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Abstract: The gear transmission system is an important part of the mechanical system, so it is essen-

tial to judge its running state accurately. To solve the difficult problem of identifying the compo-

nents of coupling faults, this paper derives the calculation method of gear time-varying mesh stiff-

ness for coupling faults of pitting and cracking based on the energy method and considering the 

coupling between teeth, establishes the dynamics model of two-stage gear transmission system with 

coupling faults and studies the influence of coupling faults on gear time-varying mesh stiffness and 

dynamic characteristics. The accuracy of the proposed method is verified by experiments. The re-

sults show that both pitting and cracking can lead to a reduction in mesh stiffness. The stiffness of 

pitting will fluctuate irregularly due to the influence of pitting on the tooth surface, while the stiff-

ness of cracked teeth is relatively smooth. The coupling fault stiffness is dominated by more serious 

faults. By analyzing the periodic impact components in time domain and the sideband components 

around the harmonics in frequency domain the faulty gears in the transmission system can be dis-

tinguished. It provides an effective reference for the diagnosis of faulty gears. 

Keywords: coupling faults; dynamic response; energy method; gear system; time-varying mesh 

stiffness 

 

1. Introduction 

Gears are important components of transmission systems and have been widely used 

in various items of large mechanical equipment, industrial production and military in-

dustries due to their precise transmission ratios, long service life and high reliability. 

However, they may fail over time due to the inevitable fatigue that occurs in gear systems 

under heavy loads and harsh working conditions [1]. Inadequate lubrication and over-

loading can cause deformation, which can lead to wear, cracking, pitting, spalling and 

even tooth breakage, directly affecting the safe operation of equipment. Particularly in 

some large-scale engineering fields, gear failures often cause huge economic losses and 

threaten the safety of people and property [2]. Therefore, it is particularly important to 

study the mechanism of gear failure [3,4]. The more common forms of gear failure are 

cracking and pitting [5]. Cracking occurs mainly at the tooth root during the meshing 

process, while pitting occurs on the tooth surface. However, whether pitting or cracking 

occurs, it will damage the surface material, reduce the gear teeth’s effective cross-sectional 

area, change the gears’ meshing stiffness and ultimately affect the dynamic characteristics 

of the gear system [6]. 

Time-varying mesh stiffness of gears is one of the main internal excitations in gear 

dynamics [7]. It is a time-varying phenomenon caused by changes in the number and lo-

cation of tooth contacts [8]. In gear fault diagnosis, the square-wave method, the potential 

energy method and other methods are commonly used to calculate the time-varying mesh 
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stiffness of gears. In the case of gear cracks, the crack path is usually simplified as a 

straight line [9] or a slightly curved line starting from the tooth root [10,11]. Most studies 

assume that tooth cracks extend across the entire width of the tooth and have a constant 

crack depth. For healthy gears running continuously, gear mesh stiffness is a periodic 

function. F. Chaari et al. [12,13] used a square wave to approximate the time-varying mesh 

stiffness of the gear. The period of a square wave is called the mesh period, which is equal 

to the duration of one rotation divided by the number of teeth. The square wave can reflect 

changes in the number of tooth contacts, but ignores changes in the tooth contact position, 

and the size of the square wave is essentially estimated based on personal experience. 

Hence, the accuracy of the gear time-varying stiffness given by this method is not high. 

Therefore, many researchers have improved the analytical models for stiffness calculation. 

Weber [14] derived a comprehensive deformation calculation method using energy inte-

gration, including tooth bending, shear and compression. Cornell [15] further proposed a 

numerical integral method including root fillet and elastic deformation of tooth founda-

tion based on Weber’s research. Yang and Lin [16] established a potential energy method 

based on the potential energy principle. They considered the total energy stored in a pair 

of gears as the sum of Hertz contact energy, bending energy and axial compression en-

ergy, which correspond to the Hertz contact stiffness, bending stiffness and axial com-

pression stiffness, respectively. Later, Tian [17] added another energy term called shear 

energy, corresponding to the shear stiffness, and then used this method to derive the mesh 

stiffness of gears with cracks. This method calculates the mesh stiffness of gears with faults 

more efficiently and has been widely used. Since previous scholars did not consider the 

deformation of the gear body when calculating the stiffness, i.e., the gear body was as-

sumed to be rigid, Sainsot et al. [18] proposed an empirical formula for tooth deformation 

caused by fillet-foundation deflection, which has been widely used to study the effects of 

various factors such as wear, cracking, stripping and pitting on mesh stiffness. Ankur 

Saxena [19] studied the effects of various tooth cracking conditions on the system’s modal 

characteristics and frequency response function. The modal and frequency response char-

acteristics induced by gear cracking were compared. Kramberger et al. [20] indicated that 

cracks mostly initiated at the point of the maximum principal stress in the tensile side of 

a gear tooth. Wan et al. [21] proposed a modified model that considers the relative position 

of the root and base circles, and optimized and corrected the stiffness calculation. The 

above model ignores the gear structural coupling deformation caused by the gear body 

when calculating the double-tooth contact area. Xie et al. [22] proposed a time-varying 

mesh stiffness calculation method that considers the structural coupling effect between 

teeth and verified its effectiveness by finite element analysis. This further improved the 

accuracy of the energy method. Regarding pitting failure, scholars’ research mainly fo-

cuses on improving the similarity between the pitting analysis model and the actual pit-

ting failure model. Ankur Saxena [23] proposed an analytical method to calculate the 

TVMS of the spur gear for different spall shapes, size and location considering sliding 

friction. Bilal El Yousfi [24] double-discretized the tooth surface to consider the variation 

of defect depth in the width and length direction of the gear teeth, and proposed a method 

to calculate meshing stiffness of spur gears based on potential energy. Cheng et al. [25] 

proposed a rectangular pitting model and put forward a method to evaluate the degree of 

pitting damage. Chen et al. [26] regarded the pitting pit as cylindrical. They considered 

the influence of crack and pitting pit deterioration on the time-varying mesh stiffness of 

gears when both existed on the same gear, which was verified by finite element analysis. 

Luo et al. [27,28] proposed a pitting pit model based on ellipsoidal geometry and verified 

the accuracy of the model using the finite element method. Lei et al. [29] proposed a pitting 

pit distribution model based on one-dimensional Gaussian distribution and simulated the 

variation of gear mesh stiffness under different degrees of failure. Chen et al. [30] derived 

the comprehensive mesh stiffness affected by pitting using a two-dimensional Gaussian 

distribution model and further analyzed the conditions of multiple tooth surface pitting. 
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In summary, the above research has focused mainly on the mechanism and detection 

of single faults in a single gear pair. However, in important mechanical and industrial 

fields, various coupling faults may occur in the gear transmission system under heavy 

loads and insufficient lubrication, among which pitting and cracking are most likely to 

occur. To address this problem, this paper proposes a stiffness calculation model for cou-

pling, pitting and cracking faults based on the energy method considering the coupling 

effect between teeth, analyzes the influence of different degrees and types of faults on the 

time-varying mesh stiffness and establishes a two-stage gear transmission system dy-

namic model containing single faults and coupling faults based on the finite element 

method. The effects of single and coupling faults on the dynamic characteristics of the 

transmission system are analyzed, and the accuracy of the model is verified through ex-

periments. 

