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Abstract: Laser diodes are widely used in research and industrial applications in areas such as
measurements, communications and health. In most of these applications, stability in the emitted
light power is required. This can be realized by modifying the internal parameters, such as the
current supply, by using an analog automatic power control (APC). This research presents the design
and analysis of a feedback laser driver (digital APC system) based on a proportionall–integral (PI)
controller. The controller’s theoretical design acting on the supply current in a laser was obtained by
algebraically solving the general equations of a PI controller over a laser described as a steady-state
system. The required steady-state model can be determined from the lightl–current curve obtained
either from the laser data sheet or experimentally. A posterior numerical analysis shows that the
proportional gain of the PI controller is only limited numerically by the reciprocal of the slope
efficiency of the laser when the characteristic time of the system is greater than the sampling period.
Finally, the APC model was tested in an experimental setting using a laser diode ADL-65052TL at
several temperatures. The results show that the proposed relations for the proportional gain and the
integral time are valid, achieving the desired power stability with a drift of less than 0.1%.

Keywords: control design; laser applications; laser stability; lighting control; PI controller

1. Introduction

Semiconductor lasers and laser diodes are widely used in different areas, such as
systems of cutting, welding, and joining of materials [1]; fiber optic or free space com-
munications, including space communications [2,3]; or in scientific fields in instruments,
inertial confinement to nuclear fusion [1], atomic clocks [4,5], and space micro propulsion
systems [1,6,7].

Laser operation itself and/or changes in the environmental conditions can produce
fluctuations in the laser’s operation temperature, which generate several unwanted ef-
fects [8].

Thermal variations generate a shift of the emission spectrum (wavelengths) and a
reduction in the quantum efficiency. The emission spectrum undergoes displacements on
the order of tenths of nm (wavelengths) by each Celsius degree of variation in the laser
operating temperature [8–10]. In addition, decreases in the quantum efficiency modify the
relation between the laser supply current with the emitted optical power [8,9,11]. These
changes can impact the performance of the specific applications. For instance, in optics
communications, the signal-to-noise ratio is reduced due to high-frequency instability in
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the optical power [5]. Moreover, low-frequency instabilities in the emitted power can cause
a reduction in detection thresholds, generating an increase in the bit error rate or even a
total disruption of the communication.

Laser diodes exhibit an ultra-fast dynamic response, on the order of nanoseconds,
which allows them to attain their steady state within a short period of time—typically in the
range of hundreds of nanoseconds. Consequently, the development of a control system that
manages the dynamics of the laser can be expensive and technically difficult. Therefore,
the majority of the controllers assume that the steady state is instantaneously reached after
a control parameter is changed.

The optical power stabilization methods can be classified as internal and external
control systems. The internal control modifies the internal parameters of the laser oper-
ation, such as the forward current or supplies current, temperature, and cavity, among
others [11–13]. On the other hand, the external control systems require external modulators,
such as opto-acoustic or electro-optics modulators in the laser outlet, to modify or stabilize
the optical parameters of the laser. Although the external control systems are highly precise,
they require large volume systems to stabilize the optical power, which can be impractical
for some mobile and space applications.

Internal control systems employ various approaches. The more common assumption
in this type of solution is precisely measuring and controlling the temperature [14] and/or
supply current [15], thereby, resulting in a highly stable optical power. The advantage of
these types of solutions is that the system can be implemented by using microcontrollers
and commercial current drivers, along with thermal sensors, to operate and safeguard the
laser [16,17]. Although these drivers can achieve high precision in emitted optical power,
they are unable to compensate for changes in optical power caused by aging or internal
laser issues because they do not measure the actual laser emitted power. Automatic power
control (APC) is a feedback laser driver that avoids the previously mentioned issue. It acts
over the internal parameters of the laser, typically the current supply and forward current,
using (as a feedback signal) the actual optical power emitted by the laser.

The APC can be implemented either with analog or digital circuits. The analog APC
circuits require defining a bias current as the supply current needed to operate the laser
at the set-up optical power at a stable operating temperature. This current is analogically
modified by the feedback signal to compensate for effects produced by temperature changes
and the aging of the laser, among others [18].

The feedback signal is obtained with a probing photodiode, typically included in the
laser packaging. This current signal can be transformed into voltage and compared by an
operational amplifier with a voltage reference that represents the photodiode current signal-
to-voltage at the optical power required. The error signal, resulting from the comparison
of voltages, is amplified by the operational amplifier gain and injected to modify the bias
current [18] (similar to a proportional controller). Furthermore, there exists other possible
configurations in analog APC circuits referred to as noninverting laser driver [19] and
inverting laser driver [19,20]. Both control circuits integrate the error signal (defined with
slight differences in each circuit) and inject it as a control current. This signal is added or
subtracted to the bias current to modify the supply current of the laser.

