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Abstract: In the manufacturing industry, computer numerical control (CNC) machine tools are of 

great importance since the processes in which they are used allow the creation of elements used in 

multiple sectors. Likewise, the condition of the cutting tools used is paramount due to the effect 

they have on the process and the quality of the supplies produced. For decades, methodologies have 

been developed that employ various signals and sensors for wear detection, prediction and moni-

toring; however, this field is constantly evolving, with new technologies and methods that have 

allowed the development of non-invasive, efficient and robust systems. This paper proposes the use 

of magnetic stray flux and motor current signals from a CNC lathe and the analysis of images of 

machined parts for wear detection using online and offline information under the variation in cut-

ting speed and tool feed rate. The information obtained is processed through statistical and non-

statistical indicators and dimensionally reduced by linear discriminant analysis (LDA) and a feed-

forward neural network (FFNN) for wear classification. The results obtained show a good perfor-

mance in wear detection using the individual signals, achieving efficiencies of 77.5%, 73% and 

89.78% for the analysis of images, current and stray flux signals, respectively, under the variation 

in cutting speed, and 76.34%, 73% and 63.12% for the analysis of images, current and stray flux 

signals, respectively, under the variation of feed rate. Significant improvements were observed 

when the signals are fused, increasing the efficiency up to 95% for the cutting speed variations and 

82.84% for the feed rate variations, achieving a system that allows detecting the wear present in the 

tools according to the needs of the process (online/offline) under different machining parameters. 

Keywords: tool wear; CNC machine; sensor fusion; FFNN; LDA 

 

1. Introduction 

Within machining processes, cutting tools are subjected to different stresses, which 

cause tool wear and deformation. Said wear has an impact on the quality of the supplies 

produced due to poor surface finishes and problems with the dimensional accuracy of the 

parts, which negatively impact producers due to the cost of production. Tools account for 

up to 25% of the total cost and up to 20% of machinery downtime. Additionally, it is esti-

mated that cutting tools are used between 70 and 80% of their useful life [1], which in-

creases the need for systems to accurately evaluate cutting tool wear, as costs can be re-

duced by 10–40% by maximizing tool utilization [2]. These wear monitoring and evalua-

tion systems have been developed for decades, using a variety of physical properties and 

sensors in order to obtain information that indicates the condition of the tools used, in 

addition to using different methodologies and analysis techniques for extracting 
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information from the measurements taken. However, despite the proposed systems, there 

is still a need for the development of new methodologies that provide processes and ma-

chines with options for the detection or analysis of the evolution of tool wear according 

to the diverse needs of the processes. 

Over the years, several physical properties have been used for the detection and anal-

ysis of wear on cutting tools in computer numerical control (CNC) machinery, such as 

current, vibrations, forces, acoustic emissions (AE), sound and temperature, as well as the 

use of artificial vision systems, roughness or finish analyses and, recently, the use of mag-

netic stray flux. Obtaining information on the condition of the tool through machine ele-

ments is ideal due to the relationship between the variables measured on the machine and 

the evolution of wear; in this sense, the spindle motor current is commonly analyzed in 

motor current signature analyses (MCSA). Zou et al. [3] employed an MCSA to generate 

an online system from the spindle motor current with a bispectrum signal modulation 

(BSM) algorithm by identifying the magnitude and phase of the BSM to distinguish be-

tween the effects of three levels of wear upon changes in the depth of cut and workpiece 

diameter of an A3 steel piece, although only one of the obtained features could identify 

the wear for each depth of cut. On the other hand, Marani et al. [4] implemented a feature 

extraction of current signals where the root mean square (RMS) values of the tests were 

obtained and a network with a long short-term memory (LSTM) model was used to pre-

dict the evolution of tool wear on a coated carbide tool used for the turning of steel alloy, 

comparing the accuracy of 30 different architectures to obtain the best suited for the pro-

posed experiment. 

Likewise, vibration signals are one of the most exploited measurements for wear de-

tection. Tabaszewski et al. [5] used triaxial accelerometers to distinguish between two tool 

states at different cutting speeds during turning of EN-GJL-250 with carbide cutting in-

serts using different intelligent techniques and selecting the most appropriate one, which 

was a classification and regression tree (CART) with a 2.06% error. Patange et al. [6] used 

an accelerometer and machine learning (ML) techniques based on trees to classify six 

types of wear under fixed machining parameters while turning a stainless steel workpiece 

on a manual lathe; the authors performed a statistical feature extraction, selection and 

classification, obtaining the best results with a random forest (RF) model, with 92.6% ac-

curacy. In both cases, the placement of the sensor was close to the cutting tool, which is 

quite invasive of the process. 

Regarding the use of force signals, the work of Bombiński et al. [7] shows the use of 

triaxial sensors placed in the vicinity of the carbide tools employed to cut NC10 steel and 

40 HNM steel, which were able to detect accelerated wear using waveform comparison 

algorithms automatically online based on the operator’s consideration of when the tool 

life ends during training. As an example of a work using AE and sound, Salodkar [8] 

placed a sensor on the tool shank and used a fuzzy neural network (FNN) to predict wear 

online for the machining of En31 alloy steel. Considering the machining parameters used, 

positive results were achieved for the prediction of seven flank wear states. Casal-

Guisande et al. [9] used sound and process variables for risk assessment in the use of two 

cutting tools for machining aluminum, with favorable results when compared with ex-

perts’ opinions, although the methodology requires further validation and optimization. 

Another variable used is temperature; in the work presented by Rakkiyannan et al. 

[10], a sensor was designed and placed on a high-speed steel cutting tool and the changes 

in temperature and deformation provided information on the state of the tool while cut-

ting mild steel. The results were corroborated with thermographic images, and three lev-

els were successfully detected with a span of 1.2 mm due to the sensor’s degradation. On 

the other hand, Brili et al. [11] made use of thermographs of a tool within the work area 

after different durations of cutting to assess whether the tool was in a condition to con-

tinue operating. They combined computer vision and deep learning (DL) to obtain a 96% 

accuracy, identifying the most appropriate time lap for the image acquisition. 
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Similarly, machine vision and image analysis systems have grown in popularity; in 

the work presented by Sawangsri et al. [12], a charge-coupled device (CCD) camera was 

used in the working area to evaluate the progressive wear of the tools when machining 

SCM440 alloy steel by comparing the number of pixels of the tool before and after being 

used. The estimations were validated against SMr2 (valley material portion) values meas-

ured with a microscope. Bagga et al. [13] employed an artificial neural network (ANN) 

considering the machining parameters for the turning of AISI 4140 steel and used images 

captured inside the working area of the carbide tools at specific time intervals. The worn 

area was obtained by processing the images by filtering, enhancement, thresholding and 

calculating the number of pixels in the area, and the remaining useful life was determined 

with two activation functions, sigmoid and rectified linear unit (ReLU), achieving an ac-

curacy of 86.5% and 93.3%, respectively. 

Regarding surface finish analyses, this task can be performed with specialized equip-

ment; however, Shen and Kiow [14] used image analysis of the machined part to extract 

features and predict tool wear for the turning of AISI 1045 carbon steel using coated car-

bide inserts with a recurrent neural network (RNN). The surface roughness was predicted 

with a 92.75% effectiveness from the average gray level value, standard deviation and 

entropy, and the surface roughness was predicted with 64.59% accuracy. 

Likewise, the fusion of information from different sensors to obtain better features 

has grown in popularity within these systems, allowing the creation of more complex and 

efficient systems. In this sense, Kou et al. [15] used vibration and current signals to gener-

ate RGB images that were combined with infrared images of the tool to distinguish be-

tween six levels of wear under variation of the machining parameters using information 

related to the tool and the machine to train a convolutional neural network (CNN). The 

method was able to classify the wear with 91% accuracy, but with a longer training time 

in comparison with other methods and with lower accuracy. Bagga et al. [16] employed 

force and vibration signals to predict the level of wear in tools with variations in cutting 

parameters for the turning of EN8 carbon steel using an ANN, and validated this method 

by comparing the predicted value with the direct measurement of wear for all experi-

ments, obtaining a mean percentage difference of 3.48%. 

