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Abstract: This paper presents the vibration model of a 3-prismatic–revolute–revolute (PRR) planar
parallel manipulator (PPM) with three flexible intermedia links, utilizing the linear transfer matrix
method for multibody systems (MSTMM). The dynamic characteristics of the PRR PPM are also
investigated. The dynamic model of the 3-PRR PPM is derived, and the transfer matrix and transfer
equation of each component in the system, as well as the overall transfer equation and transfer
matrix of the system are obtained. The vibration characteristics of the whole system are determined
using the MSTMM and verified through ANSYS simulation. Furthermore, the relationship between
the natural frequencies and the flexible PPM configurations is analyzed under a specific circular
trajectory. The results demonstrate that the natural frequency of the system changes constantly with
the configurations, and the trends of the first six orders are similar. This novel modeling approach
does not require global dynamic equations and is both efficient and accurate. Moreover, it can be
easily extended to other parallel manipulators with flexible components.

Keywords: transfer matrix method for multibody systems; natural vibration characteristics; dynamic
modeling; planar parallel manipulator

1. Introduction

Compared with series manipulators, parallel manipulators have the advantages of
high precision, high speed, and strong load capacity [1]. Therefore, they are widely used
in precision manufacturing [2], automatic microassembly [3], surgical robots [4], and
other applications. As the speed and acceleration of the rigid manipulator are limited,
some scholars have proposed and designed lightweight manipulators that use flexible
components instead of the original rigid components. However, the flexible elements in
the parallel manipulators are prone to vibration and deformation, which can seriously
affect the system’s operational accuracy, stability, and dynamic performance [5]. Therefore,
during the process of dynamic modeling of the manipulators, the elastic vibration of flexible
components cannot be ignored. Simultaneously, the analysis of vibration characteristics
is an essential research topic in dynamics. Frequency analysis can help to understand the
vibration characteristics of parallel manipulators, providing vital theoretical guidance for
robot design and vibration suppression [6,7].

The process of dynamic modeling and analysis for flexible parallel manipulators is
significantly more complex compared with rigid parallel manipulators. Firstly, it is neces-
sary to discretize the flexible bar, and then use a dynamic method for modeling. Currently,
common methods for studying the dynamics of flexible parallel manipulators include the
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finite element method, modal analysis, and others. For instance, Zhang et al. established
the dynamic model of the 3-PRR parallel manipulator with three flexible intermediate links
based on the hypothetical mode method and verified the vibration control [8]. Gao et al.
established an N-dimensional discrete dynamic model of a two-link flexible manipulator
based on the hypothetical mode method and achieved trajectory tracking and vibration
suppression [9]. Pira studied the dynamics of a 3-PRR planar parallel manipulator with
flexible links by the finite element method and analyzed the natural frequency characteris-
tics of the system [10]. Li analyzed the natural frequency, mode, dynamic response, and
frequency characteristics of the compliant mechanism using the finite element method [11].
Wang and Mills used the Lagrangian finite element method to establish the dynamic model
of flexible planar linkage with two translational degrees of freedom and one rotational
degree of freedom, studying the vibration suppression of flexible linkage [12]. Furthermore,
in the work by Mahboubkhah et al., researchers developed a dynamic model for the flexible
Stewart platform using the finite element method and studied the comprehensive free
vibration of the machine tool hexapod worktable [13].

These methods have been widely used for modeling the dynamics of flexible parallel
manipulators, especially the finite element method, which is the mainstream method for
describing flexible body deformation in the dynamics of most flexible multibody systems
because of its strong generality [14–16]. However, when these methods are used to calculate
the vibration characteristics of rigid-flexible multibody systems, the global dynamics
equations of the system must be established. Often, they need to be rederived as the system
topology changes [17,18]. On the other hand, the order of the system matrix depends on the
degrees of freedom of the system. For complex multi-body systems with multiple degrees
of freedom, the higher order of the system matrix, along with complex discretization
operations and a large number of numerical calculations, can result in large computational
effort and computational pathologies caused by large stiffness gradients [19].

