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Abstract: This study proposes a novel approach to optimize the structure of the hinge beam in cubic
presses, aiming to enhance the safety and reduce costs. The finite element method is used to analyze
the stress distribution of the hinge beam under operating conditions, revealing a significant stress
concentration at the oil inlet edge. To optimize the structure, the Taguchi method, the NSGA-II multi-
objective optimization algorithm, and the entropy-TOPSIS method are combined to consider both the
maximum stress and total weight. The results demonstrate a reduction of 199.121 kg and 11.97 MPa
in the total weight and maximum stress of the hinge beam, respectively, representing a decrease of
4.12% and 1.72%. Furthermore, the simulation results of the optimal structure demonstrate a high
degree of accuracy, with only 0.27% difference between the algorithm-optimized and simulation
values. The proposed optimization method not only improves the efficiency of the optimization,
but also avoids the mutual exclusion between the maximum stress and total weight. It significantly
improves the reliability of the hinge beam and reduces its manufacturing costs, thereby shortening
the development cycle of the new hinge beam.

Keywords: cubic press; hinge beam; maximum stress; total weight; multi-objective optimization

1. Introduction

Diamond is the hardest, strongest, and most wear-resistant material found in nature,
and it is widely used in aerospace, geological drilling, medical and military defense [1–5].
The high price and low production limits of natural diamonds require synthetic diamonds
to meet the industry’s great demand [6,7]. Diamonds are synthesized by reacting carbona-
ceous raw materials such as graphite with certain metals through ultra-high pressure and
high-temperature techniques [8].

With low material consumption, low processing and maintenance costs, fast boosting
and bucking, and high production efficiency, the cubic press is the key equipment for
synthesizing diamonds and has an irreplaceable role [9]. In the process of synthesizing the
diamond using the cubic press, the hinge beam undergoes three stages of pressurization,
pressure-holding, and decompression and is subjected to alternating cyclic loads for a long
time, leading to fatigue fracture [10]. Moreover, under rated operating conditions, the
bottom and ears of hinge beam are under great pressure, which is prone to bottom fracture
and ear fracture.

At the same time, a hinge beam can weigh more than 4 tons, accounting for a significant
portion of the machine’s cost. Therefore, understanding how to reasonably design the
hinge beam structure, improve its fatigue strength, and achieve lightweight is the key
to developing a new generation of hinge beams. In traditional design, parts are often
conservatively designed with a high safety factor to prevent accidental risk or premature
fatigue damage [11], which significantly increases the weight and manufacturing cost of
the hinge beam.

With the development of computer technology, finite element simulation has been
widely used in industry. It provides techniques for verification of strength and structural
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optimization of parts [12,13], which extends the service life of parts, shortens the devel-
opment cycle, and reduces costs. Ma [14] investigated the internal stress distribution of
the hinge beam using the finite element method and analyzed the fracture of the hinge
beam ears due to fatigue and overload. The simulation results found that the internal
stress distribution of the hinge beam is not uniform, there is stress concentration, and
the maximum stress is located at the outside of hinge beam ear. However, the reasons
why the stress concentration at the outside of hinge beam ear were not analyzed, and no
corresponding optimization scheme was proposed.

In order to reduce simulation errors, the requirements for finite element simulation ac-
curacy are growing, and the corresponding single simulation time increases significantly [15].
In the process of finite element optimization, the finite element model should be con-
tinuously optimized according to the simulation results until the optimization target is
reached [16]. Therefore, finite element optimization has the disadvantages of a high
computational cost, a cumbersome process, low computational efficiency, and difficulty
finding the optimal global solution, which is not suitable for the structural optimization of
hinge beams.

