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Abstract: In this paper, the problem of distributed adaptive consensus tracking control for second-
order nonlinear heterogeneous multi-agent systems (MASs) with input quantization is considered. A
distributed output feedback control scheme based on a K-filter is developed to suppress the influences
of unknown disturbances and input quantization. In contrast to existing approaches, an additional
design parameter is introduced into the controller design to ensure that the subsystem tracking error
converges to an arbitrarily small residual set. Through Lyapunov stability analysis, it can be proved
that the proposed control scheme can achieve distributed consensus tracking control of second-order
nonlinear heterogeneous MASs. In addition, all signals in the closed-loop system are shown to
be globally uniformly bounded. Finally, a practical example demonstrates the effectiveness of the
proposed control method.

Keywords: multi-agent system (MAS); consensus tracking control; distributed output feedback;
input quantization

1. Introduction

In recent years, cooperative control of multi-agent systems (MASs) has attracted a lot
of attention, such as for unmanned aerial vehicle formation [1], wireless sensor networks [2],
and multi-robot manipulator collaboration [3]. Compared with a single agent, MASs can
accomplish complex control tasks through division of labor and cooperation among agents.
Researchers have developed many effective cooperative control schemes for MASs.

The consensus problem of MASs has been a hot research topic in the field of coop-
erative control, and many outstanding research results have been presented, such as the
mean square consensus problem [4], the consensus optimization problem [5], the robust
consensus problem [6], and the adaptive consensus problem [7]. Different from the general
consensus control problem, consensus tracking control requires each agent to track a dy-
namic desired trajectory and, thus, has broader application prospects. In [8], a consensus
tracking control scheme was developed for linear leader-follower networks by designing
a class of distributed reference observers. In [9], an extra estimator was designed for
each agent to solve the consensus tracking control for nonlinear high-order MASs with
unknown parameters. In [10], an event-triggered consensus control scheme was proposed
for switched stochastic nonlinear systems to reduce the communication traffic. The above
research results assume that all agents have the same dynamical model. In some practical
applications, different agents need to be equipped with different devices to accomplish com-
plex control tasks—the corresponding systems are called heterogeneous MASs. In [11,12],
the consensus problem and the mean-square consensus problem of heterogeneous MASs
were studied, and the conditions for the system to achieve consensus were given. In [13],
consensus protocols were proposed for second-order heterogeneous dynamic agents, and
the sufficient conditions for all agents to reach consensus were given. However, in the
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above literature, it is assumed that the states of agents can be observed, which may not be
satisfied in practical applications.

In the past decade, distributed control schemes for MASs using only system outputs
have been widely studied. For example, in [14], a distributed cyclic small gain output
feedback control scheme was developed for nonlinear MASs. In [15], a distributed observer
was designed to solve the output regulation problem when the follower cannot directly ob-
tain the external system state. In [16], the bipartite consensus problem for continuous-time
MASs was studied, and a dynamic output feedback method was proposed to design bi-
partite consensus controllers. In [17], considering switched directed networks, a formation
tracking control scheme using the output information of agents was designed. However,
the dynamics of all agents considered in the above literature are the same. According to
the above analysis, it is more practical to study the distributed output feedback consensus
tracking control of heterogeneous MASs, which is the first motivation for this paper.

Quantitative control has been widely used in industrial fields, such as power systems
and network control systems. For example, in order to save limited bandwidth resources
in wireless communication networks, quantization techniques are needed to reduce the
communication rate during information transmission. Information transmission between
agents in MASs generally needs to be quantified due to network bandwidth limitations, and
information quantization will affect the performance and stability of the system. Therefore,
it is necessary to study the influence of signal quantization on the cooperative control of
MASs. In order to avoid chattering, hysteresis quantizers have been intensively studied.
In [18], the consensus tracking control of nonlinear MASs with quantized input was solved
using a new quantizer decomposition method and command filtering neural control. In [19],
based on a prescribed performance function, an adaptive fuzzy event-triggered control
strategy was designed for MASs with input quantization. In [20], a consensus tracking
control strategy was designed for MASs with more general nonlinearities, in which some
online estimators were introduced to reduce the effect of input quantization. The existing
approaches have studied the distributed input quantization consensus tracking control
problem of MASs with the same dynamic model of agents. However, the research on
distributed control of heterogeneous MASs with input quantization is still limited, which is
the second motivation for this paper.