To simplify the research process, eliminate the need for establishing the global dynam-
ics equations of the system, and achieve accurate dynamics modeling and fast computation
of the system, Rui developed a new multibody system modeling method called the trans-
fer matrix method for multibody systems (MSTMM) [20,21]. This method decomposes a
complex multibody system into various components, such as rigid bodies, flexible bod-
ies, hinges, and concentrated masses. Then, the transfer matrix is established for each
of these components. By assembling the transfer matrices of each element according to
their connection relations, the overall transfer equation and transfer matrix of the whole
system can be derived. Subsequently, the vibration characteristics of the system can be
obtained by solving its characteristic equation. The linear MSTMM does not require the
establishment of the global dynamics equations of the system. Instead, it replaces the
overall system characteristic equations with the overall system transfer equations, avoiding
the complex rigid-flexible multibody system vibration characteristics calculation pathology,
and ensuring the rapid solution of the system eigenvalues. This greatly improves the
computational efficiency [22,23].

The linear transfer matrix method for multibody systems (MSTMM) has been devel-
oped in recent years as a method to study multibody system dynamics by using transfer
matrices [24]. Compared with other dynamic modeling methods, the linear MSTMM has
the characteristics of accurate and efficient calculation without global dynamic modeling.
Therefore, it is widely used in the fields of vehicles, aerospace [25], and marine engineer-
ing [26,27]. In this paper, the vibration model of the flexible 3-PRR PPM is established using
linear MSTMM, and the numerical simulation is carried out using ANSYS software. The
main contributions of this paper are as follows. (1) The extension of the research work on
linear MSTMM to include vibration modeling of the 3-PRR planar parallel manipulator,
and the use of this method to solve for the natural frequencies of the system. (2) Analysis
of the relationship between natural frequencies and configurations of the flexible 3-PRR
PPM using linear MSTMM. Furthermore, the method proposed in this paper can be easily
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applied to the vibration modeling of other parallel manipulators with flexible components,
thus laying a foundation for dynamic optimization.

2. Introduction of the Linear MSTMM
State Vector, Transfer Matrix, and Transfer Equation

The basic concepts of the transfer matrix method include the state vector and transfer
equation, which together form the dynamic system. Each body element in a multibody
system contains at least one input state vector and one output state vector, which represent
displacements (including orientation angle displacements) and internal forces (including
interior torques) of the element [28].

For a planar vibration system, the state vectors of the connection points are defined as:

zI =
[
x y θz mz qx qy

]T
I (1)

zO =
[
x y θz mz qx qy

]T
O (2)

where x and y represent the physical translation of the element, θz is the orientation angle,
mz, qx and qy are the internal torque and internal force, respectively.

The solution of the free vibration of the system can be obtained by superposition of
the principal modes. The modal transformation can be expressed as:

z = Zeiωt (3)

The state vectors of the system in the modal coordinate are defined as:

ZI =
[
X Y Θz Mz Qx Qy

]T
I (4)

ZO =
[
X Y Θz Mz Qx Qy

]T
O (5)

ZI and ZO are the modal coordinates corresponding to physical coordinates, which
represent the amplitude of displacement, angle, internal torque, and internal force. ω
represents the natural frequency of the system.

Taking the chain system shown in Figure 1 as an example, the transfer equation of
element j can be obtained easily from the dynamic equation and expressed as:

Zj,j+1= UjZj,j−1 (6)

where Uj is the transfer matrix of component j.
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For a multibody system composed of n elements, the overall transfer matrix of the
system can be obtained by [29]:

Zn,n+1= UallZ1,0 (7)

Uall = U1U2U3 . . . Un (8)

Uall is the overall transfer matrix of the system. Equations (7) and (8) show that in
MSTMM, there is no need to establish global dynamics equations for the system. The
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dimensionality of the transfer matrix depends only on the number of the boundary state
vectors at the input and output of the system, and it does not increase with an increase in
degrees of freedom. This approach keeps the overall transfer equations low-order, resulting
in improved computational efficiency and accuracy, even for complex multibody systems.

