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Abstract: This paper proposes a calibration algorithm to improve the positional accuracies of an
industrial XY-linear stage. Precision positioning of these linear stages is required to maintain highly
accurate object handling and manipulation. However, due to imprecisions in linear motor stages
and the gearbox, static and dynamic errors exist within these manipulators that cannot be adjusted
internally. In this paper, to improve the positioning accuracy of these manipulators, measurements
from a laser tracker are used within an interval type-2 fuzzy logic system. The laser tracker used in
this experiment is an AT960-MR, which is a highly accurate noncontact coordinate metrology equip-
ment capable of performing highly accurate robotic measurements. To perform calibration, we use
an IT2FLS to find a nonlinear correcting relationship to compensate for position errors. The IT2FLS
acts on the commands given to the move stage to find the accurate position of the move stage. To
train the IT2FLS, we use particle swarm optimization (PSO) for the antecedent part parameters and
Moore-Penrose generalized inverse to estimate the consequent part parameters. Data are split into
train/test data to test the efficacy of the proposed algorithm. It is shown that by using the proposed
IT2FLS-based calibration approach, the standard deviation of the position errors can be decreased
from 86.1pum to 55.9um, which is a 35.1% improvement. Comparison results with a multilayer per-
ceptron neural network reveal that the proposed IT2FLS-based calibration algorithm outperforms
multilayer perceptron neural network for positional calibration purposes.

Keywords: industrial robot control; XY-linear stage; interval type-2 fuzzy systems; particle swarm
optimization

1. Introduction

Miniaturized and modularized linear move stage technology can be used within a
highly precise manufacturing environment for efficient and high-precision object manip-
ulation and object handling with micrometer and nanometer accuracy [1]. Linear stages
have already been used within a wide range of applications, including single-axis nano-
positioning [2], profiling stages [3], commercial atomic force microscopes [4], moving mi-
croscope probes [5], and micro-scale coordinate measurement machines [6].

The rotational motion of stepper motors is converted to linear motion using precision
lead screw converters that are inevitably subject to manufacturing-related limitations and
tolerances such as imperfect step sizes and dimensions, which leads to imprecise posi-
tioning. It is therefore required to calibrate linear stages to compensate for their position-
ing errors. The main sources of uncertainty within a linear move stage include angular
uncertainties associated with its stepper motor, uncertainties regarding the lead screw
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converter, and uncertainties caused by the limited resolution of the shaft encoder. More-
over, for stacked XY-linear stages, the non-orthogonality between the X-linear stage and
the Y-linear stage may impose more uncertainties for the overall linear move stage.

Previous approaches to calibrate move stages have been conducted using linear cor-
recting equations and least squares approaches. A self-calibration technique has been in-
vestigated in [2] for a dual-actuated single-axis manipulator. The position feedback re-
quired for the calibration is provided using a simple artifact. The simplicity of this cali-
bration approach makes it possible to conduct the calibration at the beginning of all auto-
mated processes. The capacitive sensors are considered to perform position measure-
ments that are used for calibrations [2]. Having all measurements, a least squares algo-
rithm is used to estimate the parameters of linear calibration equation. Scanning probe
microscopes usually use linear stages in their structure. A self-calibration method to com-
pensate for the non-orthogonality between the XY-plane and the Z-axis for scanning probe
microscopes is investigated using some physical artifacts [5]. In this paper, an IT2FLS is
used to compensate for the positional errors of linear move stages. Because of the capabil-
ity of IT2FLSs to deal with nonlinear complex problems, they are the preferred choices in
the current research to compensate for the nonlinear error of each individual stage and
the error caused by non-orthogonality between the two move stages.

Because of the high precision of laser tracker systems, they are used to measure the
true linear stage positions in this research to perform calibration. The first laser tracker
system was invented in the 1980s to perform critical and highly accurate position meas-
urements [7]. To date, this system is used to perform dimension measurements on large-
scale aircraft workpieces [8,9], astronomical telescopes [10-12], position measurements for
robotic systems [13-15], etc. [16]. The high precision and ease of application of the laser
trackers make them a priority choice for the calibration of industrial robots and linear
multi-axis linear stages. The precision position measurements required in this paper are
performed using a high-precision laser tracker system.