In this paper, a distributed consensus tracking control scheme is designed for second-
order nonlinear heterogeneous MASs. The novelty of the proposed control scheme is
highlighted as follows:

1. Compared with the existing results for distributed consensus tracking control of
MASs with input quantization, the MASs considered in this paper use a more general
dynamic model.

2. Different from the general K-filters in [21–23], an additional design parameter is
introduced into the proposed K-filter, and this design parameter can improve the
estimation performance of the filter.

3. In this paper, the consensus tracking errors of MASs can converge to an arbitrarily
small set by adjusting only one controller parameter. Compared with the results
in [24], the proposed method has a wider range of parameter selections.

This paper is organized as follows. In Section 2, some basic knowledge and preliminary
descriptions are given. In Section 3, a distributed output feedback consensus tracking
control scheme is designed. In Section 4, the effectiveness of the developed scheme is
verified. Finally, Section 5 concludes the paper.

2. Preliminaries and Problem Statement

In this section, some basic information is presented. Then, the distributed consensus
tracking control problem for nonlinear MASs with input quantization is formulated.
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2.1. Notations and Algebraic Graph Basics

For matrices X and Y, X ⊗ Y represents their Kronecker product. λmin(M) and
λmax(M) represent the minimum eigenvalue and maximum eigenvalue of a matrix M,
respectively. ‖ · ‖ denotes the Euclidean norm of a vector or the induced 2-norm of a matrix.

Consider a MAS with N agents. If each agent is regarded as a vertex, the communi-
cation topology among agents can be described by a directed graph G = (V,E), where
V , {1, 2, · · · , N} represents the set of vertices, and E , {(i, j) : i ∈ V, j ∈ Ni} represents
the set of edges. For each agent, the neighbor set is defined as Ni , {j ∈ V: agent i
can receive information from agent j}. A weight aij is assigned to each edge (i, j) ∈ E,
aij = 1 if j ∈ Ni and aij = 0 otherwise. Then, the Laplacian matrix associated with G is
given as L = [rij] ∈ RN×N , where rii = ∑N

j=1,j 6=i aij and rij = −aij (i 6= j). The digraph G
contains a directed spanning tree if at least one node has a directed path to all the other
nodes, and this node is called the root node. In addition, the adjacency matrix is defined
asH = diag{h1, · · · , hN}, and hi > 0 if the desired trajectory can be obtained directly by
agent i and hi = 0 otherwise.

2.2. Problem Formulation

Consider a second-order nonlinear heterogeneous MAS, the dynamics of each agent
are as follows: 

ẋi,1 = xi,2 + fi,1(yi)θi + ωi,1

ẋi,2 = φi(yi)Qi(ui) + fi,2(yi)θi + ωi,2

yi = xi,1, i = 1, · · · , N

(1)

where xi = [xi,1, xi,2]
T ∈ R2, Qi(ui) ∈ R and yi ∈ R are the system states, quantified

control input, and output of the ith agent, respectively; θi ∈ Rs is an unknown constant
parameter vector; fi,1(yi), fi,2(yi) ∈ R1×s and φi(yi) ∈ R with φi(yi) 6= 0 are smooth
nonlinear functions; and ωi = [ωi,1, ωi,2]

T ∈ R2 are unknown time-varying disturbances.

Remark 1. Note that system (1) can be used to describe many practical application systems, such
as single-link robot manipulator systems [25] and ship formation [26]. In addition, the model
parameters in system (1) can be unknown. Compared with the results in [27–29], the MAS
considered in this paper is more general.

Assumption 1. The communication topology G among agents contains a directed spanning tree.
In addition, the root node has direct access to the desired trajectory.

Assumption 2. The desired trajectory (yr(t), ẏr(t), ÿr(t)) is piecewise continuous and bounded.

Assumption 3. The unknown disturbances ωi are bounded, and there exists an unknown positive
constant ω̄ such that ‖ωi‖ ≤ ω̄.

Remark 2. Assumptions 1–3 are standard requirements in dealing with the distributed consensus
tracking control problem of MASs. Assumption 2 is more relaxed than the existing ones in [30–32],
in which the desired trajectory needs to be linearly parameterized.

