of questions to maintain the experiment’s integrity.

6. Data Labeling

After data collection, physiological signals need to be labeled. In some cases, the
labeling can be cumbersome, especially in biocybernetics adaptation. This section will
discuss commonly used data labeling techniques as shown in Figure 3.

Figure 3. Data collection methods.

6.1. Action/Content-Related Labeling

Action/content-related labeling is commonly used in visual-stimuli-type experi-
ments [39–41]. In a visual experiment, the exact time of the shown image or video is
known. Thus, the physiological signal can easily be labeled with a corresponding label.
Similarly, in an action-related experiment, the amount of time for which the subject is
repeating the gesture/action is known; thus, a window that captures the gesture can be
labeled accordingly [11]. Savur et al. talk about the critical aspect of data collection and
labeling in HRC settings. They provide case studies for a human–robot collaboration
experiment that has building signal synchronization and automatic event generation [11].

Action/content labeling is the simplest way of labeling, and it can be carried out
during the data collection process. Thus, this method is widely adopted in different fields
such as physiological study, marketing, emotion detection, and other related factors.

6.2. Subjective Labeling

The questionnaire is a widely used tool in quantitative research, including in HRC
studies. In human–robot collaboration research, questionnaires are essential for evaluating
the effectiveness of various methodologies. For instance, Kumar et al. [37] used subjective
responses obtained through questionnaires to compare their speed and separation moni-
toring methods with state-of-the-art techniques. Similarly, in emotion detection research,
questionnaires are used to evaluate subjective responses to different scenes that may elicit
different emotions [42]. Dobbins et al. [36] employed pre- and post-surveys to evaluate the
impact of their experiment on the subjects. The survey results were quantitatively analyzed
to determine if the experiment had a positive, negative, or neutral effect.

Questionnaires are useful in quantifying the subject’s preferences and evaluating
the proposed methodology. Although it is common to use questionnaires, there is no
standardized set of questions that researchers follow [43]. Generally, researchers create their
own set of questions or modify an existing questionnaire to suit their research hypothesis.
Below are some commonly used questionnaires in HRC research.

• Godspeed was designed to standardize measurement tools for HRI by Bartneck et al. [44].
Godspeed focused on five measurements: anthropomorphism, adaptiveness, intelligence,
safety, and likability. Godspeed is commonly used, and it has been translated into differ-
ent languages.

• NASA TLX was designed to measure subjective workload assessment. It is widely
used in cognitive experiments. The NASA TLX measures six metrics: mental demand,
physical demand, temporal demand, performance, effort, and frustration [45].

• BEHAVE-II was developed for the assessment of robot behavior [46]. It measures the
following metrics: anthropomorphism, attitude towards technology, attractiveness,
likability, and trust.
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• Multidimensional Robot Attitude Scale (MRAS) is a 12-dimensional questionnaire
was developed by Ninomiya et al. [47]. The MRAS measures a variety of metrics such
as familiarity, ease of use, interest, appearance, and social support.

• Self-Assessment Manikin Instrument (SAM) consists of 18 questions that measure
three metrics of pleasure, arousal, dominance [48]. Unlike most surveys, the SAM uses
a binary selection of two opposite emotions: calm vs. excited, unhappy vs. happy, etc.

• Negative Attitude toward Robots Scale (NARS), developed to measure negative
attitudes toward robots in terms of negative interaction with robots, social influence,
and emotions in interaction with robots. Moreover, the NARS measures discomfort,
anxiety, trust, etc. [49].

• Robot Social Attributes Scale (RoSAS) is a survey that seeks to extract metrics of
social perception of a robot such as warmth, competence, and discomfort [50].

• STAXI-2 consists of 44 questions that measure state anger, trait anger, and anger
expression [51].

7. Relevant Works

Table 2 shows some of the related works that are categorized in terms of stimuli type,
sample size, data collection method, data labeling technique, and the machine learning
algorithm used in the field of physiological computing.

Table 2. The table shows related research that is tabulated based on bio-signal, number of subjects,
data collection, and labeling type.