In this paper, a novel calibration algorithm for XY-linear move stages is introduced.
The proposed method uses the measurements from a highly precise laser tracker system,
namely AT960-MR, to perform calibration. This equipment is a non-contact metrology tool
capable of performing measurements with the error of less than 3 um/m. Interval type-2
fuzzy systems (IT2FLSs) are strong general function approximations that are used to com-
pensate for measurement errors. Since measurements are performed in two dimensions,
the problem is solved using two IT2FLSs that share their antecedent part [17]. The imple-
mentation results show that using the proposed algorithm, it is possible to reduce the
open-loop standard deviation of error in both X and Y dimensions from 86.1 um to 55.9
um, which is a 35.1% improvement. A multilayer perceptron neural network (MLPNN) is
used to perform comparison. Comparison results reveal that IT2FLS is capable of perform-
ing calibration with higher performance.

This paper is organized as follows: The structure of interval type-2 fuzzy systems is
explained in Section 2, and the experimental setup is presented in Section 3. In Section 4,
the methodology part of the paper is presented. Experimental results are presented in
Section 5. Concluding remarks and future works are presented in Section 6. The acknowl-
edgments and the references are provided in backmatter, respectively.

2. Interval Type-2 Fuzzy Systems Structure

In this paper, interval type-2 fuzzy MFs are used in the antecedent part, and interval
values are considered for the consequent part parameters. The interval type-2 fuzzy MFs
used in this paper are Gaussian MFs with certain center and interval values for the stand-
ard deviations (see Figure 1). The fuzzy IF-THEN rules for such a structure are considered
as follows:

j —thrule:IF x, is Aj; and x, is Aj, (1)



Machines 2023, 11, 497

3 of 14

THEN y; = ayx; +azix; + 85, (G =1,.., M),

where x;, and x, are the input variables, y is the single output variable, and M is the
total number of the rules. Moreover, Aj;s (I=1, 2) are interval type-2 fuzzy MFs for the j-
th rule of the i-th input. The parameters a;; and B; (i = 1,2,j =1, .., M) are the interval
parameters in the consequent part of the rules that satisfy the following equation. The
following definitions are made:

F=ax +a3%+B;,(G=1,..,M), )
ﬂ](x) = %{('xl) * %zj(xz)' (] = 1' ...,M),

W (@) = Ty () * Ay (02), (J = 1, M), 3)

where Ksi (x), k=1,2 are Kz (xx), k = 1,2 are the lower and upper MF corresponding
k k

to the j™ rule for x; and " =" is a t-norm operator. The output value of the IT2FLS, with
its structure being as shown in Figure 2, is given as

fwME ﬂM,WM 1
V@) = D100, 0] = fyselyat] g "

7 -
Zj=1W]

where x = (x3,x,) € R? is the IT2FLS input vector, representing the position readings
from the move stage.. The defuzzification process and the type-reduction are performed
in an output processing unit (see Figure 2). There are several defuzzification + type-reduc-
tion methods for IT2FLSs [18-20]. The enhanced Karnik—-Mendel model approach [21-23]
is an exact yet computationally expensive type of defuzzifier + type reducer. A Maclaurin-
based first-order approximator for an IT2FLS performs an approximation to the enhanced
Karnik-Mendel (EKM) [21]. The accuracy of this method is lower than the enhanced
Karnik-Mendel and higher than other approximate models of Biglarbegian-Melek—
Mendel [24] and Nie-Tan [25,26]. The computational complexity for the Maclaurin-based
first-order approximator is less than the EKM model, as it does not necessitate the sorting
procedure required by EKM [27,28]. The Maclaurin-series-expansion-based first-order
approximate output of the IT2FLS is as follows [27,28]:

y € vyl )

where y; and y, are the left-most and right-most values of output of the IT2FLS, which
are calculated as follows:

eﬁﬁ(_,.)
K@)
<
= Bfia)
0

X'

Figure 1. An interval type-2 fuzzy membership function.
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Figure 2. An interval type-2 fuzzy system.