This paper considers the hysteresis quantizer, which is modeled as
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Q(u) =



ql , if ql
1+δ < u ≤ ql , Q− ≥ ql or
ql ≤ u < ql

1−δ , Q− ≤ ql ;

q̄l , if ql < u ≤ ql
1−δ , Q− ≥ q̄l or

ql
1−δ ≤ u < ql+1, Q− ≤ q̄l ;

0, if 0 ≤ u ≤ q1
1+δ , or

q1
1+δ < u < q1, Q− = 0;

−Q(−u), if u < 0, l = 1, 2, 3, · · ·

(2)

where ql = ρε1−l , q̄l = (1 + δ)ql , and δ = (1− ε)/(1 + ε). The parameters 0 < ε < 1 and
ρ > 0 determine the quantization density of the hysteresis quantizer (2). Q− represents
the status prior to Q(u), and Q(u) is in the set U = {0,±ql ,±(1 + δ)ql}. The map of the
hysteresis quantizer (2) is plotted in Figure 1.

Figure 1. Hysteretic quantizer.

Remark 3. In contrast to the general quantizer, the hysteresis quantizer (2) can enhance the ability
to reduce chattering. In addition, Q(u) can be rewritten as Q(u) = Ψ1(t)u(t) + Ψ2(t), andΨ1(t) =

Q(u)
u(t) , Ψ2(t) = 0, if |u(t)| ≥ ρ;

Ψ1(t) = 1, Ψ2(t) = Q(u)− u(t), if |u(t)| < ρ.

In view of Figure 1, one has

Ψ1(t) ≥ λ, |Ψ2(t)| ≤ ρ, ∀t ≥ 0

where λ = 2ε/(1 + ε).

The control objective is to design a distributed consensus tracking control scheme
for the second-order nonlinear heterogeneous MAS (1) such that: (i) all signals of the
considered MAS are globally uniformly bounded; (ii) the output of each agent can track
the desired trajectory.

3. Distributed Adaptive Controller Design and Stability Analysis

In this section, a distributed output feedback control scheme is presented for second-
order nonlinear heterogeneous MASs, and it is proved that the proposed distributed control
scheme can ensure the stability of second-order nonlinear MASs.

3.1. State Estimation

For the ith agent, a K-filter is designed to estimate the unmeasured states
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ζ̇i = Aiζi + Giyi

Ξ̇i = AiΞi + fi(yi)

η̇i = Aiηi + E2φi(yi)Qi(ui)

(3)

where ζi ∈ R2, Ξi ∈ R2×s, and ηi ∈ R2 are the filter states; Ai =

[
−τigi,1 1
−τ2

i gi,2 0

]
,

Gi = [τigi,1, τ2
i gi,2]

T , and fi(yi) = [ fi,1(yi), fi,2(yi)]
T ; and τi ≥ 1 is a design parameter; gi,1

and gi,2 are chosen such that the polynomial s2 + gi,1s + gi,2 is Hurwitz; and E2 = [0 1]T .
Then, the state estimation can be expressed as

x̂i = ζi + Ξiθi + ηi. (4)

From (1) and (4), the estimation error x̃i = xi − x̂i satisfies

˙̃xi = Ai x̃i + ωi. (5)

Further, by applying the transformation

εi = ∆i x̃i, ∆i =

[
1 0
0 τ−1

i

]
. (6)

Then, the following error system can be obtained

ε̇i = τi Ai,0∆i x̃i + ∆iωi

= τi Ai,0εi + ∆iωi (7)

where Ai,0 =

[
−gi,1 1
−gi,2 0

]
is Hurwitz.

Consider the following Lyapunov function

Vi,0 = εT
i Piεi (8)

where the matrix Pi > 0 is the solution of AT
i,0Pi + Pi Ai,0 = −3(N + 1)I2.

From Assumption 3 and τi ≥ 1, the derivative of Vi,0 is obtained as

V̇i,0 = −3(N + 1)τiε
T
i εi + 2εT

i Pi∆iωi

≤ −3(N + 1)τiε
T
i εi + εT

i εi + ‖∆i‖2‖Pi‖2ω̄2

≤ −(3N + 2)τiε
T
i εi + ‖Pi‖2ω̄2. (9)

Remark 4. Different from the K-filters in [21–23], an additional design parameter τi is introduced
into the proposed K-filter (3). This design parameter can improve the estimation performance of the
filter in the face of unknown disturbances and quantization errors. After the error transformation,
τi appears in the negative term of (9), which will be useful for the tracking performance analysis in
the next section.