2. Calculation of Gear Time-Varying Mesh Stiffness 

The time-varying meshing stiffness, as an internal excitation, is particularly im-

portant in the calculation of the dynamic characteristics of the gear. Therefore, accurate 

calculation of the meshing stiffness of the gear is conducive to accurate dynamic simula-

tion and dynamic characteristics of the gear system. 

This chapter calculates the time-varying mesh stiffness of healthy and faulty gears, 

and the parameters of gears are shown in Table 1. 

Table 1. Gear parameter. 

Parameters Drive Gear Driven Gear 

Number of teeth 36 90 

Pressure angle (°) 20 20 

Face width (mm) 12 12 

Modulus (mm) 1.5 1.5 

Rotary inertia (kg·m2) 0.000380 0.003492 

Mass (kg) 0.1836 1.3114 

2.1. Calculation of Meshing Stiffness of Normal Gear 

As a mathematical method, the potential energy method is combined with the me-

chanics of materials to divide the object and integrate each part to obtain accurate results. 

Therefore, this method is also used to calculate the stiffness of gears. According to numer-

ous studies, it is believed that the energy in teeth can be divided into four parts. The shear, 

bending, axial and Hertzian energies are replaced by Us, Ub, Ua and Uh, respectively. The 

above four kinds of energy formula calculation are described as follows [26]: 
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where F represents the acting force by the meshing tooth in the contact point. Fa, Fb are 

radial and tangential forces, G, E, L, represent shear modulus, Young’s modulus and the 

tooth width, respectively. Ix, Ax are the moment of inertia and cross-sectional area. the 

other parameters are shown in Figure 1. 

 
(a) (b) 

Figure 1. Model of spur gear tooth: (a) rf < rb; (b) rf > rb. 

According to the principle of gear, the relative positions of the dedendum circle and 

the base circle are not fixed, which means the integral interval needs to be handled in 

different cases [21]. The radii of the base circle and dedendum circle can be expressed as 

follows: 

 cos
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where m, z and   represent module, number of teeth and pressure angle, respectively. 
*c  and *

ah  are tip clearance and addendum coefficients. Taking the standard gear as an 

example, * 1ah  , * 0.25c  , 20   , when b fr r , the number of teeth z ≈ 42. 

If the number of teeth is less than 42, that is rb > rf, as shown in Figure 1a, the bending 

energy of teeth can be written as: 
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Similarly, the shear stiffness ks and axial compression stiffness ka can be obtained as 

follows: 
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where Ix denotes the moment of inertia of the section at a distance x1 from the base circle. 

Combined with the geometric relation of involute, d, x and hx can be expressed as: 
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If the dedendum circle is greater than base circle, that is b fr r , as shown in Figure 

1b, the bending energy of the tooth can be written as: 
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The Hertz contact stiffness is expressed as [29]: 

24(1 )
h
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According to the theory of Muskhelishvili, in addition to the tooth deformation, the 

deflection of the fillet-foundation has a great influence. In this case, the tooth is regarded 

as a rigid body and the fillet-foundation as an elastic body. The flexible deformation stiff-

ness of the fillet-foundation can be calculated by: 
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where the coefficients L*, M*, P*, Q* are the same as in [18]. u  and fS  are shown 

in Figure 2. 

 

Figure 2. Schematic diagram of structural coupling effect in the double teeth-meshing region. 

In most previous calculation models, the stiffness of healthy teeth in the double teeth-

meshing region was commonly calculated by directly summing the corresponding single 

teeth-meshing stiffness. Such a method ignores the influence of the two engaged teeth 

sharing the same body, which makes the stiffness of the double teeth-meshing region sig-

nificantly larger compared to the results of the finite element method (FEM) [31]. This will 

directly affect the results of the dynamic solution. The structural coupling between the 

teeth in the double teeth-meshing region is schematically shown in Figure 2. 
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Referring to [22], the structural coupling stiffnesses kf21 and kf12 can be expressed, re-

spectively, as: 
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where 1/kf21 denotes the displacement of meshing point 1 under the condition that F1 = 0 

and F2 is the unit force. 1/kf12 is the displacement of meshing point 2 when F2 = 0 and F1 is 

the unit force. Parameters such as Li, Mi, Pi, Qi, Ri, Si, Ti, Ui and Vi (i = 1,2) are the same as 

those in [22], u1, u2 and sf are the same as mentioned above. 

Therefore, the comprehensive mesh stiffness can be obtained from Equation (16): 
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 ,  1, 2hik i    denotes the Hertz 

contact stiffness.  1,2; ,nti i n p gk    is the stiffness of the tooth part. It includes bending 

stiffness, shear stiffness and axial compression stiffness.  1,2; ,nfi i j p gk    is the flexible 

deformation stiffness of the fillet-foundation. ), 1,2,( ; ,nfijk i j i j n p g     is the coupling 

stiffness of the structure between teeth. 

2.2. Calculation of Time-Varying Mesh Stiffness of Gear Pair with Fault 

Due to the concurrent and coupling effects of faults, cracking and pitting are most 

likely to occur simultaneously under heavy load and poor lubrication. In [26] the authors 

study pitting and cracking on the same tooth, but the gear failure has the driving wheel 

and driven wheel fault coupling. Therefore, the influence of pitting and cracking on the 

time-varying meshing stiffness of the driving and the driven wheel in the transmission 

system is studied in this paper. The fault distribution is shown in Figure 3. 
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Figure 3. The location of the faulty gear in the transmission system. 

2.2.1. Calculation of Time-Varying Meshing Stiffness of Gear with Root Crack 

It is shown in [32] that the crack propagation path is smooth, continuous and, in most 

cases, fairly straight, with only a slight curvature. Therefore, in this study, it is assumed 

that the cracked gear is a cantilever beam model, the crack exists at the dedendum along 

the tooth width direction through the crack, the intersection angle between the crack and 

the gear center line is a constant ν and the tooth profile curve remains intact [21]; the de-

tails are shown in Figure 4. 

The number of teeth of the gear where the crack is located is 90 teeth, so the case that 

the dedendum circle is larger than the base circle is considered. Because the crack does 

not change the length of the gear contact line, the Hertz contact stiffness does not change. 

In addition, the gear can still bear axial compression force after the root cracks, so it can 

be considered that the axial compression stiffness will not change. In this paper, it is as-

sumed that there are two stages of crack growth as shown in Figure 4. Figure 4a shows 

the initial stage of crack growth, and Figure 4b shows the more serious stage after crack 

growth [21]. 
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Figure 4. Crack tooth cantilever beam model: (a) Model of a tooth cantilever beam with shallow 

crack; (b) Model of tooth cantilever beam with deep crack. 