I W +whEI gL, sign@)aw )

Yr = —j, i ; j j
T, W rwh+ 5 (sign@m))aw)
where
—j ) )
m] = F] bl JM—_j,
2j=1w

]

and Aw/ =w’ — w/. Furthermore, v, is calculated as

M, @ +whFI-sM | (sign(m))awiF))

TS M T )M (sign(miyaw]
j=1 — j=1 —_—
where
- oM wiF
ml =Fl — —JM —.
- Zj:1ﬁ}

The final crisp output value of the IT2FLS is obtained as

y(x) — YZ';'yT',

It is then possible to rewrite (6) as
Vr = 94=1 V1]2F Rj ’
where

j Wj+ﬂj+sign(ﬁ])ij

Vp = 2 - 3 —.
R oM @ wiy+s M, (sign(m’)awl)

The parameter y, in a vector form is obtained as:
Yr = ¢r0,
where
¢R = [17£,17£x1,17,€x2]T,
and @y is defined as
Vg = [V3,..., vH]T.
Furthermore, @ is defined as

9(Tn+1).M = [Buye s By Qags ooy Qagy Oz, e, Oy ]

(6)

@)

®)

)

(10)

(11)

(12)

(13)

(14)

(1)

(16)

Similarly, it is possible to rewire the equation corresponding to y; in (8) in a vector

form as

—_\M i
YI—Zj=1V1F},

(17)
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where
i Wl wiy—(si Jj Jj
v = zﬁilg’:ifi—;z ((smigzzA(Zi;AwD’ (18)
The parameter y; in a vector form is obtained as

i =¢.0, (19)
where

b = [VL, Vixy, Vi xa]", (20)

and @, is defined as
v, = [vi,..., v, (21)

The pseudocode to find the output of IT2FLS is as follows.
1. Find the interval type-2 fuzzy membership functions U (xx), k=1,2 are
k

ﬁﬁg(xk),k = 1,2 as follows

Eﬁg(xk)—exp - T Jk=1,2

(22)
7i(x) = S N W
Ry = exp (= (F 7)) k=1,
2. Calculate W’ and wj, j=1,..., Mas follows
w = Ay g 02), ) = 1, M
. (23)

J = - ~7 ,':1,...,M
w! = gy () pg (x2),

3. Calculate m’, and m/ asin (7) and (9), where F/ is as defined as in (2).
4. Calculate y,, and y; asin (6) and (8).
5. Calculate y asin (10).

3. Experimental Setup

The experimental setup consists of an XY-linear move stage and a Leica laser tracker.
The XY-linear stage is composed of two linear stages, which are mounted perpendicularly
on each other. The feedback data provided by the Leica laser tracker is used to calibrate
the position readings of the XY-linear stage. The detailed experimental setup is presented
in this section.

3.1. Hardware Setup

To calibrate a linear move stage, a laser tracker system is set up at an approximately
2.8 m distance from the XY-linear stage. The technical specifications of the XY-linear stage
and the laser tracker used in this paper are presented in this section.

3.1.1. Laser Tracker

The laser tracker system used for the calibration in this experiment is a Leica laser
tracker AT960-MR manufactured by Hexagon Metrology GmbH, Wetzlar. It is a widely
used measurement equipment in industries for precision distance measurements and po-
sition measurements [29] (see Figure 3). This equipment measures the distance between
the laser tracker and the laser target mounted on a 3D-printed component on the XY-linear
stage. The laser tracker target is a precision Leica 1.5” red ring reflector. The data is trans-
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ferred via a Wi-Fi network connectivity between the laser tracker and a PC running Win-
dows 10 OS. The software used to collect data is Spatial Analyzer® (SA) software. The op-
erational frequency of the laser tracker is 10 Hz, and it can perform measurements up to
40 m, with errors less than 3 pm/m. More details about the technical specifications of the
laser tracker can be found in Table 1.

(a) (b) (c)

Figure 3. Laser tracker: (a) camera; (b) controller; (c) overall system.

Table 1. Measuring equipment characteristics and specifications.

Environmental Working

Conditions

IP54: The IEC-Certified Sealed Unit Guarantees Ingress Protection against Dust and
Other Contaminants.