Reference Bio-Signals Sample Size Stimuli Data Col. Type Label Type Algorithm Target

Kulic et al. [7] SC, HR, EMG 36 Robot trajectory After trial Subjective (custom) Fuzzy inference Arousal, valence

Kulic et al. [52] SC, HR, EMG 36 Robot trajectory After trial Subjective (custom) HMM Arousal, valence

Nomura et al. [49] None 240 Interaction with robot After trial NARS Statistical analysis Negative attitude

Villania et al. [35] Control Robot arm 21 Interaction with robot Baseline Subjective (custom) Thresholding Stress

Landi et al. [53] HRV (Smartwatch) 21 Teleoperation Baseline Subjective (custom) Thresholding Stress

Rani et al. [54] ECG, EDA, EMG NA Control mobile robot Baseline Subjective (custom) Fuzzy inference Affective state

Lui et al. [55] ECG, EDA, EMG 14 Control robot arm Baseline Subjective (custom) Regression tree model Affective cues

Rani et al. [34] ECG, EDA, EMG 15 Game Baseline Subjective (custom) KNN, Bayesian Compare learning,
algorithm

Hu et al. [56] EEG, GSR 31 Car simulation Baseline Subjective (custom) LDA, LinearSVM, LR,
QDA, KNN Measuring trust

Rani et al. [57]
ECG, ICG, PPG,
Heart Sound, GSR,
and EMG

15 Game Baseline NASA TLX Regression tree Affective state

Erebak et al. [58] None 102 Robot’s appearance After trial Subjective (custom) Statistical analysis Anthropomorphism
of robot

Butler et al. [59] None 40 Mobile robot behavior After trial Subjective (custom) Statistical analysis Psychological aspect

Rahim et al. [60] EEG, IBI, GSR 15 Wheelchair Baseline STAI ANOVA, LDA,
SVM, and SLR Stress estimation

Dobbins et al. [61] ECG, PPG 21 Commute (car) Before/after trial STAXI-2, UMACL LDA, DT, and kNN Negative emotion

Ferrez et al. [62] EEG 3 HRI After trial Subjective (custom) Gaussian classifiers Error-related potential

Ehrlich et al. [63] EEG 6 HRI After trial Subjective (custom) SVM Error-related potential

Val-Calvo et al. [64] EEG, GSR, PPG 18 Visual After trial Subjective (custom) Ada-Boost,
Bayesian, and QDA

Arousal, valence

Mower et al. [65] GSR 26 HRI - - KNN User state estimation

Novak et al. [66]
ECG, GSR, RPS,
Skin Temp., EEG,
and Eye tracking

10 HRI After trial NASA TLX RF Workload

Iturrate et al. [67] EEG 12 HRI After trial NASA TLX Reinforcement learning Error signal

Ehrlich et al. [68] EEG 13 HRI - Action (key press) LDA Error signal

Salazar-Gomez et al. [69] EEG 12 HRI After trial Subjective (custom) LDA Error signal

Dehais et al. [70] GSR, Pupil, Gaze 12 HRI (hand-over task) After trial Subjective (custom) Statistical analysis Metrics

Sahin et al. [38] GSR, Pupil, ECG 20 HRI During and After
Trial Subjective (custom) Statistical analysis Perceived safety

Savur et al. [71] GSR, Pupil, ECG 36 HRI During and After
Trial Subjective (custom) Circumplex model Comfort index
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There are many studies that focus on estimating a person’s emotional state, human
stress level, and cognitive state through physiological signals. In addition, there are other
researchers investigating the psychological aspects of robot behavior [59].

Kulic et al. [7] present a method to calculate the danger index by using distance
and relative velocity between a human and a robot, and the inertia of the closest point to
the human as suggested in [72]. Then, the real-time calculated danger index is used to
control the robot’s trajectory on a real robot. Similarly, the same authors [52] tried to detect
anxiety triggered by two trajectory planners. Biological signals and subjective responses
were collected from subjects during the experiment. The result of the subjective responses
from the experiment showed that the subjects felt less anxiety during a safe planner than
the classical planner. Moreover, the researcher found that the corrugator EMG signal did
not help to estimate arousal and valence. However, they have found a strong positive
correlation between anxiety and speed, and surprise and speed, and a negative correlation
between calm and speed. Kulic and Croft in [26,73] present an extension work of the
previous study [52] showing that the hidden Markov model (HMM) outperforms fuzzy
inference at estimating arousal and valence from physiological signals.

Nomura et al. [49] investigated negative attitudes toward robots and developed a
measurement scale called the “Negative Attitude towards Robot Scale” (NARS). One of the
interesting results from this study shows that male students have fewer negative attitudes
toward interactions with robots than female students in Japan. However, the authors
propose a physiological experiment to be conducted to understand the human mental
state during human–robot interactions. Additionally, the authors mention that this result
may differ for other cultures since proxemics preferences [74] are different from culture to
culture.

Villani et al. [35] introduced a framework that takes human mental health into account
to simplify a task in an industrial setup to improve the interaction between humans and
robots. The authors used a smartwatch to measure heart rate variability (HRV) to estimate
stress by applying a threshold. In order to find the thresholds for stress and resting, a
subject’s HRV signal was collected just before the experiment was started. In the experiment,
the subject’s task was to navigate a mobile robot using hand gestures provided by the
smartwatch IMU (roll, pitch, and yaw). While the subject was controlling the robot, his/her
mental state was measured, and the speed of the robot halved when the subject was stressed.
Reducing the robot speed extended the task-completion time; as a result, efficiency was
reduced.