As shown in Figure 4a, the integration area can be divided into normal and fault 

areas. The moment of inertia and the cross-sectional area of the gear in the region from 

the root to gc away from the root are changed due to the crack in the fault region. The 

expression is as follows [21]: 
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In this case, the axial compression stiffness is calculated in the same way as Equation 

(11), while the bending stiffness and shear stiffness can be expressed as [21]: 
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As shown in Figure 4b, the cross-sectional area and moment of inertia of the gear can 

be expressed in the following form: 

 x xcA h h L   (21)
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In this case, bending stiffness and shear stiffness can be expressed as: 
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The calculation results of the time-varying meshing stiffness of the gear with crack 

fault are shown in Figure 5. The results show that the meshing stiffness of the gear grad-

ually decreases with the increase in the crack degree. The degree increases gradually, be-

cause the crack causes the change of the inertia moment and cross-sectional area of the 

gear. 
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Figure 5.Time-varying meshing stiffness of gear under different crack depths. 

On the other hand, it can be observed from the figure that the stiffness greatly de-

creases at the initial position and decreases less with the subsequent meshing. This is be-

cause the location of the faulty gear is the driven wheel, and its meshing process is from 

the addendum to the dedendum. This indicates that the first double-tooth region when 

the faulty tooth engages in meshing has the greatest impact on the vibration of the system 

after the root crack fault occurs in the driven wheel. With the meshing of the driven wheel, 

the bending moment generated by the meshing force in the vertical direction gradually 

decreases, and the bending potential energy gradually decreases. The stiffness reduction 

caused by the reduction in cross-sectional area and moment of inertia caused by the crack 

is relatively reduced. 

2.2.2. Pitting Gear Modeling 

Due to too thin oil conditions, friction between material surfaces leads to surface de-

fects or cracks, which transform into pitting. With the increased gear running time, the 

pitting degree further deteriorates from a healthy condition to a severe degree. In addi-

tion, when the contact point coincides with the gear pitch line, pure rolling will occur, and 

it is difficult to form lubricating oil films. If the lubrication is insufficient or the load is too 

large, the gear pitch line will naturally produce fatigue particles [33]. Therefore, pitting 

due to fatigue usually occurs in the banded area below the pitch line, which indicates that 

pits are distributed below the pitch line along the height of the tooth surface. The actual 

shape of pitting is usually irregular, but to facilitate the establishment of the model, this 

paper assumes that the shape of pitting is a regular circle [7,34]. Many previous models 

were designed to simulate the distribution of pits and consider the propagation of pits. As 

the surface cracks spread, a series of small pits are formed. After this, the pitted gear con-

tinues to mesh with other healthy gears. During the rest of the run, sliding during gear 

meshing squeezes oil or small particles into the surface crack, accelerating the crack prop-

agation or pitting. As a result, these previously created pits continue to spread. Therefore, 

to simulate the real situation, this study simulates the gradually increasing size of these 

pits instead of assuming fixed pits. Moreover, in formerly healthy areas, new potholes 

appear over time. This phenomenon is also considered in this paper. 

In summary, in this paper, the pitting distribution on gears is modeled as a two-di-

mensional random variable and xi and yi are the coordinate values of the i-th pitting pit in 

the direction of the width and height of the tooth surface, respectively. The relationship is 

shown below: 

2~ ( , )ix N   (25)
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~ (0, )i iy U L  (26)

where Li is the length of pitting spread along the tooth width. Besides, for the normal 

distribution function in Equation (25), the 3σ criterion is used to describe the distribution 

areas of pits in this paper. Therefore, µ and σ can be calculated as follows: 

p min
p ,

3

x x
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where xp is the coordinate value of the pitch circle in the x direction, xmin is determined by 

the boundary of meshing area and d indicates that the distribution of pits usually has a 

concentration below the pitch line, illustrated in Figure 6. 

In this paper, according to Figure 7, pitting is further analyzed according to its sur-

face integral in the tooth surface area into three damage degrees: slight pitting, moderate 

pitting and severe pitting, as shown in Table 2. 
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where Pi is the percentage of the pitting area; i = 1, 2, 3, where 1 represents slight pitting, 

2 represents moderate pitting and 3 represents severe pitting; dpi is the pitting diameter of 

the i-th pitting degree; and H is the height of the pitting area. 
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(c) (d) 

Figure 6. Pitting model: (a) Normal tooth; (b) Slight pitting of gear teeth; (c) Moderate pitting of 

gear teeth; (d) Severe pitting of gear teeth. 

   
(a) (b) (c) 

Figure 7. Pitting gear teeth: (a) Pitting extending area: 6.3%; (b) Pitting extending area: 27.8%; (c) 

Pitting extending area: 41.7%. 

Table 2. Pitting degree parameters. 

Degree Number of Pits with Different Sizes Pitting Area Pit Depth ti (mm) 

 dp1 = 0.2 mm dp2 = 0.3 mm dp3 = 0.4 mm   

1 20   6.3% 0.1 

2 84 20  27.8% 0.15 

3 204 84 20 41.7% 0.2 

2.2.3. Calculation of Time-Varying Meshing Stiffness of Pitting Gear 

From the analysis of the potential energy method, the contact line length during gear 

meshing greatly influences the calculation of the potential energy and the time-varying 

meshing stiffness of the gear. The contact length during gear meshing is equal to the tooth 

width L for healthy gears. However, for pitted gears, the effective contact length is de-

creased. Given the decreased tooth contact length represented by ΔL, the effective contact 

length would be L−L. After modeling pits in Section 2.2.2, the decreased tooth contact 

length ΔL can be calculated as follows. 

In previous studies, the segmentation method usually calculates the meshing stiff-

ness of gears with tooth surface pitting. This paper uses the image processing method to 

obtain the mesh line length in combination with [29]. It is assumed that the tooth contact 

line consists of N pixels, as shown by the golden line in Figure 6. For each pixel, a special 

color or gray indicates whether the point is normal or pitted. More specifically, if the point 

is in the normal region, it is set to white with a grayscale of 255; if the point is in the pitting 
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area, it is set to black, and the grayscale is 0. In this way, all the pixels on the tooth contact 

line are distinguished by their colors. Finally, if the black number is ΔN, the reduced tooth 

contact length is ΔL = ΔNL/N. 

Therefore, the Hertzian contact stiffness, bending stiffness, shear stiffness and axial 

compression stiffness of pitted teeth were calculated as follows [29]: 

1
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where ΔL1 is the contact length at the meshing position, as shown by the red solid line in 

Figure 6, ΔL is the reduction in the contact length from the base circle x, as shown by the 

yellow line in Figure 6, and Ix and Ax are the effective moment of inertia and the effective 

cross-sectional area of the distance x from the base circle, respectively, when pitting cor-

rosion occurs. 