Operating temperature

Wide operating temperature range of -15 to 45 degrees Celsius

Temperature compensation

MeteoStation: Integrated environmental unit monitors conditions including tempera-
ture, pressure, and humidity to compensate for changes

ISO certification

ISO 17025

Connectivity

Wifi and LAN

Detector features

Red ring reflector—1.5” radius: 19.05 mm =+ 0.0025 mm, centring of optics: <+0.003 mm,
ball roundness: <0.003 mm, acceptance angle: +30°, weight: 170 gr

Data output rate

Measurement rate of up to 1000 points per second

Distance accuracy

40 meters in diameter and a 6DoF measuring volume of up to 20 meters

Laser safety

Laser class 2

3.1.2. XY-Linear Stage

XY-linear stages produced by Zaber® are highly reliable products intended for critical
medical, marine [30], aviation, 3D printing [31,32], and military applications (see Figure
4). Asitis illustrated in Figure 4, the assembled XY-linear stage includes two linear stages:
X-axis move stage and Y-axis move stage, which are assembled perpendicularly. The po-
sition feedback is provided via the retroreflector mounted on the XY-linear stage as the
target for the laser tracker. The power supply for this linear stage is 24-48 VDC, and its
maximum load capacity is 250 N. Each stage benefits from a two-phase stepper motor
with a motor current rate of 600 mA/phase, and a precision lead screw converts the rota-
tional movement to a linear one. It also benefits from a rotary quadrature encoder, with
its resolution being equal to 800 states/rev. The micro-step sizes for this linear stage are
equal to 0.047625 um, its best accuracy is 15 um, and its best repeatability is 3 um. Fur-
thermore, the highest speed of the stage is 104 mm/s, its highest trust is 55 N, and it ben-
efits from the maximum load capacity of 250 N. When the move stages are mounted on
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top of each other to perform movements in more than single dimension, the position ac-
curacy and repeatability of the overall system may be worse than the values associated
with a single stage. The main reason is the perpendicularity error between the two stages.
The communication interface between the PC and each linear stage is provided by an
RS232 connection and the communication protocol is Zaber ASCII or Zaber binary. The
maximum permeable connection baud rate is 115,200 bps, and a R5232/USB converter is
provided within the linear stage to provide its connectivity with the PC. To sense the home
position for the linear stage, a magnetic hall sensor is used. This product is controllable
from the PC by using either Zaber Console software or Zaber Launcher software. Zaber
motion libraries are also available under Python 3, C#, C++, JavaScript, Java, and MATLAB
(https://www.zaber.com/software (accessed on 20 February 2023)). The Zaber linear stage
may also be controlled using Arduino with the software library through the Zaber website
(https://www.zaber.com/software (accessed on 20 February 2023)).

retroreflector

X-axis > y-axis

move stage move stage

Figure 4. XY-linear move stage.

The data connection and the power connection for the first device are provided sep-
arately, and for the next stages, a Daisy chain connection provides power as well as data
to control in a network fashion.

3.2. Data Resampling and Synchronization

In this paper, reference commands and the actual positions of the move stage are
recorded using MATLAB® software (version 6.5) with Zaber Add-Ons. The laser tracker
data are gathered using Spatial Analyzer software. As the start time and end time for data
recording and the sample time for the move stage and the laser tracker are different, it is
required to perform shift and resampling for the data gathered from the laser tracker and
the move stage to ensure the data are properly synchronized.

3.3. Change in Coordinates

It is required to change the coordinate system to have the move stage positions avail-
able in the laser tracker coordinates. This is mainly required for the performance evalua-
tion of the proposed IT2FLS based calibration algorithm.

xlrl Xirr

[xm Try, | (24)
where xy,., and x, are the move stage position readings obtained through its
MATLAB® interface and x;,;, and x,,; are the move stage position readings using laser
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tracker in laser tracker coordinates, and Tr,; € R?*3 is the transformation matrix from the
robot base coordinate system to the coordinate system of the laser tracker. The transfor-
mation matrix T7,; can be easily calculated using a least squares algorithm [33].