Modern optimization algorithms have the advantages of low cost, high efficiency,
and good optimization effect, which are superior in structural optimization [17,18]. In
practical optimization problems, there are often multiple conflicting optimization objec-
tives, and single-objective optimization algorithms cannot optimize multiple objectives
simultaneously [19,20]. Li [21] adopted the linear weighting method to transform a multi-
objective optimization problem considering energy consumption, stroke, and flow range
into a single-objective optimization problem. The throttle groove parameters of the multi-
way valve spool were optimized using a genetic algorithm, which resulted in significantly
lower energy consumption, a wider speed range, and a 27% increase in effective stroke.
However, the selection of the weight coefficients is very subjective and will affect the accu-
racy of the optimization results. The NSGA-II multi-objective optimization algorithm can
prevent the selection of weight coefficients. Wang [22] optimized the atomization nozzle
structure using the NSGA-II optimization algorithm, and the optimization results showed
that the turbulent kinetic energy and vapor volume fraction were increased by 28.26% and
5.56%, respectively.

Most previous studies on the structural optimization of hinge beams have used finite
element optimization methods without considering both safety and economy, resulting
in poor and inefficient structural optimization [10,23,24]. This paper investigates the
structural optimization for the hinge beam of a cubic press with safety and economy as the
optimization objectives. Firstly, the finite element model of a hinge beam is established
to analyze its internal stress distribution under rated operating conditions. Secondly, the
optimization variables are determined by design insight, the influence of optimization
variables on the maximum stress and the total weight is analyzed using the Taguchi
method, and its data are provided for the establishment of the objective function. Finally,
the entropy–TOPSIS method and the NSGA-II multi-objective algorithm are synthesized to
optimize the structure of the hinge beam, obtaining the optimal structural parameters of
the hinge beam that take into account safety and economy.

2. Finite Element Simulation
2.1. Finite Element Model Setup

The cubic press is composed of three parts, mechanical, hydraulic, and electrical,
which need the interplay of the three to provide a high temperature and high-pressure
environment for diamond synthesis. The mechanical structure of the main machine consists
of six identical hinge beams arranged in six directions: top, bottom, left, right, front, and
back, which are hinged to each other by pins to form a hexahedron structure [25]. As a key
component in the loading process of the cubic press, the hinge beam system is subjected
to a long-term alternating load with the potential of failure and damage, and it is also the
largest and heaviest component.
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In this paper, the comprehensive performance of the hinge beam is improved by replac-
ing new materials, adopting new processes, and developing new structures, respectively.
Firstly, an improved version of the ductile iron material is adopted. Its yield strength is 1035
MPa, which is 41.8% higher than that of the traditional hinge beam material. Secondly, the
forging process is applied. The stiffness and strength of the forged hinge beam are much
higher than those of the cast one, which greatly improves the reliability of the press. Finally,
a new structure is developed. The new hinge beam does not have a working cylinder and
has reinforcement at the bottom. It effectively extends the lifetime of the cubic press and
significantly reduces the total weight, thereby increasing corporate profits.

According to the actual working requirements of the hinge beam and the above
improvement scheme, the finite element model of the hinge beam is established, as shown
in Figure 1. In addition, the finite element model is simplified as follows without affecting
the computational accuracy: the rounded corners, chamfers, and threaded hole are ignored.
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Figure 1. Geometry diagram of hinge beam.

Mesh division is the most important part of the preprocessing for building a finite
element model. It needs to be integrated with the specific engineering problem, and
the mesh form will directly affect the computational accuracy, computational scale, and
convergence [26]. The larger the mesh division, the faster the iteration speed of the finite
element simulation, but the simulation results are often unreliable. Conversely, the smaller
the mesh division, the more reliable the simulation results are, but it takes a long time.
Therefore, both aspects must be taken into account to reduce the mesh number as much as
possible while satisfying the computational accuracy.

In order to ensure mesh accuracy, the simulation results are solved by gradually
increasing the mesh density. When the simulation results tend to be stable, the mesh
accuracy meets the requirements. Figure 2 shows the situation of equivalent stress changing
with mesh quantity. It can be observed from the graph that when the mesh quantity
reaches 121,859, the equivalent stress mostly stops changing. Therefore, the calculation
results can be considered to no longer be dependent on the mesh at this point. The final
mesh size is 20 mm, the mesh number is 121,859, the node number is 207,140, and the mesh
type is Solid187, which has ten nodes, and each node has three translational degrees of
freedom. Solid187 has strong boundary adaptation and displacement flexibility and is
suitable for meshing irregular geometry models [27]. Figure 3a shows the finite element
meshing model of the hinge beam.
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Figure 2. The situation of the equivalent stress changing with the mesh number of finite element.
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Figure 3. Hinge beam finite element model setup: (a) finite element mesh model; (b) boundary
condition.