The design of analog APC requires a bias current and a voltage reference for each
operating temperature. Identifying these values can be a time-intensive process [20] and
can restrict the laser’s operation to a particular range of temperatures. In addition, analog
APCs are implemented as analog circuits, which are difficult to modify.

An alternative to the traditional analog APC design is to use a digital APC to stabilize
the emitted optical power using the probing photodiode current as a feedback signal.
This type of controller does not require the a priori estimation of the bias current and a
voltage reference to operate (equivalent values for the controller are calculated internally
by themselves). Furthermore, a controller implemented in a microprocessor can change the
operating condition or set point condition by an operator easier than in an analog circuit.
In addition, if the designed controller is simple, it can be implemented in miniaturized
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low-power microprocessors, which is a key feature for small satellite applications where
simplicity is associated with the robustness of the system. For these reasons, we chose a
proportional–integral (PI) controller as the base for a digital APC.

The design of a PI controller is focused on finding the control parameters that guar-
antee the emitted power stability under operating conditions. Control parameters can be
obtained for some systems using a set of theoretical or experimental rules [21]. Most of
these methods require the knowledge or modeling of the transfer function that defines
its temporal evolution. To find the control parameters in a PI controller for a first-order
system or the stability condition of the feedback for a higher-order system requires that the
system exhibits explicit temporal dynamics [22]. On the other hand, due to the laser being
modeled without a temporal dynamic, common methods can not be used to estimate the
controller parameters. Thus, the parameters should be obtained by algebraically resolving
the differential equation of the PI controller.

The implementation of a proportional–integral (PI) controller in a laser power driver,
which operates with a fixed optical power output at a stable temperature, is described
in [11]. However, there are no general design rules for the controller (proportional gain Kp
and integral gain Kp/Ti). In addition, there are no studies on the settling time and stability
of the controller. This makes it difficult to design a PI controller for a broad operating
temperature range and to estimate the settling time a priori. Thus, in this article, we focus
on developing the theoretical control rules of PI controllers to stabilize the emitted optical
power around a set point. In addition, we implemented the designed PI controller in a
microcontroller to evaluate the validity of the theoretical findings.

The proposed driver design is based on uses the lightt–current relationship, which
represents the steady state response of the laser and can be obtained either from the
datasheet of the laser or experimentally. Additionally, we determine the stability conditions
of the laser driver simulating a digital controller for different operation conditions. To
evaluate the proposed design, we implemented a laser driver in an ESP32 from Sparkfun
(SparkFun ESP32 Thing), which is a low-cost system on chip (SoC) of 32 bits with wire-
less functionality (Wi-Fi and Bluetooth). This solution is advantageous for applications
where the thermal variations are slow and where the energy, volume, and processing have
important constraints.

The article is organized as follows: A theoretical analysis of the PI controller over a
laser represented as a first-order time-invariant function is presented in Section 2. The
Section 3 introduces a numerical analysis of the controller by finite-difference approxi-
mation, simulating a numerical real-time controller. This section defines the numerical
limitations for the stability conditions of the controller. The experimental design method-
ology and the circuit of the laser driver are described in Section 4. Section 5 shows the
experimental response of the driver at different operating temperatures and thermal condi-
tions. Finally, Section 6 summarizes the main findings and limitations of this study, as well
as potential new directions for this work.

2. Theoretical Design of the PI Controller

The theoretical design of the controller was developed exploring the implementation
of this in a low-cost microprocessor. In this system, the sampling period (Ts) for a complete
cycle of control is around 150–200 ms. Therefore, the microprocessor can not sample a
laser diode with a rise time on the order of tens or hundreds of nanoseconds or even a few
microseconds. Thus, a viable model of the system behavior is given by the steady-state
curves of the laser. The steady-state light curves for a laser diode are called light–current
curves. These represent the relation between the emission power and supply current or
forward current.

The light–current curves (see Figure 1) show two typical emission zones of semicon-
ductor lasers. These are the spontaneous and stimulated emission zones [8,23]. In most
applications, the laser must operate in the stimulated emission zone where the efficiency
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of the system is maximum and the relationship between the emission power, P, and the
forward current, IF(t), is linear and described by:

P = η(IF(t)− Ith), (1)

where η is the slope efficiency, which characterizes the light efficiency of the laser. Addition-
ally, the threshold current (Ith) states the theoretical beginning of the stimulated emission
zone. Both parameters depend on the temperature [8,10].
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Figure 1. Steady state Light–Current curve for Laser Diode ADL-65052TL at 15 ◦C.