4. Methodology
4.1. Particle Swarm Optimization

Metaheuristic approaches have been successfully applied to a wide range of applica-
tions where the cost function is not explicitly given and/or it suffers from multiple local
minima. In this paper, inspired by previous applications of PSO in estimating the param-
eters of IT2FLSs, a PSO algorithm is used to estimate the IT2FLS parameters.

PSO is a variant of swarm intelligence primarily inspired by research on the behavior
of swarms of birds and schools of fish [34]. The candidate solutions to this optimization
problem are presented as a position vector corresponding to each individual within the
swarm. The changes in the positions are determined by the velocity vector within each
iteration. The velocity vector is updated by using a random term, preserving the previous
velocity direction, and two other vectors, which guide particles towards the personal best
experience of each particle and the overall global best experience. The individual solutions
within the swarm are presented by Xjg, € R4, where X}g, refers to the i-th particle
within the swarm, and d is the dimension of the solution space.

The positions in the next generation of PSO using its current position vector and ve-
locity vector are updated as follows [34-36]:

Viso(t+1) = wVigo(t) + 1cy (pbesti(t) - X;‘lso(t)) + 136 (gbesti(t) "
Xﬁso(t));(l’ =1,..,Np),

Xpso(t + 1) = Xpso(t) + Viso (1), (26)

where ¢ refers to the current iteration, pbest;(t) presents the personal best experience of
i-th particle, gbest;(t) represent the overall best experience within the swarm, 0 < ¢j,c,
are the two positive constants, and r;, r, are two uniform random numbers from the in-
terval of [0,1]. The parameter c; is the coefficient associated with the best personal ex-
periment of the particles in the swarm, and the parameter c, is the coefficient associated
with the best global experiment of the particles within the swarm. The parameter w is the
inertia weight, which makes the swarm follow their previous search direction. The param-
eter Np represents the total number of swarms. The stability criteria for PSO requires the
following condition to be valid for its parameters [36,37].

_ 2
i+ ¢ < 4(1+'$W). (27)

It is further observed in [38] that while large value for w improves exploration, a
small value guarantees good exploitation capability for PSO.

4.2. Training IT2FLS

To train consequent part parameters of the IT2FLS, input/output training samples for
it are considered as x; € R",y; € R,i = 1, ..., N, where N is the total number of samples.

Yo =2 (k= 1,..,N),

1 1
= 2018 + 2 Prif. (28)

The overall input/output relationship in vectoral form is represented as follows.
Y =050,60 + 0.50:0, (29)

where @, ¢ RV*3M &, c RV*3M and Y c RM*! are defined as follows.



Machines 2023, 11, 497 9 of 14
Dp = [¢£,1 ¢1€,2 ¢£,N]Tr
O, =[pl1 bl - DLnI" (30)
Furthermore,
Y = o9, (31)
where @, and 6 are defined as follows:
® = [o] @], (32)

The pseudo-inverse operator is used to find the solution for the estimation problem
of the consequent part parameters as follows.

6 = oty, (33)

where @1 is the Moore-Penrose generalized inverse of matrix @ [39]. This concludes the
consequent part parameters estimation problem.

4.3. Overall Hybrid Training Algorithm for IT2FLS

While the antecedent part parameters of IT2FLS appear nonlinearly within its output,
its consequent part parameters appear linearly within the output. Hence, the least squares
algorithm discussed in the previous subsection will be used for the consequent part pa-
rameters, and PSO is used to train the antecedent part parameters.

Figure 5 illustrates the overall flowchart of the proposed algorithm for training
IT2FLSs for calibration purposes. The solutions in terms of the centers and the standard
deviations of the antecedent part of the IT2FLS are represented by each individual mem-
ber within PSO. The consequent part parameters of the IT2FLS need to be estimated ac-
cording to (28)—(33). The inputs to the IT2FLS are the move stage command signals and
their target values are the laser tracker data. The antecedent and consequent part param-
eters are evaluated against mean squared errors of their corresponding IT2FLS output.
The personal best value of each individual member and the global best value of the overall
swarm are updated accordingly. The PSO velocity update rule, as shown in (25) and (26),
is then applied to each individual within the swarm to update the position of each indi-
vidual. The algorithm iterates a few times before it is converged.