Kuntoğlu and Sağlam [17] used force, vibration, AE, temperature and current signals 

to predict tool wear and breakage to design an online monitoring system for the turning 

of AISI 5140 carbon steel with coated carbide tools. They reported that the ability of tem-

perature and AE to detect wear was 74% effective, and force, AE and vibrations were able 

to predict breakage. Current had a low contribution to predictions in their experiments. 

Similarly, the results reported by Hoang et al. [18] indicated the ability of AE and vibra-

tions to predict wear and roughness in the machining of SCM440 steel, combining a 

Gaussian process regression and adaptive neuro-fuzzy inference system (GPR-ANFIS) al-

gorithms to process RMS values of the signals, achieving an average prediction accuracy 

of 97.57% in online monitoring with the proposed methodology. 

Jaen-Cuellar et al. [19] reported the use of stray flux and current for the detection of 

three levels of wear with individual variation of two machining parameters for aluminum 

6061 turning with coated carbide tools by means of feature extraction, dimensionality re-

duction and classification with an ANN, achieving a top performance of 94.4%. Diaz-Sal-

daña et al. [20] employed stray flux signals and image analyses of the surface finish to 

identify three levels of wear on coated carbide tools with variation in cutting speed in 

aluminum 6061 turning, obtaining a good differentiation between all the conditions when 

applying histogram peak counts to the images and feature extraction on the stray flux 

signals. 

It is important to highlight the invasive nature of the sensors for image and sound 

capture that must be placed in the work area. Temperature, vibration or force sensors 

must also be placed in the proximity of the cutting tool, an aspect that greatly limits their 

implementation due to the necessary adaptations to the work area and cutting tasks for 

an adequate measurement of wear. 
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On the other hand, the techniques used for processing the information obtained for 

the identification, evaluation or prediction of cutting tool wear are varied. Several litera-

ture reviews have identified the main techniques, tools and trends for processing [21–24]. 

Firstly, signals are processed directly in the time domain [3–18] or techniques or trans-

forms are used for their analyses in the frequency [3,5,18–20] or time-frequency [19,20] 

domains. From here, several techniques are used to obtain features that allow the analysis 

to be carried out in a better way, such as the use of statistical indicators [3–6,8,14,18–20], 

time or time-frequency transforms for direct feature extraction [3–5,19,20] and, in some 

cases, methods for the selection of the most appropriate features or dimensionality reduc-

tion such as heuristic techniques [5,6,22], linear discriminant analysis (LDA) [19] or prin-

cipal component analysis (PCA). Subsequently, classification or decision-making tech-

niques tend to use intelligent systems such as different types of neural networks 

[8,13,14,16,19,25], support vector machines (SVM) [21–24], hidden Markov models 

(HMM) [21–24], fuzzy systems [8,9,17,18] and DL systems [4,11,14,15]. 

Based on the above, it is possible to note that some of the current research on tool 

wear makes use of a single variable as the source of information, while others follow the 

trend towards the use of multiple sensors and the fusion of their information, which in 

some cases comes from the same source (i.e., part of the machine, tool or workpiece). In 

both cases, there is a trend towards the use of intelligent systems that allow automatic 

handling of information for the identification, classification or prediction of tool wear, and 

process the information in the time and/or frequency domain to obtain characteristics that 

help to gain a better understanding of the phenomena. The use of intelligent techniques 

is of great value when processing large amounts of information generated by fused sen-

sors, allowing a more adequate manipulation and interpretation of the data. Another 

point to note is the implementation of the methodologies, since they can be performed 

online, allowing process monitoring [3–5,7–12,14–19], or offline once the machining of a 

part has been carried out [6,13,20,26]. This is an important aspect, since in methodologies 

that use vision systems or images, the machining process must be stopped for the acqui-

sition of images of the tool or they may be taken after the process; however, this depends 

on the needs and planning of the process. 

Considering the foregoing, the main contribution of this research is the development 

of a system for the detection of the level of wear in cutting tools used in a CNC lathe by 

analyzing the information obtained directly from the spindle motor of the machine using 

non-invasive current and stray flux sensors, as well as from images of the surface finish 

of the machined parts. The proposed system allows the analysis of the signals individually 

and together, allowing it to be adapted to the user’s needs to evaluate the wear online or 

after the process is finished, all through the use of the fast Fourier transform (FFT), the 

discrete wavelet transform (DWT), statistical and non-statistical indicators, dimensional-

ity reduction by linear discriminant analysis (LDA) and a feed-forward neural network 

(FFNN) for wear classification under the individual variations of the cutting speed and 

the feed rate of the tool. 

2. Theoretical Background 

2.1. CNC Lathe and Machining Parameters 

The lathe is considered the oldest machine tool, which makes it simple and versatile, 

and it is used to produce round shapes through operations such as turning, facing or bor-

ing [27]. There are different types of lathes, most of them are manually controlled or 

slightly automated, in addition to computer numerical control (CNC) lathes, where a com-

puter allows a faster and more precise control of operations, allowing the reliable produc-

tion of higher quality parts with high dimensional accuracy, provided that the tools used 

are in good condition. 

Within the turning process there are several parameters that have an impact on the 

development of operations and the wear that the tool will suffer in the process. These 
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parameters depend on the materials of the workpiece and the tool to be used; a correct 

selection of parameters is essential to avoid tool fractures, accelerated wear and high tem-

peratures or vibrations that can greatly affect the production and the machine. There are 

tables that provide appropriate working ranges for different materials, such as those pre-

sented in [27]. 

The three most important parameters for machining operations are the depth of cut 

(d), cutting speed (V) and tool feed rate (f). The depth of cut is the average between the 

initial diameter of the workpiece (Do) and its final diameter (Df), as shown in (1); the cut-

ting speed is the superficial (tangential) speed of the workpiece, in m/min, as a function 

of Do and the spindle speed (N) in rpm, as shown in (2); and the tool feed rate is the dis-

tance the tool travels in one rotation of the spindle, in mm/rev, and can be defined by the 

linear feed rate of the tool through the workpiece (vf) and N, as defined in (3). 

𝑑 =
𝐷𝑜 + 𝐷𝑓

2
 (1) 

𝑉 = 𝜋𝐷𝑜𝑁 (2) 

𝑓 =
𝑣𝑓

𝑁
 (3) 

2.2. Image Processing 

Image processing is a powerful tool for the development of condition monitoring 

systems, allowing good analysis and detection of different conditions or faults in the pro-

cesses where it is implemented; however, the results greatly depend on the processing 

applied to the information acquired, which includes techniques such as grayscale conver-

sion, contrast enhancement, adaptive thresholding and histograms. 

2.2.1. Gray Scale Images 

A grayscale image represents only the value of light intensity, where, generally, the 

range of each pixel is between 0 and 255; that is, there are a total of 256 gray levels [28]. 

Equation (4) is used to obtain such an image, where Igray represents the pixel in gray level 

and r, g and b are the red, green and blue components of each pixel of the color image, 

respectively. 

𝐼𝑔𝑟𝑎𝑦 = 0.299𝑟 + 0.587𝑔 + 0.114𝑏 (4) 

2.2.2. Image Contrast Enhancement 

The Gamma transform is a nonlinear transform that is typically used for luminance 

or color coding or decoding of images for electronic display and acquisition devices [29]. 