The nonlinear function that describes the light–current curve has no explicit depen-
dence on time. Thus, the emitted optical power and the forward current, which represents
the output of the system y(t) and the control signal u(t) , respectively, are defined by:

y(t) = f (u(t)) (2)

In our design, the forward current is limited to operating in the stimulated emis-
sion zone. Thus, the current is restricted to IF ∈ [Ith, IF,max], where IF,max is the max-
imum forward current defined by the manufacturer. If the system control variable is
u(t) = IF(t)− Ith and the optical power (system output) is y(t), the Equation (1) is rewrit-
ten as:

y(t) = η u(t) (3)

The PI controller (see Figure 2) stabilizes the optical output power around a constant
reference, ysp, using a control variable defined in terms of the error signal, e(t), as follows:

u(t) = Kp

(
e(t) +

1
Ti

∫ t

0
e(τ) dτ

)
(4)
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LaserController
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Figure 2. Block diagram of PI controller.

Kp is the proportional gain, and Ti the integral time. The theoretical design determines
a set of rules for Kp and Ti that guarantee convergence to zero or an asymptotically stable
behavior of the error signal. If we define the error signal as e(t) = ysp − y(t) and we
replace it in Equation (4) a more general equation is obtained to describe the output of the
system as:

y(t)
(
1 + ηKp

)
= ηKpysp

(
1 +

t
Ti

)
−

ηKp

Ti

∫ t

0
y(τ)dτ (5)

Considering the Leibniz’s rule for derivation under the integral sign and the parameters
Kp, Ti, ysp as constants, the derivative Equation (5) with respect to time, results in:

dy
dt
(
1 + ηKp

)
=

ηKp

Ti

(
ysp − y(t)

)
+

dη

dt
u(t) (6)

The term dη/dt is rewritten using the chain rule and temperature variation, dT, as:

dη

dt
=

dT
dt

dη

dT
(7)

If the temperature is stable (dT/dt ≈ 0) and the thermal derivative of the slope
efficiency, η, is bounded, the term described by Equation (7) approaches zero, and the
solution of Equation (6) is:

y(t) = ysp −
(
ysp − y0

)
e
− ηKp
(1+ηKp)Ti

t
(8)

The error signal is defined by:

e(t) =
(
ysp − y0

)
e
− ηKp
(1+ηKp)Ti

t
(9)

The solutions proposed in Equations (8) and (9) are valid under the assumption that
both equations are solutions of Equation (5). Therefore, replacing the Equation (9) in
Equation (5), we find:

y(t) =
(
ysp − y0

)(
1 + ηKp

)
−
(
ysp − y0

)
e
− ηKp
(1+ηKp)Ti

t
(10)

The general solution defined in Equation (8) is equated to Equation (10) to obtain the
conditions for the solution of simultaneous equations.

ysp =
(
ysp − y0

)(
1 + ηKp

)
(11)
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Finally, in replacing the condition of Equation (11) in Equations (8) and (9) a particular
solution is obtained. Thus,

y(t) = ysp −
ysp

1 + ηKp
e
− ηKp
(1+ηKp)Ti

t
(12)

e(t) =
ysp

1 + ηKp
e
− ηKp
(1+ηKp)Ti

t
(13)

Equations (12) and (13) show that the error signal is asymptotically stable and that the
system output converges asymptotically to ysp if the factor that accompanies the time in
the exponential is positive. This factor is known as the characteristic time (τ) of the system
and is defined as:

τ =

(
1 + ηKp

)
Ti

ηKp
(14)

As seen in Equations (12) and (13), the initial condition, y0, does not directly affect
the dynamics of the system. Therefore, the theoretical trajectory of the output is unique
and well-characterized. Implying that regardless of the initial conditions of the laser,
the response of the system only depends on the control parameters (ysp, Kp, and Ti) and the
slope efficiency (η). However, the control variable requires knowing the threshold current
for the different operating temperatures. To overcome that issue, the control variable is
redefined as (u(t) = I(t)). Thus, Equation (3) becomes:

y(t) = ηu(t)− η Ith (15)

Replacing the control signal, shown in Equation (4) in Equation (15) we find:

y(t) = ηKp

(
e(t) +

1
Ti

∫ t

0
e(τ) dτ

)
− η Ith (16)

Differentiating the Equation (16) with respect to time and considering a stable tem-
perature (dT/dt ≈ 0), the terms dη/dt and dIth/dt can be approximated to zero if the
thermal derivatives of those coefficients (dη/dT and dIth/dT, respectively) are bounded.
Thus, the Equation (6) is obtained, and the solutions proposed in Equations (8) and (9) are
also valid.