start

{

Data preprocessing

—

Train Test
Enmdl[j‘sgo Wil it Data Data
Train IT2FLS conse-
Antecedent part Evaluate IT2FLSs
" i quent part parame- )
parameters ol . using test data.
T2FLS ters using (28)-(33)
PSO <_NO_ Stop criteria
operations achieved?

chs

stop

Figure 5. Flowchar of the proposed training method for IT2FLS for calibration.
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4.4. Overall Calibration Algorithm

The overall calibration algorithm consists of data gathering from the move stage us-
ing MATLAB and the laser tracker data using a Spatial Analyzer. Since data collected from
the laser tracker and the move stage are gathered at different starting points and sampling
frequencies, shift and resampling are required to have data from both devices synchro-
nized (Sections 3.2 and 3.3). The next stage requires applying the overall hybrid training
algorithm to train IT2FLSs, as discussed in Section 4.3. To train the IT2FLS, we use PSO
for the antecedent part parameters and Moore-Penrose generalized inverse to estimate
the consequent part parameters. The overall flowchart of the proposed algorithm is
demonstrated in Figure 5.

5. Experimental Results

The calibration methodology, explained in Section 4, is used to improve the posi-
tional accuracies in both X- and Y-directions, where position feedback is provided by the
laser tracker system, Leica AT960-MR, used in these experiments. Figure 6 demonstrates
the real-time position feedback by the laser tracker with the SA software. While Figure 6a
shows the SA environment, Figure 6b demonstrates the zoomed-in version of Figure 6a in
which the main axis as well as a few data points are demonstrated. It is required to set the
axis and the coordinate origin of the laser tracker for measurements. To assign the coor-
dinate origin as well as the X-axis and Y-axis, two initial large movements are performed
using the XY-linear stage. The length of each movement is as high as 5 cm and is per-
formed using each of the stages in the XY-linear stage. The axis assignment wizard menu
of the Spatial Analyzer is used to define the two axes. The coordinate origin assignment
as well as the axis assignment are required to be performed with high precision, as they
influence all other 3D point measurements.

X-axis

y-axis

(a) (b)

Figure 6. Spatial analyzer software environment (a) whole software screenshot; (b) zoomed in posi-
tion data.

The uncertainties associated with positioning in a XY-linear stage are mainly due to
stepper motor uncertainties, joint encoder uncertainties, and lead screw converter uncer-
tainties. It is highly recommended to use calibration methods to improve the positional
accuracies of XY-linear stages. The data gathered from the XY-linear stages are its com-
mand signal. The precise movement measurements are performed using the laser tracker.
To perform the calibration task, the command signals given to the move stage are used as
the input to an IT2FLS, and the target values for training IT2FLS are precise position meas-
urements from the laser tracker. The input/output data are split to train and test data with
a ratio of 70/30. The IT2FLS is tuned using the algorithm discussed in Sections 4.3 and 4.4
(see Figure 5). The antecedent part of the IT2FLS is iterated using PSO, and the consequent



Machines 2023, 11, 497

11 of 14

part parameters are tuned using the Moore-Penrose generalized inverse. The Moore—Pen-
rose generalized inverse of matrix ® is implemented using the “pinv” built-in function in
Matlab® software. The resulting IT2FLS gives the open-loop relationship between the com-
mands given to the move stage and the real positions of the move stage. To provide precise
XY-linear stage position feedback, a highly precise laser tracker system, Leica AT960-MR,
is used. This laser tracker is capable of position measurements with errors of less than
3 pm/m. The distance between the laser tracker and the target widely affects the measure-
ment accuracy. The distance between the laser tracker system and its target is almost 2.8
m.

The initial data gathered from the move stage and the measurements performed us-
ing the laser tracker are provided in Figure 7. Least squares coordinate change is per-
formed on the move stage positions to have all the positions in laser tracker coordinates.
As can be seen from Figure 7, there exists some error in the move stage position commands
with respect to the more precise position measurements performed by the laser tracker.
The IT2FLS is then applied to the raw command signals given to the move stage for cali-
bration purposes. The population size for the PSO is considered as equal to 1000, and in
total, 200 iterations are used for the PSO. It is observed that using this approach, it is pos-
sible to decrease position errors in terms of the standard deviations of errors considerably.

