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Abstract: In the present work, a recently extended version of the method of dimensionality reduction
(MDR) for layered elastic media is applied for the first time using a semi-analytical approach. It is
based on a priori knowledge of the cylindrical flat punch solution which is determined numerically
using the boundary element method (BEM). We consider arbitrary indenters of revolution producing
a circular area of contact with bonded and unbonded layers of arbitrary thickness. The proposed
method reduces the contact solution to the numerically efficient evaluation of simple one-dimensional
integrals. We further show that the solution of JKR-adhesive contacts with layers and contacts with
linear-viscoelastic layers is straightforward using the well-known MDR formalisms. A specific focus
has been devoted to study the thickness effect in different application examples. Comparisons with
the literature and finite element simulations show very good agreement with the proposed method.

Keywords: axial symmetry; elastic layers; method of dimensionality reduction; cartilage layer;
viscoelastic layer; adhesion

1. Introduction

Contact solutions based on the half-space assumption, i.e., requiring the contact area
to be much smaller than the dimensions of the contacting bodies, are usually simple and
often available in closed-form analytical expressions. Therefore, even for contact problems
with significant influence of finite geometry, this requirement is often disregarded and
the half-space-based contact solutions are used as rough estimates. However, if the body
dimensions are of the order of the contact dimensions or smaller, finite geometry must
necessarily be considered. For very thin layers, again simple solutions are found within the
thin layer assumption [1,2]. Unfortunately, for many contact problems neither asymptotic
solution is applicable. A prominent example are layers of articular cartilage in biological
joints. The cartilage layers are bonded to significantly stiffer bone material and the contact
radius is usually of the order of the thickness or greater [3]. It has been shown that small
variations in the thickness of cartilage layers have a pronounced effect on their viscoelastic
response [4,5]. For adhesive contacts, the layer thickness directly influences the adhesive
strength [6], but can also cause adhesive instabilities [7].

In fully computational methods such as the finite element method, finite geometry
is readily considered. However, the calculation times are too high for comprehensive
parameter studies and common effects such as adhesion are not implemented natively.
Li et al. [8] developed a boundary element method (BEM) for layered half-spaces which is
advantageous in terms of numerical complexity and allows for a simple implementation
of JKR-type adhesion [9]. Further simplification and reduction in computational cost is
possible if only axisymmetric contacts are considered. Then, the solution of the contact
problem of a rigid indenter and an elastic layer can be reduced to the solution of one-
dimensional Fredholm integral Equations [10–13]. Recently, Argatov et al. [14] proposed an
even simpler approach; they extended the well-known method of dimensionality reduction
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(MDR) to layered elastic media. Within the MDR, which was introduced by Popov and
Heß [15], a very simple equivalent one-dimensional contact problem of a rigid plane profile
and a one-dimensional Winkler foundation is solved. It exactly reproduces the solution of
three-dimensional contact problems including adhesion [16], viscoelastic half-spaces [17]
and functionally graded half-spaces [18]. The proposed MDR extension to layered media
is based on a priori knowledge of the contact solution of a rigid cylindrical flat punch
with an elastic layer for the whole parameter space. If this flat punch solution is available,
the elastic solution for arbitrary axisymmetric profiles is simple and the consideration of
adhesion and viscoelasticity follows the well-known rules of the MDR framework.

In the present paper, the MDR for layered media as proposed by Argatov et al. [14] is
employed for the first time for a single layer, which is either bonded to a rigid substrate
or slides frictionless on the substrate (unbonded case). Using a semi-analytical approach,
the required flat punch solution is provided in numerical form, determined by a BEM
framework. By investigating the thickness effect in different application examples including
adhesive layers and viscoelastic layers, the efficiency and variability of the proposed
method are shown. The obtained numerical BEM data needed to solve the MDR integrals
are provided in the Supplementary Materials.

2. MDR Framework

We consider the frictionless axisymmetric indentation of a linear elastic layer of thick-
ness h with a rigid indenter with profile f (r) and a compact contact area as shown in
Figure 1A. The layer rests on a rigid substrate and is either completely bonded to the
substrate or slides frictionless on the substrate (unbonded case). The surface displacement
within the contact area at given indentation depth δ is given by

w(r) = δ− f (r) . (1)

In the framework of the method of dimensionality reduction (MDR), the much simpler
equivalent contact problem of a one-dimensional bedding of independent springs and
a one-dimensional indenter with profile g(x; h) shown in Figure 1B is used to find the
complete contact solution. The one-dimensional spring displacement within the contact
area is

w1D(x; h) = δ− g(x; h) (2)

and, thus, if g(x; h) is continuous at x = a, the MDR profile of the nonadhesive contact is
simply the relation of indentation depth and contact radius:

δ = g(a; h) . (3)

The normal force is found by integrating the spring forces,

FN(a; h) = 2
a∫

0

cN(x; h)w1D(x; h)dx , (4)

with the spring stiffness cN.