 3' 1
2

12
x x it LI h   (33)

 ' 2x x iA h Lt  (34)

where ti is the depth of pitting. By substituting Equations (33) and (34) into Equations (29)–

(32), the following formulae can be obtained [29]: 

   

 

2 2

1 1

2

1

2 2
2 1 2 2 1 2

3 2 3
b 2 2

2
2 1 2

2

3 cos {1 cos [( )sin cos ]} 3 cos {1 cos [( )sin cos ]}
d d

2

1

[sin ( )cos ] 2 [sin ( )cos ]

3 cos {1 cos [( )sin cos ]}
        

2 [sin

k

L

EL EL

L

EL

 

 





               
 

       

       



 



        
 

   

    


 


b

1

2
1 2 1 1

1
3 0

3

2

3[ cos cos cos ]
d + d

2( )cos ]
2

f
b b

i x

r

b

r R R x
x

t ELh
R

  


  

  

  


 (35) 

2

1 1

2

1

2 22
2 1 2 1

2
s 2 2

2 2
2 1 1

2 1
2

1.2(1 )( )cos cos 1.2 (1 )( )cos cos1
d d

k [sin ( )cos ] [sin ( )cos ]

1.2 (1 )( )cos cos 1.2(1 )cos
       d d

[sin ( )cos ]
2
i x

b

L

EL EL

L
x

t ELh
EL

R

 

 





         
 

       

      


   

 



    
 

   

   
 

  

 


b

1
0

fr r


 (36) 

   

 

1 1

1

2 2
2 2

2 1 2 1

2
a 2 2

2 22
2 1 1

1
02 1

2

cos sin cos sin1
d d

k 2 [sin ( )cos ] 2 [sin ( )cos ]

cos sin sin
       + d d

2
2 [sin ( )cos ]

2

fbr

i x

b

r

L

EL EL

L
x

t ELh
EL

R

 

 





       
 

       

    


   

 





  
 

   

 


  

 

 
 (37) 



Machines 2023, 11, 500 13 of 31 
 

 

The time-varying meshing stiffness of gears with different degrees of pitting can be 

evaluated using the stiffness calculation formula mentioned above. The calculation results 

of the time-varying meshing stiffness of gears with pitting are shown in Figure 8. 

 

Figure 8. Influence of pitting degree on time-varying meshing stiffness of gears. 

From Figure 8, it can be observed that as the degree of pitting increases, the meshing 

stiffness gradually decreases. As the pitting spreads further, there is also a significant de-

crease in the stiffness of the initial engagement of the gears. At the same time, it can be 

observed that the influence of pitting on stiffness is different from that of cracks. The stiff-

ness of a gear pair with cracks shows a smooth curve, whereas pitting shows more pro-

nounced irregular fluctuations. This is because pitting affects the effective contact length 

of the gear teeth, which in turn affects the stiffness calculation. Some scholars have found 

that pitting primarily affects the time-varying meshing stiffness of gears by influencing 

the Hertzian contact stiffness [30]. 

2.2.4. Stiffness Calculation of Pitting Corrosion-Crack Composite Failure 

In this study, it is assumed that the driving gear has pitting. In contrast, the driven 

gear has cracks, resulting in two types of gear fault situations during the meshing process, 

as shown in Figure 9. When two faulty gears mesh, their comprehensive meshing stiffness 

is calculated using Equation (16). The calculated results of the composite fault stiffness are 

shown in Figures 9–12. In this paper, the crack degree is expressed by its propagation 

depth, q = 0.5 mm, 0.75 mm, 1 mm, 1.25 mm, 1.5 mm, 2 mm. The degree of pitting is 

expressed as slight (SL), moderate (M) and severe (Se). 
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Figure 9. Composite failure model. 

Figure 10a–c shows the variation of the time-varying mesh stiffness with the variation 

of the gear crack depth, while keeping the pitting severity constant. As can be observed 

from the graph, with an increase in crack depth, the time-varying mesh stiffness gradually 

decreases, which is evident from the significant drop in the first double-tooth region dur-

ing the faulty gear meshing and a gradual decrease in the drop magnitude in the second 

double-tooth region. In comparison, the time-varying mesh curve of Figure 5, which de-

scribes only the crack fault, is smooth. However, for the composite fault stiffness described 

in Figure 10, the time-varying mesh stiffness shows irregular fluctuations. As the pitting 

severity increases, this type of fluctuation becomes more pronounced. 
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(c) 

Figure 10. The crack effect on meshing stiffness with different degrees of pitting: (a) The time-vary-

ing meshing stiffness of gear teeth with slight pitting and different crack depth; (b) The time-varying 

meshing stiffness of gear teeth with moderate pitting and different crack depth; (c) The time-varying 

meshing stiffness of gear teeth with severe pitting and different crack depth. 

Figure 11a–c describes the mesh stiffness of gear coupling cracks of three depths (1 

mm, 1.5 mm and 2 mm) with slight pitting. The coupling mesh stiffness is lower than the 

single-fault mesh stiffness and approaches the crack stiffness. After the crack depth ex-

ceeds 1.5 mm, the stiffness decreases significantly. From these figures, it can be concluded 

that during the slight pitting stage the coupling fault behaves similarly to a single crack 

fault. This is because during the slight pitting stage the material peeling on the tooth sur-

face is relatively small, and its effect on the comprehensive mesh stiffness is smaller than 

that of the crack. However, the features of pitting stiffness can still be observed in the 

coupling stiffness, which exhibits irregular fluctuations. 

  
(a) (b) 
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(c) 

Figure 11. The crack effect on meshing stiffness with slight pitting: (a) At the stage of 1 mm crack; 

(b) At the stage of 1.5 mm crack; (c) At the stage of 2 mm crack. 

The number of pits at the severe pitting stage is twice that of the moderate pitting 

stage, and the pitting craters have spread over almost the entire tooth surface, as shown 

in Figure 6d. Due to the further expansion of the failed area caused by pitting, the stiffness 

reduction in the double-tooth and single-tooth areas is extremely significant compared to 

slight and moderate pitting, as shown in Figure 13. The effect of pitting on stiffness ex-

ceeds the effect of cracking at all stages. The coupling stiffness is close to the pitting stiff-

ness. 

  
(a) (b) 
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(c) 

Figure 12. The crack effect on meshing stiffness with moderate pitting: (a) At the stage of 1 mm 

crack; (b) At the stage of 1.5 mm crack; (c) At the stage of 2 mm crack. 

  

(a) (b) 

 
(c) 

Figure 13. The crack effect on meshing stiffness with severe pitting: (a) At the stage of 1 mm crack; 

(b) At the stage of 1.5 mm crack; (c) At the stage of 2 mm crack. 
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In addition, the accuracy of the stiffness calculation method mentioned above has 

been demonstrated in [26,29,30]. The details of the finite element method are as follows. 

Finite element software is used for the finite element calculation in the paper. The finite 

element model uses the element type SOLID 187. The teeth are mapped with tetrahedral 

elements. In the finite element model, the linear material is assumed to be linear elastic. 

Surface to surface contact (Conta174 and Targe170) is adopted in the finite element mod-

eling process. Gear pair solution setting and stiffness calculation are per [35]. The finite 

element mesh model is shown in Figure 14. 

   
(a) (b) (c) 

Figure 14. Fault gear meshing: (a) Meshing gear pair; (b) Gear with crack; (c) Gear with pitting. 

The comparison between the stiffness obtained from the proposed method and the 

results from finite element simulations is shown in Figure 15. The comparison shows that 

both the proposed method and the finite element method produce consistent results in 

the double-tooth meshing area for both normal and faulty gears. However, there are some 

differences between the two methods in the single-tooth meshing region. This is because, 

in the actual meshing process, there is a phenomenon of tooth engagement advance and 

tooth disengagement lag due to the deformation of the gear teeth, resulting in a decrease 

in the carrying time of the single-tooth area. Nevertheless, the results indicate that the 

proposed method and the finite element method are consistent in terms of numerical val-

ues and trends, demonstrating the proposed method’s effectiveness in calculating the 

stiffness. 