Finally, the particular solution for a more general control model is rewritten as

y(t) = ysp −
η Ith + ysp

1 + ηKp
e
− ηKp
(1+ηKp)Ti

t
(17)

e(t) =
η Ith + ysp

1 + ηKp
e
− ηKp
(1+ηKp)Ti

t
(18)

Equations (17) and (18) exhibit the same behavior of Equations (12) and (13), respec-
tively. For that reason, a numerical analysis can be made over any of those systems, and
the results will be valid for both control systems.

3. Numerical Results and Design Restriction

In this section, a numerical analysis is performed to study the behavior of a discrete
controller including stability conditions, and numerical limits for the PI control parameters.
Initially, we consider the control variable as u(t) = IF(t)− Ith and the model imposed by
the Equation (3). thus, the output of the system i is defined by:

y(t) = K̂pe(t) +
K̂p

Ti

∫ t

0
e(τ) dτ, (19)
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where K̂p = ηKp is the total gain of the system. A numerical solution of Equation (19) can
be performed by the Euler method of finite differences, which is equivalent to the iterative
model programmed in a real-time controller. The numerical integration is carried out by
the Riemann integral method so that the discrete output of the system and the error signal
are defined by:

yt+1 = K̂pet +
K̂p

Ti
(iet−1 + etTs), (20)

et = ysp − yt, (21)

where Ts is the sampling period of the controller, and iet−1 is the calculation of the accumu-
lated integrated error from 0 to t− 1.

A more general numerical solution can be reached by rewriting the time and inte-
gral time in terms of an alternative time unit, such as the sampling period (Ts). Hence,
the numerical solution is extrapolated to controllers with different sampling periods. The
Figure 3a shows the iterative solution of Equations (20) and (21) contrasted with the the-
oretical solution of Equations (12) and (13), respectively. Both equations show that the
particular solution is independent of the initial conditions. Thus, the trajectory of the system
output is unique. Additionally, depending on the initial condition, y0, the system oscillates
around the particular solution with an amplitude that depends on the initial numerical
error signal, as shown in Figure 3b. Therefore, when the oscillations become imperceptible
the trajectories are similar, and the output shows an exponential decay towards ysp.
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Figure 3. Comparison between the numerical controller and theoretical system response with
operating parameters of ηKp = 0.3, Ti = 5Ts, and ysp = 10 for (a) system output. (b) Zoom of
differences between the theoretical and numerical output.

However, in [21] is established that oscillations around the output set point appear for
high values of Kp. Thus, the oscillations grow exponentially for a certain threshold of the
proportional gain making the system unstable (see Figure 4).
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Figure 4. Numerical analysis of the system output for various total gains and y0 = 4, Ti = 5Ts, and
ysp = 10 as fixed system parameters.

According to this, the stability of the system around the theoretical solution is defined
by the upper bound of ηKp, the integral time (Ti), the numerical method of integration
and the effect of the time of sampling, Ts.

The upper limit of ηKp was estimated using two iterative integration methods, such as
the trapezium rule and the Simpsons’ rule (both methods can be implemented in a real-time
controller). Additionally, a characteristic time τ greater or equal to the sampling period Ts,
was chosen.

yt = K̂pet +
K̂p

Ti

(
iet−1 + (et + et−1)

Ts

2

)
(22)

yt = K̂pet +
K̂p

Ti

(
iet−1 + (5et + 8et−1 − et−2)

Ts

12

)
(23)

Equations (22) and (23) describe the numerical integral performed by the controller
for the trapezoid method and Simpson’s rule, respectively.

A limit stability condition for the trapezium and the Simpsons’ rule is obtained from
the analysis of the numerical solution of the Equations (3) and (4) as is shown in Figure 5 for
the three implemented integration methods. On the other hand, the amplitude of output
perturbations depends on the initial conditions, y0; however, the convergence of this to ysp
depends on the integration method and Kp.

Additionally, it is established that the limit for the proportional gain is one in con-
trollers working with the trapezoid method or Simpson’s rule. Thus, an interval of Kp that
guarantees the asymptotic convergence of the system to ysp is defined by Equation (14) and
the numerical limit given by the integration method. If Ti is positive, the proportional gain
must meet the following condition to guarantee the convergence of the system to ysp.

0 < ηKp < 1 (24)

If the value of Kp meets the condition of Equation (24) and the characteristic time is
greater than τ > Ts, the stability of the system will not be altered. In this way, the upper
limit for the condition established in Equation (24) replaced in Equation (14) returns:

Ti >
Ts

2
(25)
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Figure 5. Convergence analysis of the system output at the stability limit conditions (Ti = Ts/2,
and ηKp = 1) for numerical controllers by (a) Riemann’s rule, (b) the trapezoid method and (c) Simp-
son’s rule and y0 = 2, ysp = 10 as fixed parameters of the system.