The authors of [53] analyzed the mental workload of an operator for an industrial
setup where the operator teleoperates the task. The authors collected an HRV signal for
2.5 min of resting state and 2.5 min of stress state (“creating stress by listening to loud
music and counting numbers”); the model was used in a teleoperated task where virtual
fixtures appear on the screen for the operator only based on the subject’s stress level. Their
system predicts stress every 2.5 min, which is a drawback of the system.

Villani et al. [35] tried to develop a system that estimates the affective state of a human
through wearable sensors. The authors used fuzzy inference, which uses features extracted
from ECG, EDA, and EMG signals. They also designed an experiment that allowed a user
to communicate with a mobile robot implicitly. As a result, cardiac activity is a strong
indicator of anxiety.

Liu et al. [55] designed a system that used effective cues to improve human–robot
interactions. The authors used various biometrics such as ECG, EDA, and EMG, and
multiple features were extracted. The study consisted of two phases. The first phase was
developing a regression tree model for the classification of anxiety. In the second phase, the
model was used to set the game’s difficulty based on the player’s anxiety. As a result, the
participant reported a 71% increase in satisfaction while the anxiety-based task was active.

Rani et al. [75] compared the four most common learning algorithms: K-nearest
neighbor, regression tree (RT), Bayesian network, and support vector machine (SVM), on
biological signals to detect affect recognition. The results of the experiment showed that
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SVM outperforms other algorithms with 85.81% accuracy to classify three classes. However,
RT was the fastest algorithm and is more suitable for real-time applications. Tan et al. [76]
defined the important aspects of human–robot collaboration in factory settings. In addition,
two experiments were proposed as a case study. The first case study investigated the effect
of robot motion speed, and the second was conducted to see the effect of the human–robot
distance. The experiment results showed that mental workload is in direct proportion to
the robot’s speed and inversely propitiation to distance.

Arai et al. [77] investigated the effects of the distance from a subject and the speed of
the robot on the subject’s mental state by using only skin conductivity sensors. As a result,
research suggests that the distance between an operator and a robot should be more than
two meters and the speed of the end effector 500 mm/s. In addition, notifying the operator
about robot speed reduces an operator’s mental strain.

Schirner et al. [78] discussed the future of human-in-the-loop cyber-physical systems,
gave possible applications, and explained the framework they are working on. The pur-
posed framework receives biometrics and estimates human intention from signals where
this kind of system is helpful for locked-in individuals. Hu et al. [56] experimented on
an estimated human trust index model using EEG and GSR sensors in real-time. In their
experiment, they asked users to evaluate a virtual sensor reading in simulation. Based
on sensor accuracy and the subject’s response, their results show that using physiological
signals to estimate human trust level is promising.

The authors of [60] introduce a multi-modal emotional state detector using multiple
devices. Their experiment focuses on short-term GSR and heart rate, short-term GSR
and EEG, and long-term GSR and heart rate characterization. Rani et al. [57,79] tried to
analyze anxiety-based affective implicit communication between a human and a robot.
The researcher used ECG, EDA, EMG, and temperature signals in the regression tree and
fuzzy inference engine. Their results show that the detection of anxiety using physiological
signals is promising and may show better results in the future.

As computer games become more popular, Rani et al. [34] are trying to keep computer
games engaging by using physiological signals. The authors estimate a gamer’s effective
state in real-time and alter game difficulty. The results show that performance improves
and creates lower anxiety during gameplay. Erebak et al. [58] conducted an experiment
among caregivers. Their result shows that human-like robots and typical robots are not
different, there is a moderate correlation between trust in automation and intention to
work with robots, and there is a weak positive correlation between trust in automation and
preference of automation.

Dobbins et al. [36] used a wristband that recorded GSR signal during the day. Their
study was to estimate negative emotions such as stress. The GSR signal from six subjects
was collected during the day, with two surveys per day used for the labeling.

Ferrez et al. used EEG signals to detect error-related potentials (ErrP) when the subject
makes a mistake. Their results show that the estimation of ErrP is promising and can be
used in HRI [62]. Ehrlich et al. investigated the usage of EEG signals to detect intention
to initiate eye contact when a robot needs to engage with humans [63]. Val-Calvo et
al. proposed a framework that uses multiple signals of EEG, HR, and GSR to estimate
emotions while the subject is watching TV that can be used in HRI applications [64]. Mower
et al. used physiological signals to estimate engagement implicitly. GSR, skin temperature
signals, and KNN were used to estimate user engagement with an accuracy of 84.73%. The
author suggests that implicit cues can be used in HRI applications [65].