3. Dynamic Model of the Flexible 3-PRR PPM

The structure of the flexible 3-PRR PPM is shown in Figure 2. It consists of a regular
triangle mobile platform C1C2C3, with three closed branch chains connected to the fixed
base platform A1 A2 A3. Each branch chain has an active moving joint and two passive
rotating joints that move along the straight line of the guideway [30,31]. The global
coordinate system OXY is set at the position of the base platform A1, and the initial angle
of the mobile platform is expressed as ϕ.
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The PPM can be modeled as a linear flexible multibody system that includes flexible
links, sliders, mobile platforms, and smooth hinges. To model these components, it is
necessary to derive their transfer matrices.

3.1. Transfer Matrix of the Mobile Platform

The mobile platform can be considered as a rigid body with three inputs and one
output [32]. The structure diagram shown in Figure 3 illustrates the three input points,
denoted as I1, I2, I3, and the output located at the center G of the mobile platform. The
first moving coordinate system O1X1Y1 is fixed at point I1 and is parallel to the global
coordinate system. In this case, the initial angle between the mobile platform and the first
moving coordinate system is ϕ. The x-axis of the moving coordinate system O1X2Y2 of the
platform is oriented along the direction from point I1 to the point I2.
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In the plane coordinate system O1X2Y2, the angular relationship of a rigid body
undergoing small vibrations can be obtained as:

θIj = θI1 (j = 2, 3) (9)

θOG = θI1 (10)

For a multi-input-single-output rigid body with linear vibration, the displacements
of the remaining input points and output points can be expressed as a function of the
displacement of the first input point I1 and the angular displacement around I1:[

xIj ,I1

yIj ,I1

]
=

[
xI1
yI1

]
+

[
−yIj

xIj

]
θI1 (j = 2, 3) (11)

[
xOG,I1
yOG,I1

]
=

[
xI1
yI1

]
+

[
−yOG
xOG

]
θI1 (12)

where
(

xIj
, yIj

)
,
(

xOG, yOG
)

are the position coordinates of the input point Ij and the output
point G in the moving coordinate system, respectively.

By combining Equations (9) and (11) and rewriting the relationship between position
and angle into matrix form using Equations (1)–(3), we get:

UIj ZI1 + UI1 ZIj = 03×1 (j = 2, 3) (13)

where ZI1 , ZI2 , and ZI3 denote the state vectors of three inputs, and

UIj =

1 0 −yIj

0 1 xIj

0 0 1

0 0 0
0 0 0
0 0 0

(j = 2, 3) (14)

UI1 =

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

 (15)

Similarly, Equations (10) and (12) are also rewritten into matrix form as:

UGZI1 + UI1 ZG = 03×1 (16)
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where ZG denotes the state vectors of output, and

UG =

1 0 −yOG
0 1 xOG
0 0 1

0 0 0
0 0 0
0 0 0

 (17)

For a multi-input-single-output mobile platform in free vibration, where no external
force is applied, the advection equation can be obtained as:

qO
x,G = ∑3

j=1 qI
x,j −mG

..
xOG (18)

qO
y,G = ∑3

j=1 qI
y,j −mG

..
yOG (19)

Here, qI
x,j and qI

y,j are the internal forces acting in the x and y directions at the inputs,

respectively, while qO
x,G and qO

y,G are the internal forces acting in the x and y directions at
the output. Furthermore, mG represents the mass of the center of mass, and

..
xOG and

..
yOG

denote the accelerations at the center of mass of the mobile platform.
Considering the moment balance, the rotation equation of the input I1 can be ex-

pressed as:
dGI
dt

+ mrIC × aI = M (20)

Linearizing Equations (18)–(20) and combining them with Equations (1)–(3), the equa-
tions can be rewritten in matrix form as:

U4
I1

ZI1 + U4
I2

ZI2 + U4
I3

ZI3 + U4
GZG = 03×1 (21)

Defining the state vectors of the input and output of the mobile platform in integral
forms, they can be expressed as:

Ztol =
[

ZT
I1

ZT
I2

ZT
I3

ZT
G

]T
(22)

Therefore, by combining Equations (13), (16), and (21), the transfer equation of the
mobile platform can be obtained as:

UPZtol = 012×1 (23)

where the transfer matrix of the mobile platform is expressed as:

UP =


UI2 UI1 O3×6 O3×6
UI3 O3×6 UI1 O3×6
UG O3×6 O3×6 UI1

U4
I1

U4
I2

U4
I3

U4
G

 (24)

where:

U4
I1 =

−myCω2 mxCω2 JI1 ω2

−mω2 0 myCω2

0 −mω2 −mxCω2

1 0 0
0 1 0
0 0 1

 (25)

U4
I j =

0 0 0
0 1 0
0 0 1

1 yIj −xIj

0 0 0
0 0 0

(j = 2, 3) (26)

U4
G =

1 0 0
0 1 0
0 0 1

1 yOG xOG
0 1 0
0 0 1

 (27)
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In the transfer matrix, xC and yC represent the positions of the center of the mobile
platform, and JI1 is the moment of inertia of the mobile platform relative to I1.

3.2. Transfer Matrix of the Slider

The structural diagram of the slider is shown in Figure 4. Since the volume of the
slider is small compared with the other rigid bodies in the system, it can be neglected
and treated as a concentrated mass. From the characteristics of concentrated masses, the
following equations can be obtained: xO = xI , yO = yI , θO

z = θ I
z, MO

z = MI
z.
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From the force relationship:

qO
y = qI

y −ms
..
yI (28)

qO
x = qI

x −ms
..
xI (29)

Similarly, qI
x and qI

y represent the internal forces acting in the x and y directions at the
input, respectively, while qO

x and qO
y are the internal forces acting in the x and y directions

at the output. ms represents the mass at the center of mass of the slider, and
..
xI and

..
yI are

the accelerations at the center of mass of the slider.
The form of the slider state vector can be defined as shown in Equations (4) and (5).

Therefore, the slider transfer equation and transfer matrix for the concentrated mass can be
obtained as:

Zo = UslideZI =



1
0
0

0
1
0

0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 1 0 0
mω2

0
0

mω2
0 0 1 0
0 0 0 1

ZI (30)

3.3. Transfer Matrix of the Flexible Link

In the flexible 3-PRR PPM, the flexible link can be discretized into multiple rigid body
elements, which are connected by springs between segments using the wired segment
method, as illustrated in Figure 5. Each rigid body element represents the inertial character-
istics of the flexible link, while the elastic hinge describes the elasticity of the flexible body.
By increasing the number of rigid body elements used to discretize the flexible link, a more
accurate model can be achieved.
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According to the linear MSTMM, the state vectors in modal coordinates at the input
and output of the flexible link are ZI and ZO, respectively, and the transfer equation can be
expressed as:

ZO = UbN UsN · · ·Us1Ub1 ZI = ULZI (31)

where Ub is the transfer matrix of the rigid body element and Us is the transfer matrix of
the elastic hinge between the body element.

3.3.1. Transfer Matrix of the Elastic Hinge

To better approximate to the real situation, the modeling process takes into account
both torsional vibrations and planar motions. As a result, the intersegment spring con-
necting two rigid bodies is defined as an elastic hinge composed of a torsion spring and a
linear spring.

US =



1 0 0 0 − 1
K1

0
0 1 0 0 0 − 1

K1

0 0 1 1
K2

0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(32)

In the transfer matrix of the elastic hinge, K1 denotes the linear spring elasticity
coefficient considering longitudinal deformation, while K2 denotes the linear torsion spring
elasticity coefficient:

K1 =
EA
∆l

=
NEA

L
(33)

where EA is the tensile stiffness and ∆l denotes the rigid body elements length,

M = EI
∂2ω

∂x2 = EI
∂δ

∂x
(34)

K2 =
M
∆δ

=
EI
∆l

=
NEI

L
(35)

where EI is the flexural stiffness and M is the bending moment of the flexible link.