Figure 1. (A) Three-dimensional contact problem; (B) equivalent one-dimensional contact problem.
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By taking into account the universality of the contact stiffness,

kN :=
dFN

dδ
=

dFN(a)
da

da(δ)
dδ

, (5)

the relation of spring stiffness and contact stiffness can be found from Equations (3) and (4),

cN(x; h) =
1
2

k′N(x; h) . (6)

In contrast to the well-known half-space MDR, the spring stiffness cN(x; h) for layered
bodies is generally variable. According to Betti’s reciprocal theorem, the normal force can
also be written using the pressure distribution resulting from the unit indentation by a
rigid cylindrical flat punch p∗(r, a/h),

FN = 2π
∫ a

0
w(r)p∗(r, a/h)rdr . (7)

By equating Equations (4) and (7) and differentiating with respect to a, the transforma-
tion that gives the MDR profile g(x) based on a given profile f (r) is found:

g(x; h) =
π

cN(x; h)
d

dx


x∫

0

p∗(r; x/h) f (r)r dr

 . (8)

In the context of the MDR, the transformation in Equation (8) was formulated by
Argatov et al. [14] based on the previous work by Efimov et al. [19]. It is well known that
the contact pressure can be obtained from the superposition of incremental flat punches
indentations. Using the previous definitions, it can be obtained from the one-dimensional
spring displacement,

p(r; a/h) = −
a∫

r

p∗(r; x/h)w′1D(x; h)dx + p∗(r; a/h)w1D(a; h) , (9)

where the second part vanishes if the one-dimensional profile is continuous at x = a. Let
us now introduce the following dimensionless variables that are more convenient for the
numerical evaluation:

ξ =
x
h

, ξa =
a
h

, α =
r
h

, f (α) =
f (r)

h
, w1D(ξ) =

w1D(x; h)
h

, kN(ξ) =
kN(x; h)

2E∗x
,

cN(ξ) =
cN(x; h)

E∗
= kN(ξ) + ξk

′
N(ξ) , p(α/ξ; ξ) =

πx
2E∗kN(x; h)

p∗(r/x; x/h) ,
(10)

with the elastic modulus E∗ = E/(1− ν2). Using these normalizations, the transformations
(8) and (9) are rewritten as

g(ξ) =
2h

cN(ξ)

d
dξ

 kN(ξ)

ξ

ξ∫
0

p(α/ξ; ξ) f (α)α dα

 , (11)

and

p(α; ξa) =
2E∗

π

−
ξa∫

α

kN(ξ)

ξ
p(α/ξ; ξ)w′1D(ξ)dξ +

kN(ξa)

ξa
p(α/ξa; ξa)w1D(ξa)

 , (12)

respectively. For the solution of the contact problem using Equations (4), (11) and (12), only
the normalized contact stiffness kN(a/h) and the normalized pressure distributions under
the cylindrical flat punch p(r/a; a/h) are needed. It should be noted that for a layer that is
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bonded to the rigid substrate, these normalized quantities also depend on Poisson’s ratio ν.
We omitted this dependency here for brevity.

For the sake of completeness, it should be mentioned that the displacement outside of
the contact zone w(r, a/h) can be determined using a similar superposition,

w(r, a/h) = −
a∫

0

w∗(r; x/h)w′1D(x; h)dx + w∗(r; a/h)w1D(a; h) , (13)

where w∗(r, a/h) is the displacement outside of the contact zone for an unit indentation
with a cylindrical flat punch.

2.1. Asymptotic Cases

In this section, the asymptotic cases of very thick and very thin layers are discussed.
Within these assumptions, the given MDR relations may be reduced to very simple expres-
sions that allow for the derivation of closed-form solutions for many axisymmetric indenter
profiles f (r). The derivations of the contact stiffness and normalized flat punch pressure
distribution are, for example, described by Barber [20] in more detail.