3.2. Backstepping Design Procedure

Now, the distributed backstepping controller is designed. From (1) and (6), the deriva-
tive of yi satisfies

ẏi = x̂i,2 + fi,1θi + τiεi,2 + ωi,1

= ηi,2 + ζi,2 + (Ξi,2 + fi,1)θi + τiεi,2 + ωi,1. (10)

For each agent, some positive scalars ki,1, ki,2, γi,1, γi,2, σi,1, σi,2, σi,3, and $i are intro-
duced as design parameters and define:
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zi,1 =
N

∑
j=1

aij(yi − yj) + hi(yi − yr) (11)

zi,2 = ηi,2 − αi,1 (12)

where αi,1 is a virtual control function. Next, consider the following design steps:
Step 1: From (11), the derivative of zi,1 satisfies

żi,1 = ci ẏi −
N

∑
j=1

aijẏj − hi ẏr

= ci(ηi,2 + ζi,2 + θT
i vi,1 + τiεi,2 + ωi,1)− hi ẏr

−
N

∑
j=1

aij(ηj,2 + ζ j,2 + θT
j vi,j,1 + τjε j,2 + ωj,1) (13)

where ci = ∑N
j=1 aij + hi, vi,1 = (Ξi,2 + fi,1)

T , and vi,j,1 = (Ξj,2 + f j,1)
T .

Consider the following function

V1 =
N

∑
i=1

(
1
2

z2
i,1 +

1
2τi

θ̃T
i Γ−1

i θ̃i +
N

∑
j=1

aij

2τi
θ̃T

i,jΓ
−1
i,j θ̃i,j) (14)

where θ̃i = θ̂i − θi and θ̃i,j = θ̂i,j − θj. Moreover, θ̂i and θ̂i,j are the estimations of θi and θj,
respectively; Γi and Γi,j are positive definite matrices.

In view of (13) and (14), the derivative of V1 satisfies

V̇1 =
N

∑
i=1

[cizi,1(zi,2 + αi,1 + ζi,2 + θT
i vi,1 + τiεi,2 + ωi,1)

− zi,1

N

∑
j=1

aij(ηj,2 + ζ j,2 + θT
j vi,j,1 + τjε j,2 + ωj,1)

− hizi,1ẏr +
1
τi

θ̃T
i Γ−1

i
˙̂θi +

N

∑
j=1

aij

τi
θ̃T

i,jΓ
−1
i,j

˙̂θi,j]. (15)

According to Assumption 3, the following inequalities can be obtained

cizi,1(τiεi,2 + ωi,1) ≤ ci
τi + 1

4
z2

i,1 + ciτiε
T
i εi + ciω̄

2

≤ ci
τi + 1

4
z2

i,1 + Nτiε
T
i εi + Nω̄2 (16)

−zi,1

N

∑
j=1

aij(τjε j,2 + ωj,1) ≤
N

∑
j=1

aij
τj + 1

4
z2

i,1 +
N

∑
j=1

aijτjε
T
j ε j +

N

∑
j=1

ω̄2

≤
N

∑
j=1

aij
τj + 1

4
z2

i,1 +
N

∑
j=1

aijτjε
T
j ε j + Nω̄2. (17)

Choose the first virtual control function

αi,1 =− τiki,1zi,1 − ζi,2 − θ̂T
i vi,1 −

τi + 1
4

zi,1 +
hi
ci

ẏr

+
1
ci

N

∑
j=1

aij(ηj,2 + ζ j,2 + θ̂T
i,jvi,j,1 −

τj + 1
4

zi,1). (18)

Define the following tuning functions
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Ti,1 = ciτiΓivi,1zi,1 − τiσi,1Γi θ̂i (19)

Ti,j,1 = −τiΓi,jvi,j,1zi,1 − τiσi,2Γi,j θ̂i,j. (20)

Substituting (16)–(20) into (15), and noting 1 ≤ ci ≤ N, it follows that

V̇1 ≤
N

∑
i=1

[−τiki,1z2
i,1 + cizi,1zi,2 + Nτiε

T
i εi +

N

∑
j=1

aijτjε
T
j ε j

+
1
τi

Θ̃T
i Γ−1

i ( ˙̂Θi − Ti,1) +
N

∑
j=1

ai,j

τi
Θ̃T

i,jΓ
−1
i,j (

˙̂Θi,j − Ti,j,1)

+ 2Nω̄2 − σi,1θ̃T
i θ̂i − σi,2

N

∑
j=1

aij θ̃
T
i,j θ̂i,j]. (21)