3.3.2. Transfer Matrix of the Rigid Element

Figure 6 illustrates the structure of a planar rigid body element, where the x-axis of
the local coordinate system o1x1y1 is along the neutral axis of the rigid body. The state
vectors at the input and output are ZI and ZO, respectively, and the transfer equation from
the input point I to the output point O can be expressed as:

ZO = UBZI (36)
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where:

UB =



1 0 −b2 0 0 0
0 1 b1 0 0 0
0 0 1 0 0 0

u4,1 u4,2 u4,3 1 −b2 b1
mω2 0 −mω2cc2 0 1 0

0 mω2 mω2cc1 0 0 1

 (37)
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In the transfer matrix, u4,1 = −mω2(b2 − c c2
)
, u4,2 = mω2(b1 − c c1

)
, u4,3 =

−ω2[J1 −m(b1cc2 + b2cc1)], ω is the natural frequency of the parallel manipulator, and
J1 is the rotational inertia of the element with respect to I. The coordinates of the output
point O are denoted as (b1, b2), and the coordinates of the center of mass C are denoted as
(c1, c2).

3.4. Transfer Matrix of the Smooth Hinge

Figure 7 illustrates the structure of a smooth hinge, which is used to connect two
bodies with free rotation. When a massless smooth hinge connects two rigid bodies at both
ends, the input and output positions coincide, the internal forces are equal, and the internal
moment is zero.
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The state vector form of the planar hinge can be defined in a similar manner to
Equations (4) and (5), and then from the literature [31], the transfer equation of the smooth
hinge can be obtained as:

ZO = UshZI (38)

where:

Ush =



1 0 0 0 0 0
0 1 0 0 0 0
− u4,1

u4,3
− u4,2

u4,3
0 0 − u4,5

u4,3
− u4,6

u4,3

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(39)

u4,1,u4,2,u4,3,u4,5,u4,6 indicate the corresponding entries of the matrix in the next rigid
body connected.
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3.5. Overall System Transfer Equation

The flexible 3-PRR PPM consists of a mobile platform and three branch chain systems.
Each chain system consists of a flexible link, a slider, and two smooth hinges. Three
sliders are used as inputs to the system, and the center of the mobile platform is treated
as the output. The components of the PPM are numbered and shown in Figure 8. The
topology diagram in Figure 9 illustrates the transition relationship between state vectors,
with each body element represented by a ‘◦’ and each hinge element and transfer direction
represented by ‘→’. Ij (j = 1,2,3) are the input of element 1 from elements 5–7.
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In order to facilitate the analysis of the dynamics of the flexible 3-PRR PPM, the transfer
matrix of the local coordinate system of the support chain system should be transformed to
the same coordinate system with the mobile platform [33]. When the three flexible links are
at angle γj(j = 1, 2, 3) with the x-axis of the mobile platform, the basic rotation matrix with
respect to the coordinate system of the mobile platform is:

Asp=

[
cosγj sinγj
−sinγj cosγj

]
(40)

Then, the transformation relationship of the same state vector in different coordinate
systems is given by:

Z′I = RspZI Z′O = RspZO (41)
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where Rsp denotes the directional cosine matrix.

Rsp =



cosγj sinγj 0 0 0 0
−sinγj cosγj 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cosγj sinγj
0 0 0 0 −sinγj cosγj

(j = 1, 2, 3) (42)

Thus, the transfer equation of the three-branch chain system in the mobile platform
can be obtained as: 

Z′4 = Rsp(γ1)
TU I Rsp(γ1)Z1

Z′8 = Rsp(γ2)
TU I I Rsp(γ2)Z5

Z′12 = Rsp(γ3)
TU I I I Rsp(γ3)Z9

(43)

where UI = U4U3U2U1, UI I =U8U7U6U5, UI I I =U12U11U10U9.
The overall transfer equation of the system can be expressed as:

Up


Z′4
Z′8

Z′12
ZG

= UP


Rsp(γ1)

TU I Rsp(γ1)Z1

Rsp(γ2)
TU I I Rsp(γ2)Z5

Rsp(γ3)
TU I I I Rsp(γ3)Z9

ZG

= O12×1 (44)

The overall transfer equation, transfer matrix, and state vector equation of the system
can be rewritten and organized in the following form:

Uall12×24Zall24×1= 012×1 (45)

where:

Uall = UP


Rsp(γ1)

TU I Rsp(γ1)

Rsp(γ2)
TU I I Rsp(γ2)

Rsp(γ3)
TU I I I Rsp(γ3)

E

 (46)

Zall=
[

Z1
T, Z5

T, Z9
T, ZG

T
]T

(47)

3.6. Vibration Characteristics
3.6.1. Vibration Characteristics of Flexible Link

The flexible link is fixed in a flexible 3-PRR PPM with articulated ends, and the system
boundary conditions can be expressed as:

ZI =
[
0 0 Θz 0 Qx Qy

]T
I (48)

ZO =
[
0 0 Θz 0 Qx Qy

]T
I (49)

We then substitute the boundary conditions into the transfer Equation (31).