  
(a) (b) 
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(c) (d) 

Figure 15. Comparison of stiffness calculation results: (a) Normal tooth condition; (b) Slight pitting 

and 0.5 mm crack condition; (c) Moderate pitting and 1 mm crack condition; (d) Severe pitting and 

1.5 mm crack condition. 

3. Simulation and Experimental 

3.1. Modeling of Two-Stage Gear Transmission System 

The gearbox’s physical picture and schematic diagram is shown in Figure 16. The 

gear transmission system is divided into three parts: gear, bearing and shaft, where 1a, 1b, 

2a, 2b, 3a and 3b are bearings; p1 and g1 form the first pair of spur gears; and p2 and g2 

form the second pair of spur gears. Gear, shaft and bearing parameters are given in Tables 

3–5. The gear transmission system is an elastic system with infinite degrees of freedom, 

but the finite element method provides us with the possibility of solving it [36,37]. In this 

paper, according to the structure of the transmission system, the finite element method is 

used to divide it into three parts: shaft segment unit, gear unit and bearing unit. The finite 

element model is shown in Figure 17. 

 

Figure 16. Two-stage gearbox. (a) Outside and (b) inside of the gearbox from real photos. (c) Sketch 

of the gear system. 
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Figure 17. Finite element model of transmission system. 

Table 3. Gear parameters of system. 

Parameters P1 g1 P2 g2 

Number of teeth 29 95 36 90 

Pressure angle (°) 20 20 20 20 

Face width (mm) 12 12 12 12 

Modulus (mm) 1.5 1.5 1.5 1.5 

Rotary inertia (kg·m2) 0.000205 0.001810 0.000380 0.003492 

Mass (kg) 0.1085 1.4648 0.1836 1.3114 

The angle of inclination of the tooth line (°) 0 0 0 0 

The coefficient of addendum 1 1 1 1 

The coefficient of bottom clearance 0.25 0.25 0.25 0.25 

The modification coefficient 0 0 0 0 

Table 4. Shaft parameters of system. 

Parameters Shaft 1 Shaft 1 Shaft 1 

Length (mm) 240 160 180 

Radius (mm) 20 20 20 

Shear modulus (Pa) 8 × 1010 8 × 1010 8 × 1010 

Elastic modulus (Pa) 2.1 × 1011 2.1 × 1011 2.1 × 1011 

Density (kg/m3) 7850 7850 7850 

Table 5. Bearing parameters of system. 

Parameters value 

Number of rolling elements 8 

Pitch diameter (mm) 37.65 

Diameter of inner raceway (mm) 28.7 

Diameter of outer raceway (mm) 46.6 

Roller diameter (mm) 8.7 

Radial clearance (mm) 0.5 

Curvature radius (mm) 4.5 

Inner raceway curvature sum (1/mm) 0.3078 

Outer raceway curvature  sum (1/mm) 0.1956 

Goodness of fit 0.5172 

3.2. Axial Segment Element Modeling 

Considering the flexibility of the shaft, this paper adopts Timoshenko beam elements 

to establish shaft segment units. As the model in this paper is a parallel-axis spur gear 

transmission system, the transmission shaft mainly bears the effects of torsion and 
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bending, with a relatively small force acting along the axial direction. Therefore, the axial 

excitation is ignored. The first node is connected to the input point and is constrained by 

the torsion degree of freedom. Thus, only two translation degrees of freedom exist at the 

first node. The other nodes are considered to have three degrees of freedom: two transla-

tional degrees of freedom, x and y, and one rotational degree of freedom θ. The stiffness 

matrix and the mass matrix of the shaft components are calculated as follows: 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e

GA GA

Kl Kl

GA GA

Kl Kl

GA GA

l l

GA GA

Kl Kl

GA GA

Kl Kl

GA GA

l l

 
 

 
 

 
 
 

 
   
 
 
 
 
 
 
   

k

 

(38)

3

2 0 0 1 0 0

0 2 0 0 1 0

2
0 0 0 0

1 0 0 2 0 06

0 1 0 0 2 0

2
0 0 0 0

e

J J

r l A A
M

J J

A A



 
 
 
 
 
 
 
 
 
 
 
 

 (39)

In the equation, l and A represent the length and cross-sectional area of the shaft ele-

ment, respectively. G, J and K represent the shear modulus, polar moment of inertia and 

cross-sectional shape factor, respectively. The shaft segment elements are shown in Figure 

18. 

 

Figure 18. Axial segment elements. 

Assuming that the displacement column vector of the shaft element nodes in the local 

coordinate system for the i-th beam element is 1 1 1[ , , , , , ]e i i zi i i zix y x y   q . 

The motion differential equation for the shaft element is expressed as: 

e e e ee e   0
.. .

M q C q K q  (40)

where eM  is the consistent mass matrix of the i-th shaft element, eK  is the stiffness 

matrix of the shaft element and eC  is the damping matrix of the shaft element, calculated 

using the Rayleigh damping method, with the calculation formula as follows: 

iz

zi

iy

iO

ix

1iz 

1zi 

1iy 

1ix 

1iO 



Machines 2023, 11, 500 22 of 31 
 

 

0 1e e ea a C M K  (41)

where a0 and a1 are the proportional coefficients of the Rayleigh damping for the mass 

matrix and stiffness matrix, respectively. 

3.3. Modeling of Gear Meshing Unit 

p p p g g g[ , , , , , ]s z zx y x y q   is selected as the node displacement column vector of 

gear meshing unit, and the vibration displacement of each gear is projected to the direc-

tion of the meshing line. The relative total deformation of gear meshing unit along the 

direction of the meshing line can be expressed as: 

s se  Vq  (42)

where es is the integrated error of gear meshing, V  is the projection vector of the upward 

displacement of each gear pair along the meshing line, which can be expressed in the fol-

lowing form. 

p g[sin ,cos , , sin , cos , ]r r       V  (43)

where rp and rg are the base circle radius of the driving and driven wheels, respectively, 

and α is the pressure angle. The meshing unit is shown in Figure 19. 

 

Figure 19. Two-stage meshing element. 

According to Newton’s second law, the differential equation of motion of the spur 

gear meshing element can be expressed as: 
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where mp, mg is the mass of the driving and driven wheels, respectively, Izp, Izg are, respec-

tively, the moment of inertia of the driving and driven wheel around the z axis, Cs is the 

damping of the meshing element and ks(t) is the time-varying meshing stiffness of gears. 

The motion differential equation matrix of the gear meshing element can be ex-

pressed in the following form: 

s ss s( ) ( )e e    
.. . .

M q C q e K q e 0  (45)

where Ms is the mass matrix of the meshing element, The specific form is Ms = diag[mp, mp, 

Izp, mg, mg, Izg], Ks is the stiffness matrix of the gear mesh element that can be written as Ks 

= ks(t)VTV, Cs is the damping matrix of the gear mesh element that can be written as Cs = 

csVTV and e is the mesh error vector of the gear mesh element. 