Step 2: Define χi = [ζi,2, ΞT
i,2, ηi,2]

T . The derivative of zi,2 satisfies

żi,2 =φi(yi)Qi(ui) + βi − θT
i vi,2 −

∂αi,1

∂θ̂i

˙̂θi −
∂αi,1

∂yi
(τiεi,2 + ωi,1)

−
N

∑
j=1

ai,jθ
T
j vi,j,2 −

N

∑
j=1

ai,j
∂αi,1

∂yj
(τjε j,2 + ωj,1)−

N

∑
j=1

ai,j
∂αi,1

∂θ̂i,j

˙̂θi,j

− hi

2

∑
l=1

∂αi,1

∂y(l−1)
r

y(l)r (22)

where βi = −τ2
i gi,2ηi,1 −

∂αi,1
∂yi

ζi,2 −
∂αi,1
∂yi

ηi,2 −
∂αi,1
∂χi

χ̇i −∑N
j=1 ai,j(

∂αi,1
∂yj

ζ j,2 +
∂αi,1
∂yj

ηj,2 +
∂αi,1
∂χj

χ̇j),

and vi,2 =
∂αi,1
∂yi

(Ξi,2 + fi,1)
T , vi,j,2 =

∂αi,1
∂yj

(Ξj,2 + f j,1)
T .

Consider the second Lyapunov function

V2 = V1 +
N

∑
i=1

(Vi,0 +
1
2

z2
i,2 +

λi
2τiγi

µ̃2
i ) (23)

where µ̃i = µ̂i − µi, and µ̂i is the estimation of µi = 1/λi.
From Remark 2, the control input Qi(ui) of each agent can be rewritten as

Qi(ui) = Ψi,1(t)ui + Ψi,2(t)

Ψi,1(t) ≥ λi, |Ψi,2(t)| ≤ ρi (24)

where λi = 2εi/(1 + εi) and 0 < εi < 1, ρi > 0 are quantizer parameters.
According to Assumption 3 and (24), the following inequalities can be obtained

−zi,2
∂αi,1

∂yi
(τiεi,2 + ωi,1) ≤

τi + 1
4

(
∂αi,1

∂yi
)2z2

i,2 + τiε
T
i εi + ω̄2 (25)

− zi,2

N

∑
j=1

aij
∂αi,1

∂yj
(τjε j,2 + ωj,1)

≤
N

∑
j=1

aij
τj + 1

4
(

∂αi,1

∂yj
)2z2

i,2 +
N

∑
j=1

aijτjε
T
j ε j + Nω̄2 (26)

zi,2φi(yi)Ψi,2(t) ≤ z2
i,2φ2

i (yi) +
1
4

ρ2
i . (27)

Choose the second virtual control function



Machines 2023, 11, 524 8 of 14

αi,2 =τiki,2zi,2 + cizi,1 + φ2
i (yi)zi,2 + βi − θ̂T

i vi,2 −
N

∑
j=1

ai,j θ̂
T
i,jvi,j,2

+
τi + 1

4
(

∂αi,1

∂yi
)2zi,2 +

N

∑
j=1

ai,j
τj + 1

4
(

∂αi,1

∂yj
)2zi,2 −

∂αi,1

∂θ̂i
Ti,2

−
N

∑
j=1

ai,j
∂αi,1

∂θ̂i,j
Ti,j,2 − hi

2

∑
l=1

∂αi,1

∂y(l−1)
r

y(l)r . (28)

Define the following tuning functions

Ti,2 = Ti,1 − τiΓivi,2zi,2

Ti,j,2 = Ti,j,1 − τiΓi,jvi,j,2zi,2. (29)

In addition, the adaptive laws θ̂i and θ̂i,j are designed as

˙̂θi = Ti,2, ˙̂θi,j = Ti,j,2. (30)

From (23)–(30), one has

V̇2 ≤
N

∑
i=1

[−
2

∑
l=1

τiki,lz2
i,l + zi,2αi,2 + zi,2φi(yi)Ψi,1(t)ui +

λi
τiγi

µ̃i ˙̂µi

− (1 + 2N)τiε
T
i εi + 2

N

∑
j=1

ai,jτjε
T
j ε j − σi,1θ̃T

i θ̂i − σi,2

N

∑
j=1

aij θ̃
T
i,j θ̂i,j

+
1
4

ρ2
i + (3N + 1 + ‖Pi‖2)ω̄2]. (31)