∆ =

∣∣∣∣∣∣
UL1,3 UL1,5 UL1,6
UL2,3 UL2,5 UL2,6
UL4,3 UL4,5 UL4,6

∣∣∣∣∣∣ = 0 (50)

Equation (50) is the system characteristic equation, which is a function of the natural
frequency ω, and ω has a solution for ∆ = 0.



Machines 2023, 11, 505 12 of 20

3.6.2. Vibration Characteristics of the Flexible Parallel Manipulator

By using the linear MSTMM, the overall transfer matrix of the whole system can be
obtained by sequentially splicing the transfer matrices of the components in the flexible
3-PRR PPM. The characteristic equations of the whole system can be derived by substi-
tuting the boundary conditions, and its natural frequency can be determined by solving
these equations.

For a specific position, a free vibration analysis is conducted on the flexible 3-PRR PPM.
The state vector in the modal coordinates of the slider at the system inputs is provided
as follows:

Z1,5,9 =
[
0 0 0 Mz Qx Qy

]T (51)

The output of the whole system is at the center of mass G of the mobile platform, and
since there is no external force acting on the mobile platform, it is free boundary so the
terms MG, qxG, and qyG are 0. Its state vector can be expressed as:

ZG =
[
X Y θZ 0 0 0

]T (52)

We then substitute Equations (51) and (52) for the boundary conditions into Equation (45)
and eliminate the zero elements in the state vector Zall along with their corresponding column
vectors in Uall . The system characteristic equation of the system is obtained as:

U∗all12×12Z∗all12×1= 012×1 (53)

where U∗all denotes the square matrix of the unknown variables in Uall and Z∗all is the
column matrix composed of the unknown variables in Zall Since U∗all is only related to the
structural parameters of the system itself with the natural frequency ω, U∗all has a non-zero
solution and the determinant of U∗all needs to be zero.

∆MSTMM(ω)= detU∗all = 0 (54)

The characteristic equation of the system is a function of ω. It can be solved using the
dichotomous method to obtain the natural vibration frequency of the flexible PPM system.

4. Numerical Simulation and Discussion
4.1. In-Plane Vibration of Flexible Link

To verify the accuracy and effectiveness of the proposed method, the vibration charac-
teristics of the flexible link in the flexible 3-PRR PPM were numerically simulated using
both MSTMM and FEM (Ansys Workbench). The parameters of the link were set as shown
in Table 1. The natural frequencies of the flexible link were calculated using the linear
MSTMM. Furthermore, a simulation model was created in ANSYS Workbench, using
the same structural parameters. The components were meshed with a hexahedral mesh,
consisting of 4529 nodes, with a mesh size of 0.002 m.

The first six orders of natural frequencies and vibration shapes of the system in the plane
obtained from linear MSTMM and FEM are given in Table 2 and Figure 10, respectively.

Table 1. Parameters of flexible link.

Symbols Unit Parameters

L = 0.12 [m] Length of flexible link
N = 400 - Number of split segments of flexible link

E1= 7×1010 [Pa] Young’s modulus of flexible link
b×h = 0.05× 0.03 [m] Cross section parameters

ρ1 = 2740 [kg/m3] Density of flexible link
I1 = 1

12 ml l2 [kg.m2] The inertia of the links
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Table 2. Comparison of natural frequencies of flexible link.

Mode 1st 2nd 3rd 4th 5th 6th

MSTMM 319.88 1279.08 2876.24 5109.15 7974.71 11,468.9
FEM 318.17 1270.8 2852.4 5053.8 7862.5 11,263

Error(%) 0.57 0.64 0.82 1.08 1.41 1.79

The results demonstrate that the natural frequencies and mode shapes of the flexible
link by MSTMM agree well with those obtained by FEM. This confirms that the proposed
method is accurate for the description of flexible link.