Novak et al. used ECG, GSR, RPS, skin temperature, EEG, and eye-tracking signals
to estimate a human’s workload and effort. During trials, subjects were asked to fill out a
NASA-TLX questionnaire [66]. Iturrate et al. used physiological signals to detect ErrP from
EEG signals; they used both simulation and an actual robot in their experiments. Their
results show that the brain–computer interface can be used as a continuous adaptation
when there is no explicit information about the goal [67]. Ehrlich et al. tried to validate
robot action implicitly by using EEG signals. In their proposed approach, they focused on
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ErrPs, and their results showed a classification accuracy of 69.0% for detection of incorrect
robot action [68]. Similarly, Salazar-Gome et al. used EEG signal with error-related potential
to fix the robot’s mistake during the task. In the experiment, they used a Baxter robot to
make decisions based on EEG signal in real-time [69]. Dehais et al. focused on handover
tasks from robots to humans and collecting the physiological signal during the task. Their
results showed that the physiological response varies according to the robot’s motions [70].

Savur et al. [71] conducted a study where they collected physiological signals, includ-
ing ECG, GSR, and pupillometry, from subjects during trials. The subjective responses
were used to map emotions to arousal and valence domains. The authors also calculated
a comfort index to determine the axis of discomfort on the arousal and valence domain.
Based on the calculated comfort index, the velocity of robot behavior was adjusted to reduce
discomfort as the subject became more uncomfortable. This study highlights the impor-
tance of considering subjective comfort when designing robot behavior and demonstrates
the potential for physiological signals to be used as a feedback mechanism for controlling
robot behavior.

In summary, the studies reviewed in this survey aim to estimate the emotional and
cognitive state of humans during human–robot interactions. Different algorithms have
been used for this purpose, such as fuzzy inference, the hidden Markov model, K-nearest
neighbor, regression tree, Bayesian network, and support vector machine. Each algorithm
has its own advantages and disadvantages in terms of accuracy, computational cost, and
real-time applicability. The generalizability and universality of the algorithms depend on
the type and number of physiological signals used, as well as the cultural and personal
factors that affect the emotional and cognitive states of humans [74]. Therefore, it is
important to conduct further experiments in different cultures and populations to validate
the applicability of these algorithms in real-world scenarios.

8. Discussion

This survey paper provides an overview of state-of-the-art methods in physiological
computing, including commonly used physiological signals, data collection techniques,
data labeling techniques, and questionnaire methods. While this paper is not exhaustive,
it presents a comprehensive summary of current techniques and highlights the need for
continued development in this field.

In the field of HRI applications, safety and fluency are critical in the industrial stan-
dards. While current safety standards address a range of potential hazards, they may not
be comprehensive enough to ensure maximum safety. Therefore, the implementation of
new standards and personal adaptive methods is crucial to further enhance safety. One
promising approach is physiological computing, which has the potential to improve the
safety and fluency of HRI applications by personalizing the interactions between humans
and robots. As such, it is anticipated that multiple variations of physiological computing
will be developed in the near future, which will further enhance the safety and fluency of
human–robot applications.

As the wearable technology industry continues to progress, it is becoming more acces-
sible for researchers and companies to incorporate these technologies into their work. This
includes the integration of new and advanced sensors, which are becoming more affordable
as their production becomes more mainstream. By utilizing these new technologies, it
is possible to enhance the collaboration between humans and robots, allowing for more
seamless and intuitive interactions. As the field continues to evolve, it is likely that we
will see even more innovative uses for multi-modal sensor systems, which will have a
significant impact on the future of human–robot collaboration. In addition to HRC, another
area that benefits from these sensors is activity recognition, which can also be used as input
to HRC applications. Liu et al. recently published material by ten high-quality researchers
in the field of activity recognition [80].

Although data collection is a challenging step, it is an essential input for physiological
computing. The quality of the data is a key factor for physiological computing systems.
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Therefore, widely used data collection techniques need to be preferred and new innovative
methods implemented. One drawback of HRI application is a lack of open-source datasets.
Future research works need to implement their own experiments and collect data. Public
datasets will allow researchers to compare and improve existing methods while maximizing
time and effort.

Similar to data collection methods, data labeling also lacks protocols. Presently, there
is an absence of any standard protocol for data labeling. Researchers label their data based
on the experiment, and this makes it difficult to reproduce and compare the results.

In conclusion, this survey article discussed the commonly used physiological signals,
data collection methods, data labeling methods, and questionnaires. We also categorized
physiological computing research in terms of stimuli and data collection type used during
experiments, data labeling methods, and machine learning algorithms. We are hoping that
this paper will provide a framework for future researchers to select a suitable approach for
future physiological computing systems.
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