Equation (25) is a sufficient condition to guarantee characteristic times greater than
the sampling period. However, it is possible to implement integral times that do not
meet this condition but meet τ > Ts (defined previously). These integral times require an
experimental adjustment of the process or to know a priori the system gain η.

On the other hand, the model defined by Equation (15) has the same design restrictions
as Equations (24) and (25). In this way, the conditions of Equations (24) and (25) are general
restrictions for controllers using the trapezoidal or Simpsons’s rule.

4. Experimental Setup

The laser driver circuit design follows the stages of a control system. Therefore, it is
divided into a controller, actuator, the system or plant, and a measurement element that pro-
vides feedback to the controller with the operating conditions of the system. The different
stages of the driver and its electrical diagram are shown in Figures 6 and 7.

Laser Driver
Thermal System

Laser
ADL-65052TL

Figure 6. Experimental setup of the low-cost laser driver.
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Controller

Actuator 

System

Measurement

Element

Figure 7. Electrical schematic of the proposed low-cost laser driver.

The actuator is a current source [24] operating in the active region of a bjt transistor.
The current that flows through the laser from the transistor collector is the same as the
current on the resistor R1. Thus, the references 1 (Vre f 1) and 2 (Vre f 2) potentials define the
current on R1 as follows:

ILD =
Vre f 1 −

(
Vre f 2 + 0.6

)
R1

(26)

The Vre f 1 is a fixed voltage source that supplies current to R1 and the laser, while
Vre f 2 can be adjusted through a digital potentiometer (AD5175) that has a 10-bit resolution
(1024 positions) and a nominal resistance of 10 kΩ. As a result, when the potentiometer
is set to its maximum resistance (1023 position), Vre f 2 reaches its maximum value as well.
At this point, the transistor operates in cutoff mode, causing the laser’s supply current to
drop to zero. Furthermore, if the potentiometer is set to its minimum (0 positions), which is
approximately 0.3 kΩ, Vre f 2 reaches its minimum causing the maximum current through
R1 and the laser (20 mA).

Nevertheless, the minimum Vre f 2 should be higher than the maximum laser oper-
ating voltage to prevent the transistor from entering the saturated region. In this case,
the transistor operates in the active zone, resulting in a linear relationship between the
laser supply current and the position of the digital potentiometer (as shown in Figure 8).
Finally, R1 is calculated to ensure that the maximum current over the laser remains below
the manufacturer’s current limit.
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Figure 8. The linear experimental relationship between the control signal (current supply) and signal
actuator (potentiometer positions) at varying operating temperatures.

The measuring element is made up of an internal probe (photodiode) of the laser diode
that senses the emitted light power. The photodiode is reverse-biased to obtain a linear
response of the current generated by the photodiode and the sensed power. The current
from the probing photodiode is converted to a voltage and magnified by a trans-impedance
amplifier and an inverting operational amplifier, respectively. The amplified voltage is
finally injected into a 16 bits analog–digital converter or ADC (ADS1115) that generates the
feedback signal for the controller.

Figure 9 shows the calibration of the feedback signal referenced to the optical power
measured directly at the output of the laser using a power meter (Newport, Model 840-C)
tuned to a wavelength of 650 nm. In addition, the figure shows that the photodiode of
the laser is robust to temperature, and thus the calibration is transversal for the sensed
temperature range.
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Figure 9. Calibration of trans-impedance amplifier signal from probing photodiode using emitted
optical power measured with a Newport Model 840-C at varying operating temperatures.

The linearity of the actuator and measurement element relationships are shown in
Figures 8 and 9. These linear relationships allow the implementation of a controller using
the value of the resistance of the potentiometer as a control signal and the voltage of the
trans-impedance amplifier as a feedback signal. Finally, a “Sparkfun ESP32 thing” was
used as a controller for its low cost and low power consumption.
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5. Experimental Results

The proposed IP controller was tested on a laser diode ADL-65052TL under the theoret-
ically established operating conditions and using the trapezoidal integration method. This
theoretically guarantees the convergence of the system to ysp with bounded oscillations
(see Figure 5b). Experimental tests were conducted at stable temperatures of 15, 20, 25, 30
and 35 ◦C.

The experimental emission curves (light–current) of the laser were experimentally
obtained (see Figure 10) to estimate η and Ith. The theoretical system output at the operating
temperature was obtained by replacing these terms in Equations (17) and (18). Therefore,
a comparison can be made between the experimental output of the system generated by
the controller and the theoretical output.
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Figure 10. Experimental laser diode emission curve for a ADL-65052TL at different operating temperatures.