3.4. Modeling of Bearing Unit 

The bearing supports the shaft system and transmits vibration from the gears to the 

housing. The bearing element is modeled using springs and dampers as shown in Figure 

20. The time-varying bearing stiffness is expressed in Equation (46: 

a 0 0( ) sin(2 )j bk t k k f t     (46)

where j is the radial direction of the bearing, j = x, y, ka = 8.5 × 108 N/m is the static 

stiffness of the bearing, k0 is the fluctuation amplitude of bearing stiffness, fb is the bearing 

passing frequency and β0 is the bearing phase angle. 

 

Figure 20. Bearing unit. 

3.5. Overall Dynamics Model of Two-Stage Gear Transmission System 

The differential equation of the overall motion of the system is obtained by integrat-

ing each unit equation, which is expressed as follows: 

( ) ( ) ( )t t t  
.. .

M X C X KX F  (47)

Where X(t) is the overall node displacement column vector, M, C, K is the total mass ma-

trix, total damping matrix and total stiffness matrix of the system and F is the external 

load column vector. The total stiffness matrix of the system is shown in Figure 21. 
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Figure 21. Total stiffness matrix of transmission system. 

3.6. Simulation Results 

Section 2 obtains the time-varying meshing stiffness of normal gear, cracked gear, 

pitted gear and gear coupling pitted gear and cracked gear. The Newmark-β method is 

used to solve the vibration signal results of the two-stage gear system under the conditions 

of health and failure. The Newmark direct integration method is a generalization of the 

integral form of linear acceleration method and a simplified algorithm for linear systems 

with multiple degrees of freedom. When the selected control parameters satisfy a certain 

relation, the method is unconditionally stable, and the time step size does not affect the 

stability of the solution. Therefore, this method is used to solve the multi-degree-of-free-

dom system dynamics in this paper. The basic parameters of the simulation model are as 

follows: input shaft rotation frequency finput = 28 Hz, intermediate shaft rotation frequency 

fmiddle = 8.547 Hz and output shaft rotation frequency foutput = 3.419 Hz. The meshing fre-

quencies for the two-stage gear drive are 812 Hz (fm1) and 307.705 Hz (fm2), respectively. 

The bearing ball passing frequencies are 86 Hz (fb1), 26.2891 Hz (fb2) and 10.516 Hz (fb3), 

respectively. Two more severe failures are selected as components of the subsequent sim-

ulation system to observe the phenomena caused by the failures. The two defects are se-

vere pitting and 2 mm cracks, respectively. Pitting failure frequency is fpit = fmiddle = 8.547 

Hz. The period is Tpit = 0.117 s, the crack failure frequency is fcrack = foutput = 3.419 Hz. The 

period is Tcrack = 0.292 s. The load moment is 16.7 N. 

This paper further analyzes the gear fault using the vibration acceleration signal. Fig-

ure 22 shows the acceleration signals of a normal gear system, a gear system with cracks, 

a gear system with pitting and a gear system with both pitting and cracks. Obviously, the 

time-domain signal of the normal gear system is stable without any abnormality, while 

the vibration acceleration signal of the system containing only cracks or pitting generates 

a large periodic impact pulse. The impact period of the cracked gear system is 0.292 s, 

which is the reciprocal of the rotation frequency of the shaft where the cracked gear is 

located in the gear pair. The impact period of the gear system with pitting is 0.117 s, which 

is the reciprocal of the rotation frequency of the shaft where the pitting gear is located in 

the gear pair. The vibration acceleration signals of the gear system containing cracks and 

pitting simultaneously generate three kinds of periodic impact pulses; one is the meshing 

period of the cracked gear meshing with normal gear (0.292 s), the second is the meshing 

period of the pitted gear meshing with the normal gear (0.117 s) and the third is the mesh-

ing period of the cracked gear meshing with the pitted gear (0.584 s). The reason for the 
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periodic effect is that the gear is pitted or cracked, so when the gear pair meshes with the 

faulty gear, the time-varying meshing stiffness of the gear pair decreases, which is mani-

fested as an impact in the vibration response. Suppose both the driving and the driven 

wheels have faults during meshing. In that case, the time-varying meshing stiffness of the 

gear pair will drop sharply, manifesting itself as a shock in the vibration response, and 

the impact amplitude will be greater than that of the single fault. When the gear meshes 

with the faulty gear, the normal gear participates in the meshing, the time-varying mesh-

ing stiffness returns to the normal value, and the impact disappears. When the gear con-

tinues to rotate, the impact signal representing the fault will appear periodically as the 

rotation progresses. Compared with the whole amplitudes of the normal and the faulty 

gearboxes, pitting and cracking faults are local faults that cause only a local increase in 

the vibration signal amplitudes and do not have an overall effect on the increase or de-

crease in the vibration signal. 

  
(a) (b) 

  
(c) (d) 

Figure 22. Simulated acceleration signals of gear systems with different faults: (a) Normal gear sys-

tem; (b) Gear system with cracks; (c) Gear system with pitting.; (d) Gear system with cracks and 

pitting. 

The time domain curve is transformed into a frequency domain curve by Fast Fourier 

Transform to observe more detailed fault characteristics. Figure 23 shows the frequency 

domain signals of a normal gear system, a gear system with cracks, a gear system with 

pitting and a gear system with both pitting and cracks. When a gear fault occurs, many 

sidebands appear in the spectrum diagram in addition to the mesh frequency. The side-

bands occur mainly around the mesh frequency, and the interval between the sidebands 

is the rotation frequency of the axis where the faulty gear is located. Therefore, the side-

band interval of the pitting spectrum signal is fpit = 8.547 Hz. The sideband interval of the 

crack fault spectrum signal side corresponds to fcrack = 3.419 Hz. The system with simulta-

neous pitting and cracking shows a more complex sideband, and the sideband signal 
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contains fpit = 8.547 Hz and fcrack = 3.419 Hz. Therefore, the fault location in the transmission 

system can be found by analyzing the sideband components, which provides a theoretical 

basis for fault diagnosis. 

  
(a) (b) 

  
(c) (d) 

Figure 23. Simulated acceleration signals in frequency domain of gear systems with different faults: 

(a) Normal gear system; (b) Gear system with cracks; (c) Gear system with pitting; (d) Gear system 

with cracks and pitting. 

3.7. Experimental Results 

To verify the proposed composite failure model, a two-stage gear drive system test 

rig has been set up. The two-stage gear drive test system consists of a drive motor, an 

acceleration sensor, a controller, a gearbox, a magnetic powder brake and a data acquisi-

tion system (DT9837, frequency: 8000 Hz). Gear accuracy grade is 8. The cracked gear and 

pitted gears are shown in Figure 24. The vibration acceleration signal of the gear system 

can be collected from the accelerometer located at the bearing end plate, and the sampling 

frequency is 10.24 kHz. The experimental input rotation frequency is 28 Hz. Due to slip in 

the transmission process, the actual input is about 27.345 Hz, the intermediate shaft rota-

tion frequency is 8.347 Hz, the output shaft rotation frequency is 3.339 Hz, first stage drive 

frequency is 793.005 Hz, the second stage drive frequency is 300.492 Hz and the load is 4 

V (about 16.7 N). 