The control law is designed as

ui = −
zi,2µ̂2

i α2
i,2

φi(yi)(|zi,2µ̂iαi,2|+ $i)
(32)

where the adaptive law µ̂i is updated by

˙̂µi = τiγizi,2αi,2 − τiγiσi,3µ̂i. (33)

By considering the inequality 0 ≤ xy
x+y < y, ∀x ≥ 0, y > 0, it can be obtained that

zi,2φi(yi)Ψi,1(t)ui ≤−
λiz2

i,2µ̂2
i α2

i,2

|zi,2µ̂iαi,2|+ $i

≤− λi|zi,2µ̂iαi,2|(|zi,2µ̂iαi,2|+ $i)

|zi,2µ̂iαi,2|+ $i
+

λi|zi,2µ̂iαi,2|$i

|zi,2µ̂iαi,2|+ $i

≤− λi|zi,2µ̂iαi,2|+
λi|zi,2µ̂iαi,2|$i

|zi,2µ̂iαi,2|+ $i

≤− λizi,2µ̂iαi,2 + λi$i. (34)

Substituting (33) and (34) into (31) and noting µi = 1/λi, it follows that
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V̇2 ≤
N

∑
i=1

[−
2

∑
l=1

τiki,lz2
i,l − σi,1θ̃T

i θ̂i − σi,2

N

∑
j=1

aij θ̃
T
i,j θ̂i,j

− λiσi,3µ̃iµ̂i − (1 + 2N)τiε
T
i εi + 2

N

∑
j=1

ai,jτjε
T
j ε j

+
1
4

ρ2
i + λi$i + (3N + 1 + ‖Pi‖2)ω̄2]. (35)

Remark 5. Note that the designed control scheme is fully distributed. To reduce the information
interaction between agents, an adaptive law θ̂i,j is introduced for each agent to estimate the uncertain
parameter vector θj of its neighbors. In addition, an adaptive law µ̂i is introduced in the controller
to compensate for the influence of the hysteresis quantizer.

3.3. Stability Analysis

The main results are summarized as follows.

Theorem 1. Consider the second-order nonlinear heterogeneous MAS (1), the hysteresis quantizer
(2), the K-filter (3), the adaptive laws (30), (33), and the control law (32). All signals of the second-
order nonlinear heterogeneous MAS are globally bounded, and the tracking error of each agent can
converge to an arbitrary small set.

Proof. Considering −θ̃T
i θ̂i ≤ − 1

2 θ̃T
i θ̃i +

1
2 θT

i θi, −θ̃T
i,j θ̂i,j ≤ − 1

2 θ̃T
i,j θ̃i,j +

1
2 θT

i,jθi,j, −µ̃iµ̂i ≤
− 1

2 µ̃2
i +

1
2 µ2

i , and

N

∑
i=1

N

∑
j=1

aijτjε
T
j ε j =

N

∑
i=1

N

∑
j=1

ajiτiε
T
i εi ≤ N

N

∑
i=1

τiε
T
i εi. (36)

Then, the inequality (35) can be rewritten as

V̇2 ≤
N

∑
i=1

[−
2

∑
l=1

τiki,lz2
i,l −

σi,1

2
θ̃T

i θ̃i −
σi,2

2

N

∑
j=1

ai,j θ̃
T
i,j θ̃i,j

− λiσi,3

2
µ̃2

i − τiε
T
i εi] + C

≤ −ςV2 + C (37)

where

ς = min
1≤i≤N

τi{
1

λmax(Pi)
, 2ki,1, 2ki,2, σi,1λmin(Γi),

σi,2λmin(Γi,j), γiσi,3}

C =
1
4

ρ2
i + λi$i +

σi,1

2
θT

i θi +
N

∑
j=1

σi,2ai,j

2
θT

i,jθi,j +
λiσi,3

2
µ2

i .

It follows from (37) that

0 ≤ V2(t) ≤
C
ς
+ [V2(0)−

C
ς
]e−ςt. (38)

As a result

lim
t→+∞

V2(t) ≤
C
ς

. (39)

It follows that εi, zi,1, zi,2, θ̂i, θ̂i,j, µ̂i are bounded. From (3) and (11), together with the
boundedness of yr, it is known that yi, ζi and Ξi are bounded. Then, Ξi, ηi, αi,1, αi,2, ui,
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and xi are bounded. Thus, all signals are globally bounded. In addition, it can be seen
from (38) that the tracking errors can converge to an arbitrary small set by increasing ς.
Since ς increases monotonically with increase in min1≤i≤N{τi}, by adjusting τi, the tracking
errors can converge to an arbitrary small set. This completes the proof.