Initially, the response of the system was analyzed with a ηKp ≈ 0.64 and an operating
temperature of 20.28 ◦C with a standard deviation of 0.02 ◦C as shown in Figure 11. There
we observed that the theoretical solution did not coincide with the experimental response
of the PI controller. This is because the theoretical model of Equation (17) is only valid
if the theoretical control signal (Equation (4)) is greater than the threshold current at the
operating temperature which is approximately Ith = 11.5 mA.

0 5 10 15 20

Time (s)

0

1

2

3

4

5

S
y
s
te

m
 O

u
tp

u
t,
 y

(t
) 

(m
W

)

19

19.5

20

20.5

21

21.5

T
e
m

p
e
ra

tu
re

 (
°
C

)

y
sp

y
experimental

y
theoretical

Temperature

Figure 11. Comparison of the experimental and theoretical output of the system for a total gain of
K̂p ≈ 0.64 and an integral time of Ti = 1 for an operating temperature of 20 °C.

Figure 12 shows that, when the theoretical control signal is lower than the threshold
current, it generates negative theoretical values in the optical power of the laser (see
Figure 11).
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Figure 12. Comparison of the theoretical and experimental control signal for a total gain of K̂p ≈ 0.64
and an integral time of Ti = 1 for an operating temperature of 20 °C.

On the other hand, the experimental controller increases the control signal linearly
until it exceeds the threshold current. Then, the behavior of the control signal is similar to
the theoretical solution, converging the error signal to zero, and the system output to ysp.

The comparison between the theoretical and experimental response of the system
requires forcing the controller to operate in the region of stimulated emission of the laser
with a control signal greater than the threshold current. This is achieved by modifying the
integral in the controller by adding a constant term u0 on the integral so that a new control
variable, u(t), is defined as:

u(t) = Kpe(t) +
Kp

Ti

(
u0 +

∫ t

0
e(τ) dτ

)
(27)

The controller of Equation (27) is replaced in the system described by Equation (15).
This new differential equation is solved in the way shown previously. Thus, the general
solutions of Equations (8) and (9) are applicable to this new control system. The restriction
for the particular solution becomes:

ysp =
(
ysp − y0

)(
1 + ηKp

)
+

ηKp

Ti
u0 − η Ith (28)

Thus, the particular solution for the optical power of the laser is:

y(t) = ysp −
Tiη Ith + Tiysp − ηKpu0(

1 + ηKp
)
Ti

e
− ηKp
(1+ηKp)Ti

t
(29)

Equation (15) indicates that, when the control variable equals the threshold current,
the system’s output becomes zero. Therefore, Equation (29) must be zero at t = 0. Thus,
the value of u0 for this condition is:

u0 = Ti

(
Ith
Kp
− ysp

)
(30)

The term u0, according to the Equation (30), is added to the experimental controller,
thereby, making the system response similar to the theoretical described in Equation (29)
(see Figure 13). Additionally, the experimental and theoretical control signal responses
(see Figure 14) are similar when the oscillations produced by the initial conditions of the
system disappear.
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Figure 13. Theoretical and experimental responses of the system output on the stimulated emission
zone for K̂p ≈ 0.64 and Ti = 1.
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Figure 14. Theoretical and experimental control signals on the stimulated emission zone for K̂p ≈ 0.64,
Ti = 1 and u0 = Ti

(
Ith/Kp − ysp

)
.

In addition to forcing the system’s response in the stimulated emission region,
Equation (29) provides a theoretical solution for generating a constant output that is cen-
tered on ysp. The term u0 is calculated so that the number that accompanies the exponential
in Equation (29) is zero, leaving u0 as:

u0 =
Ti

ηKp

(
ysp + η Ith

)
(31)

Figure 15 shows the system response under the previous conditions for u0. There,
we observed that the mean value of the output power was centered at ysp with damped
oscillations.

A performance test was conducted to simulate how the laser driver works in a space
environment of high vacuum at ∼9 ×10−7 Torr (see Figure 16). To achieve this, the laser
was operated in a thermal vacuum chamber of NANO-MASTER (NDT-4000). During its
operation, the temperature of the chamber was reduced for one hour from 35 ◦C to −25 ◦C,
which produced a reduction in the temperature on the laser from 30 ◦C to −10 ◦C (mea-
sured directly on the mount of the laser using a SHT31 temperature sensor) at a rate of
∼0.9 ◦C/min. During the second hour, the temperature in the chamber was increased
from −25 ◦C to 35 ◦C to complete the thermal cycle. The driver’s performance is shown
in Figure 17. We observed that the maximum and mean variation in the stabilized optical
power were 1.3% and 0.4%, respectively.
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Figure 16. Image of the laser inside the thermal vacuum chamber (NDT-4000, Nanomaster) during
the performance test.
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Figure 17. The laser was evaluated under space conditions. The reached pressure was 9× 10−7 Torr
with the operating temperature varying at a rate of ∼0.9 ◦C/min. Performance testing was realized
by using a thermal vacuum chamber (NDT-4000 from Nanomaster) to emulate the low-Earth orbit
conditions. Subplot (a) shows the temporal evolution of the output optical power (blue line) and
the temperature (orange line) measured by a SHT31 temperature sensor attached close to the laser.
Subplot (b) shows a close-up of the region where the temperature and optical power are dropping
from ∼21 ◦C to ∼17 ◦C and ∼3 mW ± 2%, respectively.