2.1.1. The Elastic Half-Space

For the asymptotic case of a thick layer with a/h→ 0, the solution is independent of
the boundary condition between layer and rigid substrate. With the contact stiffness of the
elastic half-space kN = 2E∗a and the normalized pressure distribution under a flat punch

p(r/a) =
1
2

(
1−

( r
a

)2
)−1/2

, (14)

the bedding stiffness is constant cN = E∗ and the well-known MDR relations are recovered
from (11) and (12):

g(x) = x
x∫

0

f ′(r)dr√
x2 − r2

, p(r; a) =
E∗

π

−
x∫

r

w′1D(x)dx√
x2 − r2

+
w1D(a)√

a2 − r2

 . (15)

2.1.2. The Compressible Bonded Thin Layer

In the case of a bonded thin layer with ν < 0.5 and a� h, the in-plane strains will be
negligible. Hence, the layer itself acts as a three-dimensional linear Winkler foundation.
Then, the relation of indentation depth and contact radius a is given by the profile, δ = f (a),
the contact pressure under a flat punch is constant and a simple analysis of the elasticity
equations yields the contact stiffness,

kN = π
E(1− ν)

(1 + ν)(1− 2ν)

a2

h
⇒ kN =

π

2
(1− ν)2

(1− 2ν)

a
h

. (16)

Thus, the MDR relations for this case are very simple:

cN = π
(1− ν)2

(1− 2ν)

x
h

, g(x) = f (x), p(r) =
E(1− ν)

(1 + ν)(1− 2ν)

w(r)
h

(17)

2.1.3. The Incompressible Bonded Thin Layer

Due to the incompressibility (ν = 0.5) and the geometric confinement, the material of
an indented thin incompressible layer with a� h flows laterally and bulges upwards at the
contact edge. Barber [20] used a quadratic approximation for the in-plane displacement to
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derive the solution under a spherical indenter. The according derivation for the cylindrical
flat punch yields the contact stiffness

kN =
πEa4

8h3 ⇒ kN =
3π

64

( a
h

)3
, (18)

and the contact pressure

p(r/a) = 2
(

1−
( r

a

)2
)

. (19)

Thus, the resulting MDR relations for this case are

cN =
3π

16

( x
h

)3
, g(x) =

2
x2

x∫
0

f (r)rdr,

p(r; a) =
E

4h3

−
a∫

r

(x2 − r2)w′1D(x)dx + (a2 − r2)w1D(a)

 .

(20)

2.1.4. The Unbonded Thin Layer

In the case of an unbonded thin layer with a� h, the plane section remains as plane
and the displacement is just a function of radial coordinate. As for the compressible thin
layer, the layer itself acts as a three-dimensional linear Winkler foundation but with a lower
stiffness due to the less confined situation,

kN = πE∗
a2

h
⇒ kN =

π

2
a
h

. (21)

The MDR relations are

cN = π
x
h

, g(x) = f (x), p(r) = E∗
w(r)

h
. (22)

It is worth noting that the above equations also hold for an unbonded incompressible
layer, because material can flow laterally.

2.2. Contact of Two Coated Rigid Bodies with Curved Surfaces

The MDR formalism described above is not limited to the case of a rigid indenter
in contact with a flat layer, but can also be extended to the contact of two coated rigid
bodies with different curvatures R1 and R2 where coating thickness h and material are
equal (see Figure 2). Then, an equivalent contact problem is that of a rigid indenter and a
flat layer with the same thickness h, where the curvature R∗ of the indenter is found under
the condition that the total displacement in the contact area remains equal,

1
R∗

=
1

R1
+

1
R2

. (23)

The condition of equal contact stiffness leads to the effective elastic modulus of the
flat layer of the equivalent problem,

E∗ =
E

2(1− ν2)
. (24)

These relations are, of course, the well-known relations from the Hertzian contact
theory of two curved bodies with a/h → 0. Due to the more complicated dependency
on Poisson’s ratio for the bonded layer, the equivalent problem is only given for equal
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materials. If the thickness of the layers differs slightly, a good MDR approximation is found
for an equivalent flat layer with thickness

h∗ =
h1 + h2

2
. (25)

For compressible bonded thin layers and unbonded thin layers, Equation (25) is “exact”
within the thin layer assumption.

Figure 2. Contact of two differently curved rigid bodies with equal coatings and equivalent problem
of a curved rigid body and a layer.