This transform is defined in Equation (5), where y is the output gray level, c is the constant 

to normalize the pixel value to the range of interest, x is the input gray level and γ is the 

gamma value. When γ < 1, lightening effects are produced in the image; conversely, when 

γ > 1, darkening effects are produced. 

𝑦 = 𝑐𝑥
1
𝛾 (5) 

2.2.3. Adaptive Threshold 

In computer vision systems, thresholding seeks to classify the pixels of an image as 

“light” or “dark” based on a given value. Adaptive thresholding is based on an algorithm 

in which each pixel is compared to the average intensity value of the surrounding pixels, 

as established in [30]. 

  



Machines 2023, 11, 480 6 of 29 
 

 

2.2.4. Horizontal Histogram 

A histogram of an image I is a vector that shows the frequency with which each of 

the gray levels of an image appear, included in the range of the minimum and maximum 

gray levels [29]. Similarly, a horizontal histogram (histj) of a binary image (bin(i, j)) repre-

sents the number of pixels that appear as white in each of the columns (w) of the image 

width, using Equation (6). 

ℎ𝑖𝑠𝑡𝑗 = ∑ 𝑏𝑖𝑛(𝑖, 𝑗)

ℎ−1

𝑖=0

    𝑓𝑜𝑟 𝑗 = 0,1, … , 𝑤 − 1 (6) 

2.3. Stray Flux Signal and AC Current Analysis 

Stay flux is an effect or secondary characteristic present in windings and has been 

studied for a long time [31], becoming an important physical quantity for the study of 

faults in electrical machines in recent years. Stray flux applications for the monitoring of 

electric motors are based on the property that any fault or modification in its state is re-

flected in changes in the magnetic field of the machine [32]. 

A stray flux analysis is carried out by analyzing two components: the axial compo-

nent, whose plane includes the machine axis, generated by the current at the end of the 

stator windings or the ring at the end of the rotor cage; and a radial component, which is 

perpendicular to the machine axis and is due to the air gap flux escaping from the machine 

after the attenuation of the stator and the machine casing. These components can be meas-

ured by placing sensors in certain positions. Figure 1 shows common positions of coil 

sensors for stray flux signal acquisition from the radial plane in Figure 1a and from the 

axial plane in Figure 1b. Pos.3 allows the measurement of the radial stray flux component, 

Pos.2 allows the measurement of the axial stray flux and Pos. 1 allows the measurement 

of a mixture of the radial and axial stray flux. 

  
(a) (b) 

Figure 1. Common placements for the use of coil sensors to capture magnetic stray flux signals in 

their radial and axial components: (a) view from the radial plane; (b) view from the axial plane. 

In this development, a proprietary triaxial stray flux sensor [33] is used, shown in 

Figure 2. This board allows capturing signals from the three orthogonal magnetic stray 

flux components. 
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Figure 2. Proprietary triaxial stay flux sensor used to capture the CNC lathe’s spindle motor signals, 

with the primary sensing elements indicated with a red ellipse. 

On the other hand, and as mentioned in the Introduction, a current analysis is a com-

monly used technique for wear detection [22] because the current demand of the ma-

chine’s spindle motor is related to the changes that occur in the machining operations, 

allowing identification of the progression of wear suffered by the cutting tool. 

2.4. Intelligent Tools and Sensor Fusion 

2.4.1. Sensor Fusion 

According to [22], signal fusion in tool condition monitoring systems occurs in three 

different levels: the first one corresponds to the signals as they were acquired by the sen-

sors to be subsequently conditioned and processed, which is a little used methodology; 

the second level is the fusion of the features obtained from the analysis of each of the 

acquired signals, allowing to generate a set of features that provide the most relevant in-

formation of the phenomenon for the generation of models, which is the most used meth-

odology; and the third option is the fusion of the models generated for each of the signals 

in order to create a more robust system that provides a better decision than the classifiers 

individually. 

2.4.2. Statistical Features 

Statistical indicators are commonly used tools within the field of tool condition mon-

itoring since they allow obtaining useful information that reflects the state of wear without 

the need for a high computational load. They are employed in some methodologies di-

rectly for wear identification and in others as a way of obtaining characteristics, some of 

the most common being the average value, RMS, variance, standard deviation, skewness 

and kurtosis [24]. Likewise, they have been widely used within fault identification in elec-

tromechanical systems; thus, a set of 15 indicators (Equations (7)–(21)) that have shown 

satisfactory results in the literature [34] have been considered and are listed in Table 1. 

Table 1. Set of statistical features used for the analysis of the signals. 

Statistical Features Equation  

Mean 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (7) 

Maximum value 𝑥̂ = max (𝑥) (8) 

Root Mean Square 𝑥𝑅𝑀𝑆 = √
1

𝑛
∑(𝑥𝑖)

2

𝑛

𝑖=1

 (9) 

Square Root Mean 𝑥𝑆𝑅𝑀 = (
1

𝑛
∑ √|𝑥𝑖|

𝑛

𝑖=1

)

2

 (10) 
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Standard Deviation 𝜎 = √
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 (11) 

Variance 𝜎2 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 (12) 

RMS Shape Factor 𝑆𝐹𝑅𝑀𝑆 =
𝑥𝑅𝑀𝑆

1
𝑛

∑ |𝑥𝑖|
𝑛
𝑖=1

 (13) 

SRM Shape Factor 
𝑆𝐹𝑆𝑅𝑀 =

𝑥𝑆𝑅𝑀

1
𝑛

∑ |𝑥𝑖|
𝑛
𝑖=1

 
(14) 

Crest Factor 𝐶𝐹 =
𝑥̂

𝑥𝑅𝑀𝑆
 (15) 

Latitude Factor 𝐿𝐹 =
𝑥̂

𝑥𝑆𝑅𝑀
 (16) 

Impulse Factor 𝐼𝐹 =
𝑥̂

1
𝑛

∑ |𝑥𝑖|
𝑛
𝑖=1

 (17) 

Skewness 𝑆𝑘 =
𝐸[(𝑥 − 𝜇)3]

𝜎3
 (18) 

Kurtosis 𝑘 =
𝐸[(𝑥 − 𝜇)4]

𝜎4
 (19) 

Fifth Moment 5𝑡ℎ𝑀 =
𝐸[(𝑥 − 𝜇)5]

𝜎5
 (20) 

Sixth Moment 6𝑡ℎ𝑀 =
𝐸[(𝑥 − 𝜇)6]

𝜎6
 (21) 

2.4.3. Non-Statistical Features 

There are indicators based on non-statistical characteristics that allow to obtain infor-

mation that describes the behavior of the information through the analysis of relationships 

or qualities present in the data, some of them being fractal dimension, DWT energy, Shan-

non entropy (H) and wavelet entropy (Sw). 

Fractal dimension. Fractals are geometric shapes such that when subdivided into 

parts, each part is a smaller approximate copy of the original. This quantity is used as an 

indicator of how much a fractal fills a space as it approaches smaller and smaller scales 

[35] or as a measure of self-similarity or the appearance of patterns in signals within the 

time domain [36]. There are several algorithms for its calculation, with results ranging 

from 1.0 for straight lines to 2.0 for a plane. Considering this, two formulations were used 

for this research, Higuchi’s fractal dimension (HFD) and Katz’s fractal dimension (KFD), 

whose calculation procedures are described below. 

Higuchi’s fractal dimension (HFD). The procedure for HFD calculation consists of 

four steps [37]: 

1. The original signal in the time domain, X, containing N samples is decomposed into 

a new series or sequence in the same domain, xkm, using (22), where m and k are inte-

gers corresponding to the initial time and the time interval, respectively, while the 

term in square brackets denotes the rounding performed to the integral part of the 

calculated value. 