Finally, the system was forced to operate during a fast change of temperature of
∼9 ◦C/min as shown in Figure 18b.
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Figure 18. Robustness of the experimental system output (a) for different ηKp from 0.03 to 0.64,
Ti = 1 s and ysp = 3.4 mW, under thermal disturbances (b).

The instabilities of the system around ysp, or the system error, were dependent on the
thermal change rates and ηKp value (see Figure 18a). However, the system error began
to converge to zero when the thermal change rate became constant or fell to zero. Thus,
the designed APC can be used to stabilize the optical output power for a broad temperature
range if the control parameters are valid on the temperature range too.

6. Conclusions

A theoretical and experimental study of digital automatic power control (APC) based
on a PI controller for a laser diode was performed. This article showed that it was pos-
sible to design a digital APC based on a PI controller for semiconductor lasers using the
light–current curve obtained either from the one presented in the laser data sheet or experi-
mentally. The control gains (Kp) and integral times (Ti) that guarantee the convergence of
the system to a constant reference ysp were determined in terms of the slope efficiency of
the laser.

In Equation (24), an interval for the control gains that guarantees the convergence of
the system if the characteristic time of the system (τ) is greater than the sampling period
(Ts) or if the integral time complies with Equation (25) was defined.

Nevertheless, the proposed theoretical model does not guarantee the convergence of
the system during significant disturbances in the operating temperature that contradict the
theoretical assumptions of dT/dt ≈ 0 used in Section 2.

However, the model can guarantee the system stability when the thermal variations
are less than ∼1 ◦C per minute (0.017 ◦C/s) and if the chosen control gain complies with
the condition of Equation (24) in the new operating temperature (see Figure 18).

Furthermore, the analysis demonstrates that, when the thermal variation condition
is met, the integral time has no effect on whether or not the system converges. It does,
however, allow for the adjustment of the system’s convergence time to the reference ysp.
Thereby, the integral time impacts only the system’s characteristic time. Due to the forced
behavior of the system that is shown in Figure 3 and described in Equations (12) and (17),
it is possible to see that the theoretical convergence time is unique and independent of the
initial system conditions (y0). From the analysis of Equations (12) and (17) (considering
η Ith ≈ 0), the value of the convergence time is of five system characteristic times considering
a limit of stability for the output system of 99% of ysp. The convergence time can be tuned
using the integral time to reach a lower limit of 5Ts for τ = Ts. Thus, the system response
is limited by the sampling period of the controller.

The performance of the designed laser driver compared to other drivers in the litera-
ture is shown in Table 1. It is shown that the controller, at stable temperature conditions,
achieved slightly better stability (approximately an order of magnitude fewer variations in
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magnitude) than those reported. Additionally, it can operate during slow thermal varia-
tions or slow operating temperature transitions without increasing the instabilities, thus,
respecting the other drivers at stable temperature conditions.

Table 1. A comparison and summary of the main characteristics of the laser controllers cited in
the article.

Manufacturer/Authors Laser Operating
Condition

Optical Power
Instabilities Features

Huang et al. [11] constant temperature 2% at maximum

APC, constant current
control, constant

temperature chamber,
and Neural Based PI

Controller for
power stability.

Temel et al. [14] not reported average of 1.2% Temperature robust
current driver circuit.

Zhao et al. [15] constant temperature not reported

Constant-Current
Driver Circuit,

and high-precision
Temperature Fuzzy

PID Controller.

Ilchev et al. [17] not reported not reported

Compact laser driver,
current feedback

control circuit,
thermal protection for

laser overheating.

Zivojinovic et al. [19] not reported not applicable

APC, CMOS
Integrated inverted

driver circuit,
designed and tested
for communication

systems (<100 MHz).

Huan et al. [20] not reported not applicable

Fast APC, designed
and tested for

communication
systems (<1.2 Gb/s).

Our Laser Driver

different constant
temperature

during slow thermal
instabilities

0.40% at maximum,
and average of 0.14%

1.3% at maximum,
and average of 0.41%

APC, laser driver
based on PI controller

implemented in a
low-cost SOC.