Experimental vibration acceleration results are shown in Figure 25. It can be found 

from the time domain of the normal gear system that the state is stable and no abnormal 

state appears in the running process, while the time domain response of the gear system 
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with cracks and pitting has obvious periodic impact, and the impact period is consistent 

with the simulation results. The spectrum diagram of the experimental signal is shown in 

Figure 26. The sideband component in the frequency domain of the experimental signal 

is relatively complex; even in the normal state, the sideband component will appear due 

to noise. Although there is noise in the fault state, the sideband component generated by 

cracks and pitting faults is also prominent, and the interval between the edge frequencies 

is also represented as the fault frequency, which is consistent with the simulation results. 

However, due to the attenuation of vibration energy in the process of experimental meas-

urement and the influence of environmental noise, the amplitude of the simulated signal 

is different from that of the experimental signal. 

 

Figure 24. Test bench and faulty gear. 

The accelerometers are mounted on the housings in the experiment, and the simula-

tion result is the bearing acceleration. Energy decay is inevitable in the transmission path 

of the vibration signal. The interface between gear and shaft, inner race and outer race and 

outer race and housing will cause significant energy loss. The simulation does not con-

sider the mass eccentricity and assembly error of the faulty gear. Therefore, the amplitude 

of the experimental results is lower than that of the simulated results and the excitation of 

the test is more complex. 
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Figure 25. Experimental acceleration signals of gear transmission systems with different types of 

faults: (a) Normal gear system; (b) Gear system with cracks; (c) Gear system with pitting; (d) Gear 

system with cracks and pitting. 

  
(a) (b) 

  
(c) (d) 

Figure 26. Experimental acceleration signals in frequency domain of gear transmission systems with 

different types of faults: (a) Normal gear system; (b) Gear system with cracks; (c) Gear system with 

pitting; (d) Gear system with cracks and pitting. 

4. Conclusions 

In this paper, a stiffness calculation model of pitted and cracked gear composite faults 

considering structural coupling was proposed based on the energy method. A dynamic 

model of two-stage gear transmission system with pitted and cracked faults was estab-

lished. A two-stage gear box test platform verified the accuracy of the proposed model. 

The main conclusions drawn are as follows: 
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(1) The presence of cracks and pitting reduces the meshing stiffness of the gear, but the 

stiffness curve after cracks is smooth, while the stiffness curve after pitting has irreg-

ular fluctuations. The composite failure stiffness will approach the failure stiffness of 

a fault type with greater fault degree. 

(2) In the time domain, pitting and cracking as local faults will produce periodic vibra-

tion and impact with the operation of gears. Coupling faults will produce three kinds 

of vibration shocks; one is pitting impact, one is cracking impact and one is coupling 

faults impact. The amplitude of coupling faults is obviously larger than that of single 

fault impact. 

(3) In the frequency domain, the occurrence of pitting and cracking faults will lead to the 

occurrence of sidebands near each order of harmonics in the spectrum, and the inter-

val between sidebands is mainly the rotation frequency of the shaft where the faulty 

gear is located. The coupling faults will result in a more complex sideband. The side-

band composed of two fault frequencies will appear near each harmonic. 

(4) Although the experimental signal is in general agreement with the simulation signal, 

the gap between the simulation signal and the experimental signal is inevitable due 

to a series of factors such as the extraction position of the experimental speed signal, 

attenuation of vibration energy in the transmission process, friction in the transmis-

sion process and various errors. 

Vibration analysis of a faulty gear system is an important source of information for 

fault diagnosis, and it is of great significance to establish a dynamic model of the fault 

transmission system. The work in this paper will provide some theoretical support for 

follow-up research coupling fault dynamic modeling and coupling fault diagnosis. In fu-

ture work, we will pay more attention to the effects of different types of coupling faults 

on the meshing and dynamic characteristics of multi-stage gear systems. 

Author Contributions: Conceptualization, Y.K. and H.J.; Methodology, Y.K.; Software, Y.K. and 

N.D.; Validation, Y.K. and J.S.; Formal analysis, Y.K. and P.Y.; Investigation, Y.K.; Resources, H.J.; 

Data curation, J.L., M.Y. and L.C.; Writing—original draft preparation, Y.K.; Writing—review and 

editing, Y.K.; Visualization, Y.K. All authors have read and agreed to the published version of the 

manuscript. 

Funding: The work was supported by the National Natural Science Foundation of China (Grant No. 

52265016), the Xinjiang Uygur Autonomous Region Science Foundation project (Grant No. 

2022D01C36) and Major science and technology projects of Xinjiang Uygur Autonomous Region 

(Grant No.2022A02010-3). 

Data Availability Statement: All the data are shown in the tables and figures of this paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Liang, X.; Zuo, M.J.; Feng, Z. Dynamic modeling of gearbox faults: A review. Mech. Syst. Signal Process. 2018, 98, 852–876. 

2. Doğan, O.; Karpat, F. Crack detection for spur gears with asymmetric teeth based on the dynamic transmission error. Mech. 

Mach. Theory 2019, 133, 417–431. https://doi.org/10.1016/j.mechmachtheory.2018.11.026. 

3. Ouyang, T.; Wang, G.; Yang, R.; Mo, X. A novel mathematical model for analysis of the cracked planet gear. Eng. Fail. Anal. 

2022, 138, 106398. https://doi.org/10.1016/j.engfailanal.2022.106398. 

4. Meng, Z.; Wang, F.; Shi, G. A novel evolution model of pitting failure and effect on time -varying meshing stiffness of spur 

gears. Eng. Fail. Anal. 2021, 120, 105068. https://doi.org/10.1016/j.engfailanal.2020.105068. 

5. Jiang, F.; Ding, K.; He, G.; Sun, Y.; Wang, L. Vibration fault features of planetary gear train with cracks under time-varying 

flexible transfer functions. Mech. Mach. Theory 2021, 158, 104237. https://doi.org/10.1016/j.mechmachtheory.2020.104237. 

6. Ouyang, T.; Huang, H.; Zhou, X.; Pan, M.; Chen, N.; Lv, D. A finite line contact tribo-dynamic model of a spur gear pair. Tribol. 

Int. 2018, 119, 753–765. https://doi.org/10.1016/j.triboint.2017.12.010. 

7. Liang, X.; Zhang, H.; Liu, L.; Zuo, M.J. The influence of tooth pitting on the mesh stiffness of a pair of external spur gears. Mech. 

Mach. Theory 2016, 106, 1–15. https://doi.org/10.1016/j.mechmachtheory.2016.08.005. 

8. Liang, X.; Zuo, M.J.; Pandey, M. Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. 

Mech. Mach. Theory 2014, 76, 20–38. https://doi.org/10.1016/j.mechmachtheory.2014.02.001. 



Machines 2023, 11, 500 30 of 31 
 

 

9. Wu, S.; Zuo, M.J.; Parey, A. Simulation of spur gear dynamics and estimation of fault growth. J. Sound Vib. 2008, 317, 608–624. 

https://doi.org/10.1016/j.jsv.2008.03.038. 