𝑥𝑘
𝑚 = 𝑥𝑚, 𝑥𝑚+𝑘, 𝑥𝑚+2𝑘, … , 𝑥

𝑚+[
𝑁−𝑚

𝑘
]𝑘

                      (𝑚 = 1,2, … , 𝑘) (22) 

2. For each sequence of xkm calculated, the average normalized length, Lm, is obtained 

using (23), which uses the factor [(N − m)/k] as a normalizing factor. 
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𝐿𝑚(𝑘) =
(𝑁 − 1)

𝑘 [
𝑁 − 𝑚

𝑘
]

∑ |𝑥𝑚+𝑖𝑘 − 𝑥𝑚+(𝑖−1)𝑘|

[
𝑁−𝑚

𝑘
]

𝑖

 (23) 

3. Using Equation (24), the total length, L(k), is obtained for a given value of k. 

𝐿(𝑘) = ∑ 𝐿𝑚(𝑘)

𝑘

𝑚=1

 (24) 

4. The value k is modified such that k = k + 1, and as long as k < kmax, steps 1 to 3 are 

repeated. kmax is a selected value for which the slope of the line of best fit to the plotted 

diagram in the plane (ln[L(k)] versus ln [1/k]) remains constant. The slope of this line 

represents the fractality value, HFD, of the analyzed signal. 

Katz’s fractal dimension (KFD). The algorithm to obtain KFD consists of three steps 

[38]: 

1. Starting from the signal, X, with N samples, the maximum Euclidean distance, d, be-

tween the first sample, x1, and a sample xk, equal to k = 1, ..., N, is obtained. 

2. The arithmetic sum of the Euclidean distances, L, between consecutive samples of the 

signal X is obtained with (25) and its average, a, is obtained using (26). 

𝐿 = ∑ 𝑑𝑖𝑠𝑡(𝑥𝑘 − 𝑥𝑘−1)

𝑁

𝑘=2

 (25) 

𝑎 =
𝐿

𝑁 − 1
 (26) 

3. KFD is calculated using Equation (27). 

𝐾𝐹𝐷 =
log (𝐿/𝑎)

log (𝑑/𝑎)
 (27) 

DWT energy (γDWT). The DWT energy parameter, γDWT, is a normalized indicator de-

fined as the inverse ratio between the energy of a signal decomposition after the use of 

DWT and the energy of the original signal in a time window, delivering a result in decibels 

(dB) [39]. Equation (28) shows the mathematical expression for its calculation, where emfj 

is the value of the j-th sample of the original signal, emf; di(j) is the j-th point of the selected 

wavelet signal and Nb and Ns are the start and end sample of the interval of interest, re-

spectively. 

𝛾𝐷𝑊𝑇(𝑑𝐵) = 10 ∗ log [
∑ 𝑒𝑚𝑓𝑗

2𝑁𝑠
𝑗=𝑁𝑏

∑ [𝑑𝑖(𝑗)]2𝑁𝑠
𝑗=𝑁𝑏

] (28) 

Shannon entropy (H). Claude Shannon [40] introduced this concept as a measure of 

the uncertainty of an information source, as well as of the noise or disorder of a system, 

relating it to the uncertainty that exists in an experiment or in a random signal. Equation 

(29) shows the definition of this parameter, H, for a signal x with possible values xi with a 

probability of occurrence of p(xi). 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)

𝑖

 (29) 

Wavelet entropy (Sw). This indicator, Sw, is a measure of the degree of order/disorder 

present in a wavelet signal and provides information associated with the dynamic pro-

cesses related to the source of the original signal [41]. To obtain Sw, it is necessary to cal-

culate the energy of the i-th wavelet decomposition levels, Ei (30), and the total energy of 

the whole decomposition, Etot (31). With this it is possible to obtain the normalized wavelet 
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energy, pi, as shown in (32), and to finally use Equation (33), where m and n are the first 

and last decomposition level of the signal, respectively. 

𝐸𝑖 = ∑ |𝐶𝑖(𝑘)|2

𝑘

 (30) 

𝐸𝑡𝑜𝑡 = ∑ 𝐸𝑖

𝑖

 (31) 

𝑝𝑖 =
𝐸𝑖

𝐸𝑡𝑜𝑡
 (32) 

𝑆𝑊 ≡ 𝑆𝑊(𝑝) = − ∑ ln (𝑝𝑖)

𝑛

𝑗=𝑚

 (33) 

2.4.4. Linear Discriminant Analysis (LDA) 

LDA is a supervised dimensionality reduction technique used when there is prior 

knowledge about the classes within the dataset. This technique searches for linear combi-

nations between variables to maximize the between-class scatter matrix (Sb) and make 

them as far apart as possible while minimizing the within-class scatter matrix (Sw) to com-

pact the data as much as possible [42]. The procedures for calculating Sb and Sw are shown 

in Equations (34) and (35), where the dimension k of the subspace is defined as k = C − 1, 

where C is the number of classes, mk is the mean of class Ck, m is the global mean, nk is the 

number of samples and xi is the i-th sample of class Ck. 

𝑆𝑏 = ∑ 𝑛𝑘(𝑚𝑘 − 𝑚)(𝑚𝑘 − 𝑚)𝑇

𝑘

 (34) 

𝑆𝑤 = ∑ ∑ (𝑥𝑖 − 𝑚𝑘)(𝑥𝑖 − 𝑚𝑘)𝑇

𝑖∈𝐶𝑘𝑘

 (35) 

Subsequently, the GLDA subspace is obtained by using Equation (36), whose solution 

is given by the k eigenvectors of Sw−1Sb associated with the highest eigenvalues. 

𝐺𝐿𝐷𝐴 =
𝑚𝑎𝑥𝑇𝑟

𝑈

𝐺𝑇𝑆𝑏𝐺

𝐺𝑇𝑆𝑤𝐺
= (𝑔1, … , 𝑔𝑘) (36) 

To obtain the data transformed to the new space, Y, a projection of the original data, 

X, is made in the generated subspace, as shown in Equation (37). 

𝑌 = 𝐺𝐿𝐷𝐴
𝑇 𝑋 (37) 

2.4.5. Feed-Forward Neural Networks (FFNN) 

Artificial neural networks (ANNs) are tools within the field of artificial intelligence 

(AI) that seek to recreate the functioning of the human brain by mimicking the neural 

interconnections in the brain in order to create intelligent systems capable of performing 

complex learning to extract patterns and recognize trends from complex data structures 

[43]. ANNs are composed of three layers of nodes, called neurons, which perform opera-

tions with the data entered in the input layer, passing through a hidden layer where a 

nonlinear transformation of the information is performed to obtain a classification of the 

data in the output layer. When a network topology is configured so that the outputs from 

one layer are fed into the next one, it is called a feed-forward neural network (FFNN), and 

this is the most common configuration [44]. Additionally, ANNs can have more than one 

hidden layer, becoming deep neural networks (DNN), where the topology to be used is 

decided by empirical issues related to the applications in which they are used [45]. 
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3. Materials and Methods 

3.1. Materials and Experimental Setup 

The experiments were carried out on a DYNAMACH CNC lathe, shown in Figure 

3a, with Fanuc Oi Mate-TC control, a 3-phase induction motor with 4 poles and a rated 

power of 3.7 kW powered by a variable frequency drive (VFD) at 220 Vac. The compo-

nents that make up the data acquisition system (DAS) are shown in Figures 2 and 3b. A 

proprietary triaxial system, shown in Figure 2, using Allegro Microsystems A1325 Hall 

effect linear sensors, which have a sensibility of 3.125 mV/G, an ambient temperature 

range between −40 °C and 150 °C and an internal bandwidth of 17 kHz (−3 dB), and are 

positioned to measure the orthogonal magnetic stray flux components (axial, radial and 

axial + radial stray flux), was used for the stray flux signal measurement. A Fluke i3000s 

Flex-24 Rogowski-type AC current clamp was used to measure the current signal, which 

has three current ranges of 30, 300 and 3000 A, output sensibilities of 100, 10 and 1 mV for 

the respective current ranges and a bandwidth from 10 Hz to 50 kHz. The capture and 

transmission of the stray flux and current signals were executed with a Texas Instruments 

microcontroller that has a 14-bit analog-to-digital converter (ADC) working at a sampling 

frequency (fs) of 5000 samples per second for a more adequate sampling of the signals. The 

placement of the DAS and PC, as well as the location of the spindle motor and the work 

area of the CNC lathe, can be seen in Figure 3b, with a close-up view of the placement of 

the stray flux sensors in Figure 3a. With this it is possible to observe the non-invasive 

placement of the measurement equipment for the process. 