During the cubic press operation, hydraulic oil flowing from the inlet pushes the
piston forward with a rated pressure of 100 MPa. According to Pascal’s principle, the oil
pressure will be evenly loaded on each surface of the working chamber, so a 100 Mpa
pressure is applied to the bottom of the hinge beam. Furthermore, the hinge beams are
connected to each other by a cylindrical pin, which constrains the motion of the hinge
beam, so fixed constraints are applied to the ten cylindrical pin holes. Figure 3b presents
the boundary condition setup for the finite element model of the hinge beam.

2.2. Finite Element Results

The allowable stress is [σ−1] = σs/[n] = 690 MPa, taking a safety factor of [n] = 1.5.
Figure 4 shows the equivalent stress diagram of an unoptimized hinge beam under rated
conditions. From the diagram, it can be observed that there is stress concentration at
the ear’s inner edge and oil inlet hole, which is prone to fatigue fracture under repeated
external loads [28]. Further observing the stress value color bars, it can be found that the
equivalent stress values at either location are non-maximal, indicating that they are not the
weakest positions of the hinge beam.

Figure 5 shows the equivalent stress diagram at the bottom of an unoptimized hinge
beam under rated conditions. It can be seen that the maximum equivalent stress of the
hinge beam is located at the edge of the inlet hole with a value of 695.64 Mpa, which
is where the hinge beam is most likely to break down. In addition, the oil inlet hole is
assembled with the standard oil pipe, and the inlet hole structure needs to be determined
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according to the oil pipe, so the inlet hole structure cannot be optimized to reduce the local
stress concentration. It can also be noticed that the equivalent stress of the hinge beam is
not uniformly distributed, and the equivalent stress of the cylinder wall, ear, and bottom
is smaller, which suggests that there is optimization room for the structure and quality of
these places.
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3. Taguchi Method
3.1. Influencing Factors

Solidworks Simulation provides the “design insight” analysis tool, which reflects
the load distribution on the part body and shows the area where the part can be loaded,
guiding structural optimization and improving the part [29]. The structure’s thickness
is reduced under a small load, thus greatly improving the structure’s rationality and
material utilization.

The design insight of an unoptimized hinge beam is shown in Figure 6. The dark-color
represents the part with a higher load, and the light colored represents the part with a lower
load. The light-colored material can be selectively removed in the optimization process,
thus reducing the overall part while ensuring its strength.

The design of the hinge beam shown in Figure 6 shows that the bottom, ears, and
cylinder walls are light-colored, so they are subjected to less load. With the premise of
not affecting the working requirements and assembly of the hinge beam, the ear ribs
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thickness, cylinder wall thickness, bottom ribs thickness, and bottom thickness can be taken
as optimization variables for the lightweight study.
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3.2. Taguchi Method Setup

Taguchi method is an effective method to study multi-factor and multi-level problems,
requiring only a few representative experiments to reflect the whole experimental situation,
which effectively improves the experimental efficiency and reduces the number and cost
of tests [30]. In this paper, four important structural parameters of the hinge beam are
selected as influencing factors—bottom thickness (A), ear ribs thickness (B), bottom ribs
thickness (C), and cylinder wall thickness (D)—and four levels were set for each influencing
factor, ignoring the interaction between the influencing factors. The total weight (M) and
maximum stress (τ) were taken as the test indexes. According to the data provided by the
material supplier, the material strength and processing costs are most appropriate when
the thickness is in the range of 105–120 mm. Therefore, the range of each influencing factor
is set to 105–120 mm. The Taguchi experimental design for the structural optimization of
the hinge beam is shown in Table 1.

Table 1. Taguchi experimental design.