10. Pandya, Y.; Parey, A. Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack. Eng. Fail. Anal. 

2013, 27, 286–296. https://doi.org/10.1016/j.engfailanal.2012.08.015. 

11. Ma, H.; Song, R.; Pang, X.; Wen, B. Time-varying mesh stiffness calculation of cracked spur gears. Eng. Fail. Anal. 2014, 44, 179–

194. https://doi.org/10.1016/j.engfailanal.2014.05.018. 

12. Chaari, F.; Fakhfakh, T.; Haddar, M. Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking. J. Fail. 

Anal. Prev. 2006, 6, 73–78. https://doi.org/10.1361/154770206x99343. 

13. Kim, W.; Lee, J.Y.; Chung, J. Dynamic analysis for a planetary gear with time-varying pressure angles and contact ratios. J. 

Sound Vib. 2012, 331, 883–901. https://doi.org/10.1016/j.jsv.2011.10.007. 

14. Weber, C. Zuschriften AN Den Herausgeber. Z. Angew. Math. Und Mech. 1949, 29, 256–256. 

15. Cornell, R.W. Compliance and Stress Sensitivity of Spur Gear Teeth. J. Mech. Des. 1981, 103, 447–459. 

https://doi.org/10.1115/1.3254939. 

16. Yang, D.C.H.; Lin, J.Y. Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics. J. Mech. Des. 1987, 

109, 189–196. https://doi.org/10.1115/1.3267437. 

17. Tian, X. Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults. Master’s Thesis, University of 

Alberta, Edmonton, AB, Canada, 2004. 

18. Sainsot, P.; Velex, P.; Duverger, O. Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula. 

J. Mech. Des. 2004, 126, 748–752. https://doi.org/10.1115/1.1758252. 

19. Saxena, A.; Chouksey, M.; Parey, A. Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response 

characteristics of geared rotor system. Mech. Mach. Theory 2017, 107, 261–273. https://doi.org/10.1016/j.mechmachthe-

ory.2016.10.006. 

20. Kramberger, J.; Šraml, M.; Glodež; S; Flašker, J.; Potrč, I. Computational model for the analysis of bending fatigue in gears. 

Comput. Struct. 2004, 82, 2261–2269. 

21. Wan, Z.; Cao, H.; Zi, Y.; He, W.; He, Z. An improved time-varying mesh stiffness algorithm and dynamic modeling of gear-

rotor system with tooth root crack. Eng. Fail. Anal. 2014, 42, 157–177. https://doi.org/10.1016/j.engfailanal.2014.04.005. 

22. Xie, C.; Hua, L.; Han, X.; Lan, J.; Wan, X.; Xiong, X. Analytical formulas for gear body-induced tooth deflections of spur gears 

considering structure coupling effect. Int. J. Mech. Sci. 2018, 148, 174–190. https://doi.org/10.1016/j.ijmecsci.2018.08.022. 

23. Saxena, A.; Parey, A.; Chouksey, M. Time varying mesh stiffness calculation of spur gear pair considering sliding friction and 

spalling defects. Eng. Fail. Anal. 2016, 70, 200–211. https://doi.org/10.1016/j.engfailanal.2016.09.003. 

24. El Yousfi, B.; Soualhi, A.; Medjaher, K.; Guillet, F. New approach for gear mesh stiffness evaluation of spur gears with surface 

defects. Eng. Fail. Anal. 2020, 116, 104740. https://doi.org/10.1016/j.engfailanal.2020.104740. 

25. Zhe, C.; Niaoqing, H.; Fengshou, G.; Guojun, Q. Pitting damage levels estimation for planetary gear sets based on model simulation and 

grey relational analysis. Trans. Can. Soc. Mech. Eng. 2011, 35, 403–417. https://doi.org/10.1139/tcsme-2011-0023. 

26. Ouyang, T.; Wang, G.; Cheng, L.; Wang, J.; Yang, R. Comprehensive diagnosis and analysis of spur gears with pitting-crack 

coupling faults. Mech. Mach. Theory 2022, 176, 104968. https://doi.org/10.1016/j.mechmachtheory.2022.104968. 

27. Luo, Y.; Baddour, N.; Han, G.; Jiang, F.; Liang, M. Evaluation of the time-varying mesh stiffness for gears with tooth spalls with 

curved-bottom features. Eng. Fail. Anal. 2018, 92, 430–442. https://doi.org/10.1016/j.engfailanal.2018.06.010. 

28. Luo, Y.; Baddour, N.; Liang, M. A shape-independent approach to modelling gear tooth spalls for time varying mesh stiffness 

evaluation of a spur gear pair. Mech. Syst. Signal Process. 2019, 120, 836–852. https://doi.org/10.1016/j.ymssp.2018.11.008. 

29. Lei, Y.; Liu, Z.; Wang, D.; Yang, X.; Liu, H.; Lin, J. A probability distribution model of tooth pits for evaluating time-varying 

mesh stiffness of pitting gears. Mech. Syst. Signal Process. 2018, 106, 355–366. https://doi.org/10.1016/j.ymssp.2018.01.005. 

30. Chen, T.; Wang, Y.; Chen, Z. A novel distribution model of multiple teeth pits for evaluating time-varying mesh stiffness of 

external spur gears. Mech. Syst. Signal Process. 2019, 129, 479–501. https://doi.org/10.1016/j.ymssp.2019.04.029. 

31. Xie, C.; Hua, L.; Lan, J.; Han, X.; Wan, X.; Xiong, X. Improved analytical models for mesh stiffness and load sharing ratio of spur 

gears considering structure coupling effect. Mech. Syst. Signal Process. 2018, 111, 331–347. 

https://doi.org/10.1016/j.ymssp.2018.03.037. 

32. Lewicki, D.G. Gear Crack Propagation Path Studies-Guidelines for Ultra-Safe Design. J. Am. Helicopter Soc. 2002, 47, 64–72. 

https://doi.org/10.4050/jahs.47.64. 

33. Totten, G.E. ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology; ASM international: Cleveland, OH, USA, 1992. 

34. Öztürk, H.; Sabuncu, M.; Yesilyurt, I. Early Detection of Pitting Damage in Gears using Mean Frequency of Scalogram. J. Vib. 

Control. 2008, 14, 469–484. https://doi.org/10.1177/1077546307080026. 

35. Zhan, J.; Fard, M.; Jazar, R. A CAD-FEM-QSA integration technique for determining the time-varying meshing stiffness of gear 

pairs. Measurement 2017, 100, 139–149. https://doi.org/10.1016/j.measurement.2016.12.056. 

  



Machines 2023, 11, 500 31 of 31 
 

 

36. Qiao, Z.; Chen, K.; Zhou, C.; Ma, H. An improved fault model of wind turbine gear drive under multi-stage cracks. Simul. Model. 

Pr. Theory 2023, 122. https://doi.org/10.1016/j.simpat.2022.102679. 

37. Wang, S.; Xieeryazidan, A.; Zhang, X.; Zhou, J. An Improved Computational Method for Vibration Response and Radiation 

Noise Analysis of Two-Stage Gearbox. IEEE Access 2020, 8, 85973–85988. https://doi.org/10.1109/access.2020.2990938. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