  

(a) (b) 

Figure 3. Experimental setup: (a) CNC location of the DAS for the capturing of the current and stray 

flux signals, spindle motor showing details of the colocation of the stray flux sensors on the spindle 

motor and work area for the tests; (b) close-up of the DAS components: AC current clamp, ADC 

and microcontroller. 

The experiments were performed using BOEHLERIT TCMT-16T308-MP LCP-25T tri-

angular coated cutting tools, using a total of 12 cutting tools divided into two groups, one 

for each machining parameter (cutting speed and tool feed rate), with a total of six states: 

a new state and five levels of progressive wear. The insert sides were 16.5 mm long and 

3.97 mm tall with a corner radius of 8 mm and ISO class-P with a toughness of 25 accord-

ing to ISO, as stated in the manufacturer’s catalog. The workpieces were 6061 aluminum 

bars with a diameter of 1.5 in and the chemical composition of this alloy is show in Table 

2. It has an ultimate tensile strength between 125 and 310 MPa, a yield strength ranging 

from 55 to 275 MPa, depending of its temper, and a Young’s Module of 69 GPa [27]. Figure 

4 shows some of the specimens produced during the experiments, where Figure 4a,b 

shows the no wear and mayor wear tools machined during the cutting speed test, 



Machines 2023, 11, 480 12 of 29 
 

 

respectively, while Figure 4c,d shows the tools with no wear and the one presenting with 

the greatest wear in that set machined for the feed rate test. 

Table 2. 6061 Aluminum alloy composition by mass [46]. 

Constituent Ele-

ment 
Al Mg Si Fe Cu Cr Zn Ti Mn Others 

% by weight 95.85–98.56% 0.80–1.20% 0.40–0.80% 
0–

0.70% 
0.15–0.40% 0.04–0.35% 

0–

0.25% 

0–

0.15% 

0–

0.15% 

0–

0.15% 

 

    

(a) (b) (c) (d) 

Figure 4. Aluminum bars used for the experiments: (a) bar machined for the cutting speed test using 

the tool with no wear; (b) piece machined for the cutting speed test with the tool with the largest 

wear; (c) part machined for the feed rate test with the tool with no wear; (d) workpiece machined 

for the feed rate test with the tool presenting the greatest wear. 

For the capture of the micrographs of the machined parts, both a LEICA EZ4D mi-

croscope and LAZ EZ software were used; likewise, these instruments were used to cap-

ture micrographs of the cutting tools used in order to obtain a wear area for each one as a 

validation tool for wear classification. 

3.2. Proposed Methodology 

This section presents the methodology applied for the development of this research. 

Figure 5 shows the methodological diagram, which consists of four main blocks: the ma-

chining process, the data acquisition system for current and stray flux signals, the image 

acquisition process of the machined parts and the tool wear monitoring system. 

 

Figure 5. Block diagram for the proposed methodology. 
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The machining process block considers the CNC lathe, the workpiece material, the 

cutting tools and the machining parameters used for the experimental tests, as well as the 

placement of the stray flux and current sensors on the spindle motor for data acquisition. 

In this part, the workpieces were fabricated considering the recommended cutting param-

eter ranges presented in [27] for the machining of aluminum 6061. The machining opera-

tions performed were turning and making three cuts along the piece, lasting 30 s per work-

piece. 

The data acquisition system block describes the use of the proprietary triaxial stray 

flux sensor and a current sensor placed on the spindle motor to capture the corresponding 

signals and the use of a 14-bit ADC integrated to a commercial microcontroller to capture 

the data. For each of the experiments, the AC current and the axial, radial and axial + 

radial stray flux signals of 30 s length were captured with the DAS, each one having a total 

of 150,000 samples considering the fs specified above. 

For the image acquisition block, a commercial microscope was used to capture a se-

ries of images for each workpiece in order to increase the amount of information available 

for analysis. The images obtained with the LEICA EZ4D microscope were in RGB format, 

with a resolution of 2048 × 1536 pixels. Incident and oblique illumination was carried out 

in a portion of the part height by means of the seven LEDs of the device. For each work-

piece, the illuminated area corresponded to one-twelfth of the perimeter, which allowed 

the capturing of 12 images per bar. As there were five variations of each machining pa-

rameter and six levels of tool wear, a total of 360 images were acquired for the cutting 

speed case and another 360 were captured for the tool feed rate test. The images were 

stored in a PC for later analysis. 

Finally, the tool wear monitoring system block describes the processing stages of the 

information acquired for the development of the wear monitoring system from the indi-

vidual or fused use of the information sources. For the stray flux and current signals, a 

preprocessing and conditioning are performed; first, a digital filtering of the signals was 

carried out due to the presence of noise with a Butterworth filter of order 10 and the offset 

present due to the characteristics of the sensors used was eliminated. The next stage was 

preprocessing using the FFT [47] to obtain the fundamental frequency component present 

in the signals because the motor is fed with a VFD. Once the fundamental frequency of 

the signals was obtained, the DWT [48] was used to decompose the signals into ten levels 

with the Daubechies44 mother wavelet [49] and the fundamental frequency was used to 

identify the most appropriate reconstruction level to obtain information. With the recon-

structed signals, the statistical and non-statistical indicators were calculated using Equa-

tions (7)–(21) and Equations (22)–(33), obtaining 20 indicators or characteristics for each 

of the acquired signals, with which matrices of characteristics were generated. For the 

generation of these matrices, the procedure illustrated in Figure 6 was followed, where 

for each of the signals, the three cuts made with the tool were identified. Subsequently, 

fixed-size 1024 sample windows were used for the calculation of the indicators, giving a 

total of 80 windows for each signal and 20 indicators for each window and thus creating 

an 80 × 20 feature matrix for each of the signals per experiment. This process was repeated 

for each sensor signal captured for the 30 experiments conducted for the five variations of 

each machining parameter with their six corresponding tool wear levels. 
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Figure 6. Stray flux and current signal feature extraction process. 

For the analysis of images of the workpieces, the procedure shown in Figure 7a was 

followed for each of the images captured of the machined surface for each test conducted. 

First, for each image, the region of interest (ROI) to be analyzed was selected, which was 

the illuminated area of the original image. Second, the color image was converted to gray-

scale through Equation (4). Third, the contrast of the image was enhanced through a 

gamma transformation (Equation (5)), automated to adapt the enhancement to the illumi-

nation characteristics present in each image. Fourth, the optimal threshold level was ob-

tained through an adaptive thresholding; then, with this obtained value, the image was 

binarized with the objective of dividing the lower groove in black and the upper groove 

in white. Fifth, the image was cut to obtain 80 subdivisions for each test of both speed and 

wear. At this point, it is important to mention that 12 images were taken for each test. 

Sixth, for each subdivision carried out, a horizontal histogram was obtained (by column). 