Levels
Influencing Factors

A B C D

1 105 105 105 105
2 110 110 110 110
3 115 115 115 115
4 120 120 120 120

3.3. Taguchi Method Results

The simulation results for each scheme are shown in Table 2, and subsequently, the
range analysis of the experimental data is performed to further investigate the effects of
different structural parameters on the total weight and maximum stress.

The interval analysis method, which is simple and intuitive, is used to obtain the
influence weights of each influencing factor on the test indexes. The larger the polar
difference the R, the greater the influence of this influencing factor on the test index. Table 3
shows the results for the range analysis of maximum stress, which shows that the order of
significance of each influencing factor on maximum stress is C > D > A > B. The bottom
ribs’ thickness has the greatest influence on the maximum stress, followed by the cylinder
walls’ thickness, while the ear ribs’ thickness have the least influence.

Table 4 shows the results for the range analysis of total weight, from which we can see
that the order of significance of each influencing factor on total weight is D > B > C > A.
The cylinder wall thickness has the greatest effect on the total weight, followed by the ear
ribs thickness, and then the bottom ribs thickness, and the bottom thickness has the least
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effect. From the aforementioned range analysis, it is clear that there is a major difference in
the factor significance order on the total mass and maximum stress, indicating that when
optimizing one objective, the other objective becomes worse.

Table 2. Taguchi experimental results.

No.
Influencing Factors Results

A B C D M σ

1 105 105 105 105 4586.83 710.34
2 105 110 110 110 4678.18 702.58
3 105 115 115 115 4770.84 690.01
4 105 120 120 120 4861.57 658.08
5 110 105 110 115 4716.86 690.42
6 110 110 105 120 4785.54 694.23
7 110 115 120 105 4684.74 681.34
8 110 120 115 110 4752.77 686.57
9 115 105 115 120 4792.65 679.88

10 115 110 120 115 4765.63 672.37
11 115 115 105 110 4711.93 696.82
12 115 120 110 105 4698.33 694.42
13 120 105 120 110 4753.26 661.17
14 120 110 115 105 4663.56 685.41
15 120 115 110 120 4840.01 683.89
16 120 120 105 115 4800.72 687.07

Table 3. Range analysis of maximum stress.

A B C D

K1 690.253 685.452 697.115 692.877
K2 688.14 688.647 692.827 686.785
K3 685.873 688.015 685.467 684.967
K4 679.385 681.535 668.24 679.02
R 10.868 7.112 28.875 13.857

Ranking C > D > A > B

Table 4. Range analysis of total mass.

A B C D

K1 4724.305 4712.35 4721.205 4658.315
K2 4734.977 4723.228 4733.345 4724.035
K3 4742.135 4751.88 4744.955 4763.513
K4 4764.387 4778.347 4766.3 4819.943
R 40.082 65.997 45.095 161.628

Ranking D > B > C > A

4. Multi-Objective Optimization

Multi-objective optimization problems are quite different from single-objective op-
timization problems. When there is only one objective function, the global maximum
or global minimum can be found. Multi-objective optimization is the compromise and
coordination of multiple objectives to achieve the best overall objective when solving an
optimization problem with multiple objectives [31].

Economic and safety objectives are conflicting goals, where an improvement in one
performance leads to a decrease in the other performance. Under the given conditions, it
is necessary to achieve a balance between economy and safety. To maximize the benefits
and work safely and reliably at the same time, this paper takes the total weight and
maximum stress as optimization objectives and makes compromise balance between them
to determine the optimal structure of the hinge beam.
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The optimization result of the multi-objective optimization problem is a solution set,
and these solutions cannot be evaluated as better or worse for the optimization objective,
so the corresponding solutions need to be determined according to the actual working con-
ditions. Traditional multi-objective optimization methods such as the weighted summation
method, linear programming method, and ε-constraint method are ineffective and even fail
in the absence of experience. The multi-objective optimization algorithm based on Pareto’s
dominance principle can avoid the above problems. Figure 7 shows the Pareto dominance
theory, which is defined as ∀x1, x2 ∈ RN , if for all k = 1, . . . , K, there are fk(x1) 6 fk(x2),
which is called x1 domination x2.
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The structure optimization process for the hinge beam of a cubic press is given in
Figure 8. Firstly, the simulation data of the Taguchi method are processed with the multiple
nonlinear regression method to obtain the objective function; secondly, the NSGA-II multi-
objective optimization algorithm is applied to coordinate the objective functions and obtain
the Pareto-optimal solution set satisfying the constraints. Finally, the Pareto-optimal
solution set is evaluated and preferably selected according to the entropy-TOPSIS method
to determine the optimal structural solution of the hinge beam.
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4.1. Objective Function