XXXXXXXXXXXXXXXXXX)(X

X
XX X X X XXX KX XXX X X X XK X Move stage
XXXXXXXXXXXXXKXXXXXX . Lasertracker

A0 Fx % x X X X XX X X XXX XXX XX
XX XX X XX XXX XX X XX X XX XX
XXX X XX XXX XX X XX X XX XX X

50

XX X K XX X X X X ¥ X XX X X XXX X
30 Fxox % x X X XXX X X XK XXX XXX
XXX X X X KX X XK XXX X XX XX X
XXX X X XX X XX X XXX X X XXX X
X% X X ¥ XX XK XXX XX X XXX X X

y (mm)

20 Fxxxxxxxxxxxxxxxxxxxx q40f X X *
XK K XK KX K XKXKK K XK KKK XK X x x %
XXX K XK XXX XK K XK KK XX XXX x « x
XX XX XX XXX XXX XX XXX XX X 5

0 F X X X XXX X XXX XX X XXX x X %
XXX XXX XX XX X XO0X XXX XXX ol ~ % "
XX X X XX XXX XX XXX XXX XXX
XXX XX XK KK XK KK XK AKX 40 45

O x x X X XX XX XK X X X XX X N

0 20 40 60 80
X (mm)

Figure 7. Move stage commands with coordinate change versus laser tracker measurements.

Figures 8 and 9 demonstrate the results of applying the calibration method to correct
data within the X-axis and Y-axis, respectively. As can be seen from the figures, the cali-
brated position values are much closer to the measurements performed by the laser
tracker. Table 2 illustrates the numerical values for the calibrated and uncalibrated posi-
tion data. As can be seen from the table, the overall standard deviation of error has been
reduced from 86.1 pm to 55.9 um, which is a 35.1% improvement. To further analyze the
proposed calibration scheme, the proposed algorithm is compared with a single layer
MLPNN. The number of neurons taken for the hidden layer is selected equal to 10. As can
be seen from the table, the IT2FLS outperforms MLPNN for the calibration of the move
stage for both training and testing data in terms of standard deviation as well as mean
absolute error.
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Figure 8. Calibration using IT2FLS for training data.
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Figure 9. Calibration using IT2FLS for testing data.

Table 2. XY-mean absolute error and standard deviations of error for the linear stage.

Percentage Improve-

i . i .
Performance Indexes Calibrated Using ~ Calibrated Using Uncalibrated (um)  ment of IT2FLS vs
IT2FLS (um) MLPNN (um)
Raw Data
MAE Trai 41.6 50.4 52.4 20.6%
— rain
o ! 68.8 68.3 79.1 13.0%
MAE Test 34.2 49.7 58.2 41.2%
es
0; 55.9 69.8 86.1 35.1%

6. Conclusions and Future Research

The uncertainties associated with an XY-linear stage are mainly due to stepper motor
uncertainties, joint encoder uncertainties, and lead screw converter uncertainties. Toler-
ance in the manufacturing and assembly processes are the main causes of such uncertain-
ties. The role of the lead screw converter is to convert the rotational movement of the mo-
tors to a linear movement. This part suffers from manufacturing tolerances and the uncer-
tainties caused by wear and tear. The uncertainty caused by the non-orthogonal X-Y move
stages is another source of uncertainty within an XY-linear stage. To calibrate the X-Y
move stages, we used a high-precision laser tracker, namely Leica AT960-MR, which is
capable of position measurements with errors of less than 3 pm/m. Using the proposed
algorithm, we showed that the standard deviation of positional errors associated with the
XY-linear stage measurements decreased from 86.1 pm to 55.9 um, which shows a 35.1%
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improvement. Furthermore, performance comparison of the proposed approach is pro-
vided with that of MLPNN. The result of the comparison reveals higher performance for
the proposed approach over MLPNN calibration approaches.

As future work, closed-loop control methods to take advantage of the increased pre-
cision from this work with XY-linear stages will be investigated. The feedback from the
laser tracker will be utilized to control the XY-linear stage online. The calibration results
from the current experiment make it possible to decrease the rise time to track the refer-
ence trajectory for the XY-linear stage.
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