If there was a greater predominance of black tones, it was taken as the lower groove; on 

the contrary, if there was a greater predominance of white tones, it was taken as the upper 

groove. Depending on the result, the column was set to white or black. Finally, to obtain 

the width of the upper and lower grooves, the number of columns across the width of 

both the upper grooves (white tones) and the lower grooves (black tones) was added in-

dividually and divided by the number of upper and lower grooves, respectively. This 

process was automated, following the pseudocode in Figure 7b, to allow a better integra-

tion to the tool condition monitoring system developed. 

(a) 
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(b) 

 

Figure 7. Process followed for image analysis: (a) diagram showing the different steps of image 

processing to achieve the measurement of the grooves in the workpiece; (b) pseudocode indicating 

the steps followed by the automated image processing algorithm. 

With the features obtained from the current and stray flux signals, as well as from 

the images, we proceeded to the dimensionality reduction of the feature matrices for the 

analyzed sources, individually and fused, using LDA to generate 2D representations and 

compacting the information for better interpretation and analysis. With the reduced indi-

cator matrices, an FFNN with an architecture of two input neurons and two hidden layers 

with four and six neurons, respectively, was used for the classification of the wear condi-

tions of the tools used. This procedure was carried out for each of the machining parame-

ters that were varied for testing, i.e., cutting speed and tool feed rate. 

3.3. Case Studies 

In the reported literature, the majority of studies vary the cutting parameters to select 

the most adequate combination to extend the useful life of the cutting tools; however, the 

focus of this research is on the correct detection of wear in two case studies. In the first 

case study, the cutting speed was varied while the rest of the parameters were constant. 

In the second case study, the tool feed rate was varied, keeping the other parameters fixed. 

In order to define the parameters to be used, the ranges recommended in [27] for the ma-

chining of 6061 aluminum were consulted. 

3.3.1. Case Study 1: Cutting Speed 

For the cutting speed tests, a matrix was designed with the cutting parameters to be 

used, which are shown in Table 3. As mentioned before, the cutting speed (V) varies while 

the depth of cut (d) and feed rate (f) remain constant, with five different speeds used to 

carry out these experiments. 

Table 3. Machining parameters used for the cutting speed variation tests. 

No. d (mm) f (mm/rev) V (m/rev) N (rpm) vf (mm/min) 

1 1.25 0.16 60 779.53 124.72 

2 1.25 0.16 70 909.45 145.51 

3 1.25 0.16 80 1039.37 166.30 

4 1.25 0.16 90 1169.29 187.08 

5 1.25 0.16 100 1299.22 207.87 

Figure 8 shows images of the cutting tools used for these experiments, obtained using 

a Leica EZ4D microscope and dedicated software. Figure 8a shows the scale reference for 

the measuring using a Vernier, while Figure 8b–f presents the same scale reference with a 

magnified view of the wear area of the inserts. For these tools, the wear areas (Af) 
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measured for validation purposes are as follows: CT-s0′s Af = 0.0 mm2, CT-s1′s Af = 0.467 

mm2, CT-s2′s Af = 0.5858 mm2, CT-s3′s Af = 0.7057 mm2, CT-s4′s Af = 1.7016 mm2 and CT-

s5′s Af = 1.739 mm2. With the five variations of the machining parameters in Table 3 and 

the six available tools, thirty experiments were performed. 

 

(a) (b) (c) 

 
(d) (e) (f) 

Figure 8. Cutting tools used for the cutting speed experiments: (a) CT-s0; (b) CT-s1; (c) CT-s2; (d) 

CT-s3; (e) CT-s4; (f) CT-s5. 

3.3.2. Case Study 2: Tool Feed Rate 

For the tool feed rate tests, a matrix was designed with the machining parameters to 

be used, which are shown in Table 4. In this case, five variations of the tool feed rate (f) 

were considered while the depth of cut (d) and cutting speed (V) were kept constant. 

Table 4. Machining parameters used for the tool feed rate variation tests. 

No. d (mm) f (mm/rev) V (m/rev) N (rpm) vf (mm/min) 

1 1.25 0.08 100 779.53 103.938 

2 1.25 0.12 100 909.45 155.907 

3 1.25 0.16 100 1039.37 207.875 

4 1.25 0.20 100 1169.29 259.844 

5 1.25 0.24 100 1299.22 311.813 

Figure 9 shows images of the cutting tools used in this case study, obtained using a 

Leica EZ4D microscope and dedicated software. As for the previous case study, Figure 9a 

shows the scale reference for the measuring using a Vernier, while Figure 9b–f presents 

the same scale reference with a magnified view of the wear area of the inserts. For these 

tools, the wear areas (Af) measured for validation purposes are as follows: CT-f0′s Af = 0.0 

mm2, CT-f1′s Af = 0.5471 mm2, CT-f2′s Af = 0.8729 mm2, CT-f3′s Af = 1.2645 mm2, CT-f4′s Af 

= 1.7377 mm2 and CT-f5′s Af = 2.2814 mm2. With the five variations of the machining pa-

rameters in Table 4 and the six available tools, thirty experiments were performed. 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 9. Cutting tools used for the tool feed rate experiments: (a) CT-f0; (b) CT-f1; (c) CT-f2; (d) CT-

f3; (e) CT-f4; (f) CT-f5. 

4. Results 

This section details the results of the tests performed for the case studies specified 

applying the proposed methodology. During the analysis and processing of the infor-

mation, it was found that the stray flux signal of combined axial and radial components 

provided higher quality information, so the analysis focused on using only that stray flux 

signal along with the current signal. 

4.1. Results of Cutting Speed Variation Tests 

As mentioned in the methodology, the signals obtained from the current and mag-

netic stray flux sensors required a filtering and conditioning stage for the elimination of 

noise present in the signals and the offset of the sensors. Figure 10 presents the analyzed 

signals corresponding to the test with a cutting speed of 100 m/rev with the CT-s5 tool, 

which had highest wear of the batch. Figure 10a shows the signals captured before condi-

tioning and Figure 10b shows the conditioned signals after digital filtering with the But-

terworth filter of order 10 and after offset elimination. The change in the signals after pre-

processing is clear, especially the change in amplitudes because of the noise. This filter 

allowed a good high frequency noise elimination without affecting the signal amplitude, 

as the frequencies related to the machining process are of a lower range [27]. Once the 

signals were conditioned, the process described in Figure 6 was implemented to obtain 

the feature matrices for each signal. First, the cuts made by the tool were identified and 

then 1024 data windows were used to calculate the features from the cuts in the signals, 

creating an 80 × 20 feature matrix for each signal. The process was repeated for all signals. 
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(a) (b) 

Figure 10. Current and stray flux signals measured during the 100 m/rev test with the CT-s5 tool: 

(a) original signals; (b) conditioned signals. 

Nowadays, one of the most commonly used techniques for the measurement of ob-

jects in images is the pixel counting technique (PCT), since it has the advantage of having 

low measurement errors [50,51]. This technique is based on counting the number of pixels 

existing in a reference unit at a certain distance between the target and the camera. Sub-

sequently, based on this, a relationship between the number of pixels and the measure-

ment of an object can be obtained. Previous research has shown the effectiveness of thresh-

olding for the segmentation of regions of interest (ROIs) [52–54]. For the proposed 

method, different experiments were performed to have a robust methodology to segment 

the grooves (lower and upper) in order to obtain the width measurement. The techniques 

tested were for contrast enhancement and thresholding. It is important to mention that for 

the reference measurement, PCT was used. For 1 mm there were 135 pixels. Table 5 shows 

the results obtained for speed tests (using the CT-s4 insert with Af = 1.7016 mm2 at a cutting 

speed of 70 m/rev). For this case, the lower groove was 7 pixels (0.0518 mm) and the upper 

groove was 15 pixels (0.1111 mm) measured with the PCT. 