The multiple nonlinear regression method can establish complex relationships between
multiple independent variables and one dependent variable, accurately describing the
nonlinear relationship that exists between these variables. In this paper, we have applied the
multiple nonlinear regression method to process the Taguchi experimental data presented
in Table 2. Through this analysis, we have obtained the relationship between key structural
parameters and total weight, as well as the relationship between key parameters and
maximum stress shown in Equations (1) and (2):
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M = −2275.6676 + 23.9584x1 + 65.8153x2 + 26.1741x3
−9.2585x4 − 0.4086x1x2 + 0.0949x1x3 + 0.1132x1x4
−0.2538x2x3 + 0.1224x2x4 − 0.0621x3x4

(1)

σ = 1761.3179− 15.6303x1 − 0.9384x2 − 4.9277x3
+5.4355x4 + 0.0667x1x2 + 0.0272x1x3 + 0.0386x1x4
+0.0189x2x3 − 0.078x2x4 − 0.0156x3x4

(2)

where M is the total weight, σ is the maximum stress, x1 is the bottom thickness, x2 is the
ear ribs’ thickness, x3 is the bottom ribs thickness, and x4 is cylinder wall thickness.

This paper aims to optimize the bottom thickness x1, the ear ribs’ thickness x2, the
bottom ribs’ thickness x3, and the cylinder walls’ thickness x4 to minimize the total weight
and the maximum stress while satisfying the constraints.

min
{

M (x1, x2, x3, x4)
τ (x1, x2, x3, x4)

s.t. 105 ≤ x1, x2, x3, x4 ≤ 120
(3)

4.2. NSGA-II Algorithm

Holland proposed the genetic algorithm (GA) based on Darwinian evolution, which
is one of the most widely used multi-objective optimization algorithms, but its weak
local search capability easily leads to premature convergence in practical applications. To
overcome the shortcomings of GA, Srinivas and Deb [32] combined the advantages of
genetic algorithm and Pareto to propose the non-dominated sorting genetic algorithm
(NSGA), which improves the search speed and has a strong merit-seeking capability.
However, it has high computational complexity and poor population diversity. To solve
this problem, Deb [33] introduced fast non-dominated sorting, elite selection strategy, and
crowding distance sorting to improve the NSGA algorithm and proposed the NSGA-II
algorithm, which has the advantages of fast running speed, excellent robustness, and better
convergence of solution sets.

Figure 9 shows the algorithmic principle of NSGA-II. First, initialize the parent popu-
lation Pt according to the existing parameter range and objective function. Second, perform
fast non-dominated sorting and crowding distance calculation for the parent population
Pt. Then, generate the new offspring population Qt using the selection, crossover, and
mutation operations. Finally, combine the parent and offspring populations into a new
population Rt, perform fast non-dominated sorting and crowding distance calculation for
the new population Rt, select the individuals to enter the individuals of the next generation,
and so on, until the condition is satisfied.
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The offspring population determination law of the NSGA-II algorithm is given in
Figure 10. The individuals with high-dominance rank and big crowding in the new
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population Rt are selected to enter the new generation population by using non-dominance
sorting and crowding sorting, respectively. The non-dominance sorting principle is shown
in Figure 11a, which compares the dominance relationship between different individuals to
determine the corresponding dominance rank. The non-dominance layer with the highest
dominance rank is called the Pareto front, and the higher the dominance rank is, the higher
the possibility of entering the new generation.
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The calculation principle of crowding distance is shown in Figure 11b. The crowding
distance is used for estimating the surrounding solution density to ensure the uniform
distribution of the population in the target space, which in turn ensures the individual
diversity of the population. The crowding distance of the ith individual is the sum of the
deviations of all objective function values of the i+1th and i−1th individuals, which is
calculated as follows:

idistance =
m

∑
k=1

zk(k + 1)− zk(k− 1)
zmax

k − zmin
k

, 2 ≤ i ≤ n− 1 (4)

where m is the number of objective functions, zk(i) is the kth objective function value
corresponding to the ith solution, n is the number of solutions contained in different ranks,
and zmax

k and zmin
k are the maximum and minimum values of the kth objective function

set, respectively.
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4.3. Optimization Results

Based on the algorithmic principle described above, numerical simulations are carried
out by utilizing MATLAB. We referred to the parameter range of the NSGA-II algorithm
and adjusted its parameters based on the characteristics of our research target. The specific
parameters are as follows: the population size is 50; the maximum iteration number is 50;
the crossover probability and the variance probability are 0.8 and 0.05, respectively, and the
optimization objectives are the total weight and the maximum stress. Figure 12 presents
the Pareto front for multi-objective structural optimization of the hinge beam. As can be
seen, the optimal solution set of the Pareto front is uniformly distributed along one curve,
where each solution has at least one objective function value better than the others. As the
maximum stress decreases, the total weight tends to rise, and there is a mutually exclusive
relationship between them.
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In the Pareto front, there is no clear superiority or inferiority between any two solutions.
Researchers usually determine the solutions based on the target tendency and manual
experience. The optimal solutions based on the three different target preferences in Figure 12
are given in Table 5. As can be seen in the table, Solution A has a tendency to minimize the
total weight, the total weight is 4622.019 kg, and the maximum stress is 689.91 MPa under
the structural parameters of Solution A. Solution B comprehensive consideration of total
weight and maximum stress, the total weight is 4653.744 kg, and the maximum stress is
678.55 MPa under the structural parameters of Solution B. Solution C tends to minimize
the maximum stress, the total weight is 4692.336 kg, and the maximum stress is 666.64 MPa
under the structural parameters of solution C.

Table 5. Optimal solutions based on manual experience.

Solution

Structural Parameters Results

Bottom
Thickness

(mm)

Ear Ribs
Thickness

(mm)

Bottom
Ribs

Thickness
(mm)

Cylinder
Wall

Thickness
(mm)

Total
Weight

(kg)

Equivalent
Stress
(MPa)

Solution A 105.5 105 117.5 105 4622.019 689.91
Solution B 111.5 105 119.5 105 4653.744 678.55
Solution C 120 105 120 105 4692.336 666.64

All the above-mentioned solutions have their own advantages, and the solutions are
generally determined according to the actual needs. Economically, option A is the optimal
choice; when considering the safety of equipment operation, the equipment is most reliable
under the structural parameters of option C. However, both solutions, A and C, are extreme
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values, where one goal is optimal while the other goal performs the worst. Considering
this problem, scheme B compromises to balance the total weight and maximum stress and
to reduce the overall cost as much as possible while ensuring safety. However, the above
schemes are determined based on manual experience, and it is not analyzed quantitatively
or qualitatively whether they meet the requirements.

4.4. Entropy-TOPSIS Method

TOPSIS is a decision-making method based on ideal and negative ideal solutions, and
it is widely used to determine the Pareto-optimal solution [34]. The ideal and negative ideal
solutions are virtual optimal and worst solutions, which represent the optimal and worst
values in each objective function, respectively. However, the TOPSIS method achieves
artificial subjective interference by using subjective weights in constructing the weighted
normalization matrix.