4.2. In-Plane Vibration of the Flexible 3-PRR PPM

To further verify the accuracy and effectiveness of MSTMM in modeling the flexible
3-PRR PPM depicted in Figure 2, the vibration characteristics of the parallel manipulator
were simulated numerically using both linear MSTMM and FEM (Ansys Workbench),
with identical structural parameters for the manipulator in both methods as listed in
Table 3. Moreover, to ensure consistency between the two methods, the component types
and constraints between components were kept the same, especially in FEM, where a
fixed-hinge joint was used to connect the flexible links to the mobile platform.

Table 3. Parameters of the 3-PRR PPM.

Symbols Unit Parameters

L = 0.12 [m] Length of flexible link
N = 400 - Number of split segments of flexible link
Lp = 0.1 [m] Side of mobile platform

ms = 5.7× 10−4 [kg] Mass of slider
E1= 7×1010 [Pa] Young’s modulus of flexible link
mp = 0.2038 [kg] Mass of mobile platform

b×h = 0.05× 0.03 [m] Cross section parameters

E2 = 2× 1013 [Pa] Young’s modulus of the mobile platform
and slide

∅ = 45o [deg] Orientation of the platform
ρ1 = 2740 [kg/m3] Density of flexible link
ρ2 = 7850 [kg/m3] Density of mobile platform and slide

I1 = 1
12 ml l2 [kg.m2] Inertia of the links

I2 = 1
3 mpL2

p [kg.m2] The inertia of the mobile platform

In the FEM simulation process, hexahedral meshes were used for the components,
with the 3-PRR PPM divided into 55,993 nodes using a mesh size of 0.002 m. Additionally,
the slider was fixed in place.

The natural frequencies of the system in the plane were obtained from linear MSTMM
and FEM. Both natural frequencies and vibration shapes appear in three sequential groups
and the differences in frequency values are small. In order to obtain better performance, we
selected the first six order natural frequencies of the first link given in Table 4, and Figure 11
shows the first six order mode shapes of the first link using FEM.

Table 4. Natural frequencies of the flexible 3-PRR PPM.

Mode 1st 2nd 3rd 4th 5th 6th

MSTMM 737.69 2022.16 3958.45 6527.22 9719.89 13,528.04
FEM 755.98 2077.9 4059.8 6679.6 9934.5 13,803

Error(%) 2.42 2.68 2.49 2.28 2.16 1.99
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The results indicate that the errors of the first six orders of natural frequencies calcu-
lated by MSTMM and FEM are less than 2.68%. There is good agreement between the results
obtained by the two methods, which demonstrates their accuracy. Thus, the MSTMM-based
model effectively reflects the natural characteristics of the flexible 3-PRR PPM.

4.3. Analysis of the Vibration Characteristics of the Flexible Parallel Manipulator under a
Specific Trajectory

To analyze the variation of natural frequencies of a flexible 3-PRR PPM under a specific
trajectory, a circular trajectory with a radius of 0.015 m was given as the trajectory of the
mobile platform. The angle ϕ between the mobile platform and the global coordinate
system is fixed at 45◦. This trajectory is defined as:

Xp = 0.15 + 0.015sin(πt) (0 ≤ t ≤ 2) (55)

Yp = 0.086 + 0.015cos(πt) (0 ≤ t ≤ 2) (56)

For easier analysis, we divided the circular trajectory into eight equidistant positions
using the equipartition method. Then, we derived an approximate variation law by fitting
the data. Figure 12 depicts the configurations of the parallel manipulator under the defined
trajectory, and Figure 13 illustrates the first-order mode shapes obtained through FEM at
the eight equidistant positions.
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Figure 12. Configurations of the platform under the designed trajectory.

The first six orders of natural frequencies of the platform under different configurations
are displayed in Table 5 through linear MSTMM numerical simulation. Figure 14 shows
the variation curves of the first six orders of natural frequencies.

Table 5. Natural frequencies of platforms under different configurations based on MSTMM.