Remark 6. By adjusting the parameter τi, the tracking errors of MASs can converge to an arbitrary
small set without further adjusting other parameters as required in [24]. Therefore, the proposed
method can be more convenient for adjusting the consensus tracking control performance of MASs
in practical applications. Although the consensus tracking performance of MASs can be improved
by increasing τi, it can be seen from the distributed control law (32) that too large τi may cause the
high gain problem of the controller. Therefore, in practical applications, the selection of τi should not
be too large.

4. An Illustrative Example

Consider an MAS containing four agents, where the dynamics of each agent are as follows:

ÿi + Ωẏi + My3
i + lyi = Qi(ui), i = 1, 2, 3, 4, (40)

where yi is the course angular velocity; ui is the control input; Ω, M and l are unknown
constant parameters.

By defining xi,1 = yi, xi,2 = ẏi + Ωyi, θi = [Ω, M, l]T , φi(yi) = 1, fi,1(yi) =
[ −yi 0 0 ], and fi,2(yi) =

[
0 −y3

i −yi
]
. Then, the system (40) can be rewritten as

follows {
ẋi,1 = xi,2 + fi,1(yi)θi + ωi,1

ẋi,2 = φi(yi)Qi(ui) + fi,2(yi)θi + ωi,2
(41)

In the simulation, the communication topology of the MAS is shown in Figure 2. The pa-
rameters of the MAS are selected as [Ω1, Ω2, Ω3, Ω4] = [0.21, 0.2, 0.23, 0.21], [M1, M2, M3, M4]
= [0.08, 0.1, 0.12, 0.15], [l1, l2, l3, l4] = [0.28, 0.3, 0.35, 0.25], and the desired trajectory
yr(t) is generated by yr = sin(t) cos(2t). The time-varying disturbances are set as
ωi(t) = [0, 0.1i sin(it)]T .

Figure 2. Communication topology graph G.

The initial state of each agent is set to yi(0) = 0.1i, and all other initial conditions are
zero. The parameters of the hysteresis quantizer (2) are chosen as ρi = 0.2 and εi = 0.6. The
design parameters are chosen as τi = 6, gi,1 = 4, gi,2 = 4, ki,1 = ki,1 = 2, Γi = I2, Γi,j = I2,
γi,1 = 1, γi,2 = 1, σi,1 = 0.1, σi,2 = 0.1, σi,3 = 0.1, and $i = 0.1.

Applying the proposed distributed control method, the output and tracking errors
of each agent are shown in Figure 3. The quantized control inputs of the MAS are shown
in Figure 4. It can be seen that the distributed consensus control of second-order non-
linear heterogeneous MASs with input quantization has been implemented. In addition,
the proposed distributed control method is robust to unknown disturbances.

Next, we demonstrate through simulation that the tracking error can be reduced
by adjusting τi. In the simulation, τi is adjusted to 10, while other parameters remain
unchanged. Then, the output and tracking errors of each agent are shown in Figure 5.
By comparing Figures 3 and 5, the conclusions in Remark 6 are verified. In addition,
the quantized control inputs of the MAS are shown in Figure 6. As can be seen from
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Figure 6, increasing τi will not have a significant impact on the quantization control input,
but may cause the gain of the controller to become larger at the initial moment.
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Figure 3. Agent outputs and tracking errors.

0 5 10 15 20 25 30

-8

-4

0

4

8

0 5 10 15 20 25 30

-6

-3

0

3

6

0 5 10 15 20 25 30

-8

-4

0

4

8

0 5 10 15 20 25 30

-8

-4

0

4

8

Figure 4. Quantified control inputs.
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Figure 5. Agent outputs and tracking errors.
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Figure 6. Quantified control inputs (τi = 10).

5. Conclusions

In this paper, the distributed consensus tracking control problem has been addressed
for second-order nonlinear heterogeneous MASs with input quantization. A distributed
output feedback control scheme based on a K-filter has been proposed. Different from
the results in the existing literature, an additional design parameter is introduced into the
proposed controller design. By adjusting this parameter, the tracking errors of MASs can
converge to an arbitrarily small residual set. A practical example verifies the effectiveness
of the proposed scheme.
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