Therefore, the entropy weighting method can objectively determine the weight coeffi-
cients and thus more realistically reflect the importance of each factor [35]. Combining the
entropy weighting method with the TOPSIS method to determine the optimal solution of
the Pareto front can effectively avoid manual interference. The entropy weight calculation
process is as follows:

(1) Constructing and normalizing the decision matrix

Assuming that there are n evaluation objects and m evaluation indicators, a decision
matrix can be constructed as

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

 (5)

Let the normalized matrix be Y, where the elements are denoted as follows:

yij =
xij√
n
∑

i=1
x2

ij

(6)

(2) Calculate the information entropy value, probability matrix, and entropy weight
as follows:

ej = −
1

ln n

n

∑
i=1

pij ln
(

pij
)
, (j = 1, 2, L, m) (7)

where n is the number of evaluation indexes and pij is the element of probability matrix P:

pij = yij/
n

∑
i=1

yij (8)

The corresponding entropy weight of each evaluation object is obtained by the infor-
mation entropy value:

Wj =
1− ej

m
∑

j=1
(1− ej)

(9)

(3) Calculate the Euclidean distance of each evaluation index relative to the ideal and the
negative ideal.
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The matrix forward normalization methods for extremely large types and extremely
small types are

Aij =
yij −minj

(
yij
)

maxj
(
yij
)
−minj

(
yij
) (10)

Aij =
maxj

(
yij
)
− yij

maxj
(
yij
)
−minj

(
yij
) (11)

The weighted normalized matrix is constructed as

B =
(
bij
)

n×m =
(

AijWj
)

n×m (12)

The Euclidean distance is calculated as

D+
i =

√√√√ m

∑
j=0

(
bij − b+i

)2 (13)

D−i =

√√√√ m

∑
j=0

(
bij − b−i

)2 (14)

where b+i = max
{

b1j, b2j, · · · , bnj
}

, b−i = min
{

b1j, b2j, · · · , bnj
}

are the ideal and negative
ideal solutions, respectively.

(4) The relative closeness is determined as

Ci =
D+

i
D+

i + D−i
(15)

The relative closeness of each solution is calculated according to Equation (15), and Ci
is the relative closeness of the ith solution, and the larger its value, the better the solution is.

4.5. Optimal Solution and Validation

The entropy weight of total weight and maximum stress is calculated according to
Equations (5)–(9), which is 0.5198 and 0.4802, respectively. In the optimization of the hinge
beam structure, the total weight entropy value is greater and occupies a more important
position. Table 6 shows the optimal solution selected from the Pareto front using the
entropy–TOPSIS method. Compared to the initial solution, the total weight and maximum
stress are reduced by 199.121 kg and 11.97 MPa, respectively, with a reduction of 4.12%
and 1.72%. This optimal solution not only ensures the equipment working safety but also
greatly reduces its manufacturing cost.

Table 6. Optimal solution of the hinge beam structure based on the entropy–TOPSIS method.

Solution

Structural Parameters Results

Bottom
Thickness

(mm)

Ear Ribs
Thickness

(mm)

Bottom
Ribs

Thickness
(mm)

Cylinder
Wall

Thickness
(mm)

Total
Weight

(kg)

Equivalent
Stress
(MPa)

Initial
solution 110 120 105 120 4835.175 695.64

Optimal
solution 107 105 120 105 4636.054 683.67

Decrease 4.12% 1.72%

To validate the optimization results of the algorithm, a numerical simulation of the
hinge beam is performed using the optimal structural parameters, and the results are
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presented in Figure 13. The simulation results show that the maximum stress and total
weight of the optimal structural parameters are 681.79 Mpa and 4625.874 kg, respectively.
Comparison with the algorithm’s optimization results for the maximum stress and total
weight of the optimal structural parameters in Table 6 reveals that the simulation errors for
total weight and maximum stress are 0.22% and 0.27%, respectively. The simulation errors
are extremely small, which indicates that the structural optimization method of the hinge
beam with the combined entropy–TOPSIS method and NSGA-II multi-objective algorithm
has high reliability.

Machines 2023, 11, x FOR PEER REVIEW 15 of 17 
 

 

weight and maximum stress are 0.22% and 0.27%, respectively. The simulation errors are 
extremely small, which indicates that the structural optimization method of the hinge 
beam with the combined entropy–TOPSIS method and NSGA-II multi-objective algo-
rithm has high reliability. 

 
Figure 13. Equivalent stress of an optimized hinge beam under rated conditions. 