Table 5. Comparison of groove measurements and errors using different contrast enhancements 

and thresholds for the cutting speed test at 70 m/rev using the tool with a wear area of 1.7016 mm2. 

Contrast Enhancement—Thresh-

old 

Number of Pixels 

Upper Groove (px) 

Measurement of 

Upper Groove in 

mm (% Error) 

Number of Pixels of 

the Lower Groove 

(px) 

Measurement of 

Lower Groove in 

mm (% Error) 

Gamma transformation—adap-

tive threshold (proposed) 
15.22 0.1127 (1.44) 7.11 0.0526 (1.54) 

Gamma transformation—Otsu 14.66 0.1085 (2.34) 7.66 0.0567 (9.45) 

Histogram equalization—Otsu 15.11 0.1119 (0.72) 7.22 0.0534 (3.08) 

Histogram equalization—adaptive 

threshold 
15.44 0.1143 (2.8) 6.88 0.0509 (1.73) 

Photographs taken of the parts machined with the CT-s5 tool at 60 m/rev, 80 m/rev 

and 100 m/rev are shown in Figure 11a–c, respectively. To the naked eye, the differences 

in the grooves made by the tool between these images are minimal. For each one of the 

images captured, the process described in Figure 7 was applied, producing a matrix with 

the groove characteristics for each experiment conducted. 
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(a) (b) (c) 

Figure 11. Micrographs taken of some of the machined specimens using the tool CT-s5: (a) for the 

test at 60 m/rev; (b) for the test at 80 m/rev; (c) for the test at 100 m/rev. 

Once the feature matrices were produced for each experiment and signal, an FFNN 

was trained and tested to assess the capabilities of the proposed methodology. The results 

of the effectiveness of wear classification with the FFNN for each of the machining condi-

tions considered are shown in Table 6, grouped according to the source of information 

analyzed, as well as the average effectiveness value for each of them. It is possible to ob-

serve that each of the individual sources obtains a certain percentage of effectiveness. Us-

ing the current as the source presents the lowest average effectiveness at 73.02%, followed 

by the analysis of images, which presents an average of 77.5%, while the use of the com-

bined axial + radial stray flux signal generated the best average accuracy of 89.78%. Like-

wise, when the information is fused, considerable increases in efficiency were obtained. 

Using a fusion of images and current presented the lowest effectiveness of the combined 

methods, at 84.48%, followed by the fusion of current and stray flux at 92.3%, while the 

fusion of images, current and stray flux reached a 94.06% effectiveness, 0.8% lower than 

the effectiveness of the fusion of images and stray flux, at 95.02%. 

Table 6. Effectiveness results for the classification of tool wear with the use of the FFNN for the 

cutting speed tests. 

V 

(m/rev) 

Surface 

Images 

Axial + Radial 

Stray Flux 

AC 

Current 

Images + Stray 

Flux Fusion 

Images + AC 

Current Fusion 

AC Current + 

Stray Flux Fusion 

Images + AC Current + 

Stray Flux Fusion 

60 75.0 78.6 68.2 83.3 72.9 80.2 82.3 

70 84.9 91.1 82.3 99.0 93.2 92.2 100.0 

80 63.0 95.3 78.1 99.0 82.8 96.4 94.8 

90 80.7 87.5 71.4 96.4 86.5 94.8 95.8 

100 83.9 96.4 65.1 97.4 87.0 97.9 97.4 

Aver-

age 
77.50 89.78 73.02 95.02 84.48 92.3 94.06 

In Figure 12, some results are shown for comparison considering the experiments at 

100 m/rev. The confusion matrix for the image analysis is shown in Figure 12a, while the 

classification performed by the FFNN can be seen in Figure 12b, showing how the analysis 

of the surface finish gives a good separation between the classes with little overlap for all 

tool conditions. The confusion matrix for the stray flux analysis is shown in Figure 12c 

and the classification is shown in Figure 12d, exhibiting a nearly perfect segregation of the 

data with almost no misclassification on the wear conditions. The confusion matrix for the 

current analysis is displayed in Figure 12e and the classification is shown in Figure 12f, 

exhibiting the inability to correctly identify the tool wear in comparison to the other two 

signals with a clear separation of the tool with no wear and overlaps for the other tool 

conditions. The confusion matrix for the fusion of the three signals is shown in Figure 12g 
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and its classification is shown in Figure 12h. It is possible to observe a small performance 

enhancement in the classification, with minor overlap between the classes corresponding 

to Af = 0.467 mm2 and CT-s2′s Af = 0.5858 mm2. These graphics show the main advantage 

of sensor data fusion; the increase in data leads to a more robust system with a better 

performance. 
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(e) (f) 

 

 

(g) (h) 

Figure 12. Confusion matrices and classification results obtained for the 100 m/rev tests: (a) confu-

sion matrix for image analysis; (b) classification of tool wear for image analysis; (c) confusion matrix 

for stray flux analysis; (d) classification of tool wear for stray flux analysis; (e) confusion matrix for 

current analysis; (f) classification of tool wear for current analysis; (g) confusion matrix for image, 

current and stray flux fusion; (h) classification of tool wear for image, current and stray flux fusion. 

4.2. Results of Feed Rate Variation Tests 

As for the cutting speed tests, the stray flux and current signals were filtered using a 

Butterworth filter of order 10 and the sensor offset was subtracted. After the signals were 

preprocessed, the process for the calculation of the feature matrixes in Figure 6 was per-

formed the same way as for the cutting speed case study. Figure 13a shows the signals 

captured before conditioning and Figure 13b shows the conditioned signals correspond-

ing to the test with a feed rate of 0.24 mm/rev with the CT-f5 tool, which had the highest 

wear of the batch. In this example, the changes in amplitude after preprocessing are evi-

dent mainly in the amplitude of the signals. 
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(a) (b) 

Figure 13. Current and stray flux signals measured during the 0.24 mm/rev test with the CT-f5 tool: 

(a) original signals; (b) conditioned signals. 

Photographs taken of the part machined with the CT-f5 tool at 0.08 mm/rev, 0.16 

mm/rev and 0.24 mm/rev are shown in Figure 14a–c, respectively. In this case, at different 

tool feed rates it is possible to observe differences in the grooves made by the cutting tool 

by the naked eye. As for the cutting speed experiments, the process described in Figure 7 

was applied to each micrograph acquired, producing a matrix with the groove character-

istics for each experiment performed. 

   

(a) (b) (c) 

Figure 14. Micrographs taken of some of the machined specimens from the tool feed rate tests using 

the tool CT-f5: (a) for the test at 0.08 mm/rev; (b) for the test at 0.16 mm/rev; (c) for the test at 0.24 

mm/rev. 

With the feature matrices obtained, an FFNN was trained and tested in order to eval-

uate its accuracy in identifying the different levels of tool wear for each feed rate variation. 