Point
Natural Frequencies fk (Hz)

1st 2nd 3rd 4th 5th 6th

1 737.69 2022.16 3958.45 6527.22 9719.89 13,528.04
2 737.68 2022.02 3958.28 6527.05 9719.71 13,527.90
3 737.29 2021.83 3958.00 6526.76 9719.42 13,527.73
4 736.83 2021.75 3957.88 6526.62 9719.27 13,527.70
5 735.29 2021.79 3957.91 6526.65 9719.30 13,527.73
6 735.27 2021.91 3958.08 6526.83 9719.48 13,527.84
7 737.07 2022.09 3958.33 6527.08 9719.74 13,528.00
8 737.45 2022.21 3958.49 6527.26 9719.92 13,528.10

The results of the linear MSTMM numerical simulation indicate that the natural fre-
quency of each order changes as the configuration of the flexible 3-PRR PPM changes. This
suggests that the natural frequency of the platform will also vary with the configuration.

However, certain patterns can be analyzed through their variations. When the parallel
platform changes its configuration along a specific circular trajectory, the first six orders of
natural frequency exhibit a pattern of decreasing and then increasing. The changing trend
from the second order to the sixth order is basically similar, and the second order is used
as an example for analysis. As the position of the mobile platform is transformed from
position 1 to position 8 according to the circular rule, the natural frequency from position 1
to position 4 shows a continuous decrease and reaches the minimum value at position 4. It
then gradually increases and achieves the maximum natural frequency at position 8.
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Figure 13. The first-order mode shapes under different configurations: (a) first, (b) second, (c) third, 
(d) fourth, (e) fifth, (f) sixth, (g) seventh, and (h) eighth position. 

The first six orders of natural frequencies of the platform under different configura-
tions are displayed in Table 5 through linear MSTMM numerical simulation. Figure 14 
shows the variation curves of the first six orders of natural frequencies. 

Table 5. Natural frequencies of platforms under different configurations based on MSTMM. 

Point 
Natural Frequencies 𝒇𝒌 (Hz) 𝟏st 𝟐𝐧𝐝 𝟑rd 𝟒th 𝟓th 𝟔th 

1 737.69 2022.16 3958.45 6527.22 9719.89 13,528.04 
2 737.68 2022.02 3958.28 6527.05 9719.71 13,527.90 
3 737.29 2021.83 3958.00 6526.76 9719.42 13,527.73 
4 736.83 2021.75 3957.88 6526.62 9719.27 13,527.70 
5 735.29 2021.79 3957.91 6526.65 9719.30 13,527.73 

Figure 13. The first-order mode shapes under different configurations: (a) first, (b) second, (c) third,
(d) fourth, (e) fifth, (f) sixth, (g) seventh, and (h) eighth position.
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Figure 14. The first six natural frequencies under different configurations: (a) first, (b) second,
(c) third, (d) fourth, (e) fifth, and (f) sixth mode.

This rule illustrates the vibration characteristics of the flexible 3-PRR parallel ma-
nipulator and provides a crucial theoretical basis for subsequent research on dynamics
optimization control.

5. Conclusions

This paper presents a linear MSTMM-based method for modeling and analyzing the
dynamics of a flexible 3-PRR PPM. The overall transfer matrix of the system is obtained by
sequentially splicing the transfer matrix of each element in this rigid-flexible multibody
system. The vibration characteristics of the system are then calculated by solving charac-
teristic equations according to boundary conditions. The natural frequencies obtained by
MSTMM are compared with the results obtained using FEM to verify the accuracy and
effectiveness. Finally, the natural frequencies under different configurations are analyzed
using this method. The results show that the natural frequencies of the parallel manipulator
keep changing with the position, and the trends of the first six orders are similar. This
research provides the basis for the optimization of the dynamics of parallel manipulators.

Compared with the traditional method, this method has the following advantages:

(1) There is no need for formulating and solving the global dynamics equations;
(2) Even for complex multibody systems, the overall transfer equations are always of low

order, with high computational efficiency and computational accuracy;
(3) The principle is simple and efficient and can be easily extended to model and analyze

other parallel manipulators containing flexible components.
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