5. Conclusions 
The traditional structural optimization method relies on finite element verification, 

which requires a large number of simulation aĴempts, and then iteratively optimizes the 
direction and parameters of optimization through analysis of simulation results. The 
structural optimization method proposed in this paper can effectively improve the opti-
mization efficiency and can handle different optimization objectives to find a beĴer bal-
ance and finally achieve beĴer performance and lower cost. The main findings are sum-
marized as follows: 
(1) The FEM results show that the stress distribution of the hinge beam is not uniform 

under the rated working condition, which has a serious stress concentration. The max-
imum equivalent stress of the hinge beam is located at the inlet hole edge with a value 
of 695.64 MPa. 

(2) The range analysis results show that the boĴom ribs’ thickness has the greatest effect 
on the maximum stress, while the cylinder walls’ thickness has the greatest effect on 
the total weight. The large differences in factor significance order for maximum stress 
and total weight indicate safety and economy as conflicting optimization objectives. 

(3) Based on the entropy–TOPSIS method and the NSGA-II multi-objective optimization 
algorithm, the following optimal structural parameters of the hinge beam are ob-
tained: boĴom thickness 107 mm, ear ribs thickness 105 mm, boĴom ribs thickness 
120 mm, and cylinder wall thickness 105 mm. The total weight and maximum stress 
are reduced by 199.121 kg and 11.97 MPa, respectively, with a reduction of 4.12% and 
1.72%. 

(4) Numerical simulations of the hinge beam are carried out under the optimal structural 
parameters. The simulation results of the maximum stress and total weight are 681.79 
MPa and 4625.874 kg, respectively, and the algorithm optimization results for the 
maximum stress and total weight are 683.67 MPa and 4636.054 kg, respectively. Upon 
comparing the algorithm optimization and simulation results, we found that the sim-
ulation error is 0.22% for total weight and 0.27% for maximum stress. This indicates 
that the hinge beam structure optimization method adopted in this paper is accurate 
and reliable, which effectively shortens the development cycle of the new hinge beam 
and reduces the cubic press total cost. 

Figure 13. Equivalent stress of an optimized hinge beam under rated conditions.

5. Conclusions

The traditional structural optimization method relies on finite element verification,
which requires a large number of simulation attempts, and then iteratively optimizes the
direction and parameters of optimization through analysis of simulation results. The struc-
tural optimization method proposed in this paper can effectively improve the optimization
efficiency and can handle different optimization objectives to find a better balance and
finally achieve better performance and lower cost. The main findings are summarized
as follows:

(1) The FEM results show that the stress distribution of the hinge beam is not uniform
under the rated working condition, which has a serious stress concentration. The
maximum equivalent stress of the hinge beam is located at the inlet hole edge with a
value of 695.64 MPa.

(2) The range analysis results show that the bottom ribs’ thickness has the greatest effect
on the maximum stress, while the cylinder walls’ thickness has the greatest effect on
the total weight. The large differences in factor significance order for maximum stress
and total weight indicate safety and economy as conflicting optimization objectives.

(3) Based on the entropy–TOPSIS method and the NSGA-II multi-objective optimiza-
tion algorithm, the following optimal structural parameters of the hinge beam are
obtained: bottom thickness 107 mm, ear ribs thickness 105 mm, bottom ribs thickness
120 mm, and cylinder wall thickness 105 mm. The total weight and maximum stress
are reduced by 199.121 kg and 11.97 MPa, respectively, with a reduction of 4.12%
and 1.72%.

(4) Numerical simulations of the hinge beam are carried out under the optimal structural
parameters. The simulation results of the maximum stress and total weight are
681.79 MPa and 4625.874 kg, respectively, and the algorithm optimization results for
the maximum stress and total weight are 683.67 MPa and 4636.054 kg, respectively.
Upon comparing the algorithm optimization and simulation results, we found that
the simulation error is 0.22% for total weight and 0.27% for maximum stress. This
indicates that the hinge beam structure optimization method adopted in this paper is
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accurate and reliable, which effectively shortens the development cycle of the new
hinge beam and reduces the cubic press total cost.
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