The results of effectiveness for wear classification with the FFNN for each of the machin-

ing conditions considered are shown in Table 7, grouped according to the source of infor-

mation analyzed, as well as the average effectiveness value for each particular case. In this 

case, there is a lower accuracy for identification of the wear in the cutting tool in compar-

ison to the results of the cutting speed experiments. For the use of information sources 

individually, the use of magnetic stray flux presented an average effectiveness of 63.12%, 

followed by the use of current at 73.0% and then image analysis with 76.34%. With the 

fusion of information, a 77.48% effectiveness using a fusion of current and stray flux was 

achieved, which increased to 79.66% using a fusion of images and stray flux and 80.4% 

using a fusion of images, current and stray flux signals. The highest average accuracy, at 

82.84%, was obtained when fusing images and current signals. 
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Table 7. Effectiveness results for the classification of tool wear with the use of the FFNN for the tool 

feed rate tests. 

f 

(mm/rev) 

Surface 

Images 

Axial + Radial 

Stray Flux 

AC 

Current 

Images + Stray 

Flux Fusion 

Images + AC 

Current Fusion 

AC Current + 

Stray Flux Fusion 

Images + AC Current 

+ Stray Flux Fusion 

0.08 74.5 57.3 85.4 73.4 91.7 92.7 88.0 

0.12 88.5 67.2 72.4 85.4 93.8 72.9 82.8 

0.16 74.5 64.6 65.1 88.5 80.2 80.2 87.0 

0.20 70.8 63.0 76.0 66.1 74.0 70.8 66.1 

0.24 73.4 63.5 66.1 84.9 74.5 70.8 78.1 

Average 76.34 63.12 73.0 79.66 82.84 77.48 80.4 

In Figure 15, some results are shown for comparison considering the experiments at 

0.24 mm/rev. The confusion matrix for image analysis is shown in Figure 15a, while the 

classification performed by the FFNN can be seen in Figure 15b, showing a mayor overlap 

between the tools with no wear and the tools with Af = 1.2645 mm2 and Af = 1.7377 mm2 . 

The confusion matrix for the stray flux is shown in Figure 15c and the classification is 

shown in Figure 15d, with a mayor overlap for the tools and a minor overlap between the 

tools with no wear and the one with Af = 2.2814 mm2 (the largest of the batch). The confu-

sion matrix for the current analysis is displayed in Figure 15e and the classification is 

shown in Figure 15f, presenting a mayor dispersion in each class for all the wear condi-

tions. The confusion matrix for the fusion of the three signals is shown in Figure 15g and 

its classification is shown in Figure 15h, showing a mayor conglomeration for each cluster 

with a considerable overlap for the tools with Af = 0.8729 mm2, Af = 1.2645 mm2 and Af = 

1.7377 mm2. 

 

 

(a) (b) 
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(g) (h) 

Figure 15. Confusion matrices and classification results obtained for the 0.24 mm/rev tests: (a) con-

fusion matrix for image analysis; (b) classification of tool wear for image analysis; (c) confusion 

matrix for stray flux analysis; (d) classification of tool wear for stray flux analysis; (e) confusion 

matrix for current analysis; (f) classification of tool wear for current analysis; (g) confusion matrix 

for image, current and stray flux fusion; (h) classification of tool wear for image, current and stray 

flux fusion. 

5. Discussion 

The results shown in Table 6 provide the opportunity to analyze the effectiveness of 

wear identification in the cutting speed variation experiments by processing information 

from different sources with the proposed methodology. For this case study, it can be ob-

served that the use of the current signal only leads to small improvements in the identifi-

cation of wear with the proposed methodology, which was increased by 7% when com-

bined with the information from images and less than 2.5% when fused with the stray 

flux. The accuracy of the results was decreased by 0.8% when fusing current signals with 

images and stray flux information compared to when current data was not included. On 

the contrary, it can be seen that the use of magnetic stray flux has a greater influence on 

the correct identification of wear, achieving the best results for all the conditions when 

comparing to the analysis of the signals individually for these experiments. 

On the other hand, Table 7 presents the analysis results of the feed rate tests. With 

these results, it is possible to observe that for the tool feed rate experiments, the lowest 

contribution to wear identification accuracy is from the magnetic stray flux signal, adding 

3.32% to the surface images accuracy and 4.48% when merged with the current data, but 

reducing the effectiveness by 2.8% when fused with image and current data. On the con-

trary, the image analysis presented the highest accuracy for identification of tool wear for 

the feed rate variations in contrast to the other signals. 

When comparing the results obtained for both case studies, it is possible to observe 

an overall reduction in efficiency for the classification in the tool feed rate tests, this could 

be caused due to the effect of the variation in this parameter in the cutting process, as it 

changes the speed at which the tool travels through the workpiece and causes changes in 

the spacing of the cuts and the appearance of the grooves in addition to the effect of tool 

wear. In contrast, in the cutting speed case, the feed rate is constant and the changes in the 

grooves are caused only by tool wear. 

Table 8 presents a brief comparison of the results of the proposed methodology with 

some previously reported in the literature, where some of the sensors are invasive. The 
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main differences between our work and most of the reported works are the non-invasive 

nature of the sensors used, the possibility to choose the signal to analyze during the ma-

chining process or after it is finished and the quality of the pieces that are evaluated. In 

addition, the number of variations for each of the machining parameters was individually 

modified to evaluate the effect they have on the detection of wear of cutting tools with the 

objective of generating a system that can correctly identify wear regardless of the changes 

in the parameters. 

Table 8. Comparison of the proposed methodology to systems reported in the literature. 

System 
Number of Wear Con-

ditions Evaluated 
Signals Analyzed 

Achieved 

Accuracy 
Machining Parameters 

Online/Of-

fline 

[6] 6 Vibrations 92.6% 
Fixed value for cutting speed, tool 

feed rate and depth of cut 
Online 

[11] 4 Thermographs 96% 
Fixed value for cutting speed, tool 

feed rate and depth of cut 
Online 

[15] 6 
Vibration and cur-

rent 
91% 

Nine experiments with three varia-

tions of cutting speed, tool feed rate 

and depth of cut 

Online 

[19] 
3 Stray flux and AC 

current 

94.4% Cutting speed (five variations) 
Online 

3 94.4% Tool feed rate (five variations) 

Proposed 

Method 

6 Surface images, 

AC current and 

stray flux 

95.02% Cutting speed (five variations) 
Online/Of-

fline 6 82.84% Tool feed rate (five variations) 

These results show the potential of this methodology, as the effectiveness of the iden-

tification of tool wear through the fusion of different signals was increased. In addition, it 

is a non-invasive methodology for the machining process as it uses signals captured dur-

ing the machining operations without the need to interrupt them and images of the sur-

face finish of the parts are captured once operations are finished. 

6. Conclusions 

This paper proposes a non-invasive methodology based on the fusion of signals from 

the spindle motor of a CNC lathe and the analysis of the surface finish of the machined 

parts for the generation of a system. This allows the identification of wear with the indi-

vidual variation of two important machining parameters with the possibility to analyze a 

single source or a combination of them according to the user’s needs and preferences with-

out interrupting the process. 

For the variation in cutting speed, the proposed methodology was able to identify 

the six levels of tool wear with an accuracy of 77.50% after analysis of the workpiece sur-

face, 89.78% after analysis of stray flux signals and 73.02% after AC current signal analysis, 

with a peak efficiency of 95.02% after analysis of the fusion of surface images and stray 

flux signals. 

For the variation in tool feed rate, the proposed system achieved a 76.34% effective-

ness when using image analysis, 63.12% when analyzing stray flux signals and 73.0% 

when analyzing AC current signals, achieving a peak accuracy of 82.84% when analyzing 

both surface images and current signals. 

For each of the case studies, it was possible to observe a different contribution of the 

signals for wear classification, achieving better results by including the magnetic stray 

flux within the information to be analyzed for the case of cutting speed tests and a better 

classification by including image analysis for the tool feed rate tests. 

Additionally, it was noticed that the variation in the tool feed rate affects the for-

mation of grooves when removing material from the workpiece, on top of the effect of 
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tool wear, which makes it more difficult for the proposed system to correctly identify and 

classify tool wear in the tools used. 

In future work, other non-invasive sensors, such as sound or AE, could be used to 

increase the number of information sources for a more robust analysis. Information pro-

cessing could also be improved by applying other indicators and extracting more infor-

mation or features from the surface images or by applying different classification tech-

niques backed by the literature in order to improve the effects of using cutting parameters 

in the identification of tool wear. Additionally, with the knowledge of the effect of the tool 

feed rate on groove formation, a new approach could be developed to improve the wear 

identification while varying this parameter. 
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