Figure 18 shows the behaviour of the PI controller for more sudden thermal variations.
It shows the reduction in robustness of the controller due to the thermal variations, pre-
senting the limit for the proper operability of the controller. The optical power fluctuations
are closely related to the controller proportional gain and the thermal speed of change
during the operation. Thus, at a low proportional gain and a thermal speed of 0.15 ◦C/s,
the fluctuations reach the 17% of ysp.

Considering the above, it might be necessary to improve the robustness of the driver
to thermal fluctuations that might appear during the laser operation in environments
where the thermal variations are larger than 0.1 ◦C/s. A continuous, stable laser can be
used for several applications; however, in particular, this type of solution can be useful for
nanosatellite applications, where power and volume can be serious constraints. Continuous
lasers can be used in propulsion systems, for telescope calibration, and for optical depth
instruments (biological experiments in space), to name a few applications. However,
the implementation of a modulated current and its effect on the stability of the control will
be studied in a future work for other applications such as range estimation (flight formation
and space docking), space interferometry, and optical communications applications.
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14. Temel, Ö.D.; Ferhanoğlu, O.; Yelten, M.B. Design of a constant current laser driver for biomedical applications. In Proceedings of
the 2021 IEEE 12th Latin America Symposium on Circuits and System (LASCAS), Arequipa, Peru, 21–24 February 2021; pp. 1–4.

15. Zhao, Y.; Tian, Z.; Feng, X.; Feng, Z.; Zhu, X.; Zhou, Y. High-Precision Semiconductor Laser Current Drive and Temperature
Control System Design. Sensors 2022, 22, 9989. [CrossRef] [PubMed]

16. Ilchev, S.; Andreev, R.; Ilcheva, Z. Ultra-compact laser diode driver for the control of positioning laser units in industrial
machinery. IFAC-PapersOnLine 2019, 52, 435–440. [CrossRef]

17. Ilchev, S.; Otsetova-Dudin, E. Conceptual design and implementation of a microcontroller for the projection of laser and lighting
effects in smart environments. In Proceedings of the 23rd International Conference on Computer Systems and Technologies,
Ruse, Bulgaria, 17–18 June 2022; pp. 28–32.

18. Razavi, B. Design of Integrated Circuits for Optical Communications; John Wiley & Sons: Hoboken, NJ, USA, 2012.
19. Zivojinovic, P.; Lescure, M.; Tap-Beteille, H. Design and stability analysis of a CMOS feedback laser driver. IEEE Trans. Instrum.

Meas. 2004, 53, 102–108. [CrossRef]
20. Huan, W.; Zhigong, W.; Jian, X.; Yin, L.; Peng, M.; Siyong, Y.; Wei, L. A fast automatic power control circuit for a small form-factor

pluggable laser diode drive. J. Semicond. 2010, 31, 065014. [CrossRef]

http://doi.org/10.1109/MAES.2008.4607894
http://dx.doi.org/10.1109/COMST.2016.2603518
http://dx.doi.org/10.1063/1.5040238
http://dx.doi.org/10.1063/1.5046852
http://www.ncbi.nlm.nih.gov/pubmed/30501318
http://dx.doi.org/10.2514/1.43733
http://dx.doi.org/10.1007/s00339-005-3210-8
http://dx.doi.org/10.1109/68.853497
http://dx.doi.org/10.1063/1.3529449
http://dx.doi.org/10.1177/0020294019840760
http://dx.doi.org/10.3390/s22249989
http://www.ncbi.nlm.nih.gov/pubmed/36560357
http://dx.doi.org/10.1016/j.ifacol.2019.12.577
http://dx.doi.org/10.1109/TIM.2003.821487
http://dx.doi.org/10.1088/1674-4926/31/6/065014


Machines 2023, 11, 516 19 of 19

21. Åström, K.; Hägglund, T. PID Controllers: Theory, Design, and Tuning; ISA—The Instrumentation, Systems and Automation
Society: Research Triangle Park, NC, USA, 1995.

22. Silva, G.J.; Datta, A.; Bhattacharyya, S.P. PID Controllers for Time-Delay Systems; Springer: New York, NY, USA; Berlin/Heidelberg,
Germany, 2005; Volume 43.

23. Paschotta, R. Basic Principles of Lasers. In Field Guide to Laser Pulse Generation; SPIE Press Bellingham: Bellingham, WA, USA,
2008; Volume 14, pp. 1–15.

24. Horowitz, P.; Hill, W.; Robinson, I. The Art of Electronics; Cambridge University Press: Cambridge, UK, 1989.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Theoretical Design of the PI Controller
	Numerical Results and Design Restriction
	Experimental Setup
	Experimental Results
	Conclusions
	References