3. Numerical Solution of Flat Punch Indentations Using FFT-Based BEM
3.1. FFT-Based BEM for Bonded and Unbonded Elastic Layers

To obtain a numerical flat punch solution needed for the MDR transformations in
Section 2, we reformulate the BEM formulation by Li et al. [8] which solves the problem
of an elastic layer on an elastic half-space for a single bonded or unbonded layer. In the
BEM formalism, the pressure–displacement relation is solved using direct and inverse Fast
Fourier Transforms (FFT),

u = IFFT[K · FFT(p)] , (26)

with the compliance matrix in the Fourier space K, which is the Fourier transform of the
discretized fundamental solution: K = FFT(U0). As shown by Li et al., the compliance
matrix can be directly found in the Fourier space,

K =
2

kE∗
χ(kh) , (27)

with the modulus E∗ = E/(1− ν2) and the variable k which is the absolute value of the
wave vector k. Completely analogous to the work by Li et al., the dimensionless kernel
χ(kh) for the unbonded layer is obtained by restraining the out-of-plane displacement at
the layer–substrate interface and allowing for frictionless in-plane motion,

uz(z = h) = 0 and τ{xz,yz}(z = h) = 0 . (28)

The resulting kernel function of the unbonded layer reads:

χ(kh) =
2 sinh2(kh)

2kh + sinh(2kh)
. (29)

For the bonded layer with fixed displacement at the layer–substrate interface,

u{x,y,z}(z = h) = 0 , (30)

the kernel has an explicit dependency on Poisson’s ratio,

χ(kh) =
2κ sinh(2kh)− 4kh

1 + 4k2h2 + κ2 + 2κ cosh(2kh)
, with κ = 3− 4ν. (31)
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It should be noted that the above kernels have been found by several other au-
thors [21,22]. With the compliances in Equations (29) and (31), the normal stress at the
surface due to a sinusoidal surface displacement is given by

σ(x, y) =
E∗k

2χ(kh)
u0 sin(kx) (32)

The described BEM framework with the derived kernels allows for an efficient contact
solution for arbitrary indenter shapes. This also includes JKR-adhesive problems using the
mesh-size dependent criterion introduced by Pohrt and Popov [9].

3.2. Contact Stiffness and Pressure under a Cylindrical Flat Punch

We now consider the indentation of a layer by a cylindrical flat punch using the
BEM formalism described in Section 3.1. The resulting contact stiffness (see Equation (6))
normalized with the that of the elastic half-space, 2E∗a, is shown in Figure 3 in terms
of the ratio of contact radius to layer thickness a/h for different Poisson’s ratios, while
Figure 4 shows the normalized contact pressure under the cylindrical flat punch indented
into a bonded, incompressible layer for different a/h. In case of the unbonded layer,
the normalized stiffness does not depend on Poisson’s ratio, as shown in Section 3.1.
We also included the asymptotic thin layer solutions described in Sections 2.1.2–2.1.4 in
Figures 3 and 4 and the numerical solution of the governing Fredholm integral equations
by Hayes et al. [11] in Figure 3. As expected, the normalized contact stiffness increases with
the confinement. The confinement is increased by the geometric ratio of contact radius to
layer thickness a/h, restricting displacements at the layer–substrate interface (the bonded
case) and, for the bonded case, the degree of incompressibility. The normalized pressure
distribution exhibits higher values in the middle of the indenter for increasing a/h and
lower at the contact edge. In very confined situations, the singularity at the contact edge
disappears. The asymptotic behavior for small and large a/h is met in all cases for contact
stiffness and the contact pressure and the agreement of with the data by Hayes et al. [11]
appears to be very satisfactory. Taking into account the asymptotic solutions summarized
in Table 1, an evident representation of the contact stiffness is given by

kN(a/h, ν) = κ(a/h, ν)
( a

h

)m(a/h,ν)
, (33)

where the exponent m is calculated from the relation of indentation depth and contact
radius of a paraboloid with radius of curvature R at the same ratio of contact radius to
layer thickness a/h,

δP(a; a/h) =
a2

(1 + m(a/h, ν))R
. (34)

To obtain relation (34) for all a/h, we can simply evaluate Equation (11) for a given
parabolic profile f (r) = r2/(2R) and layer thickness h. The dimensionless parameter κ is
then calculated from Equation (33). Figure 5 shows parameters m and κ in terms of the
ratio a/h. Conveniently, both parameters are bounded and tend toward the asymptotic
solutions with m = 0 for the half-space, m = 1 for the bonded compressible thin layer as
well as the unbonded thin layer and m = 3 for the bonded incompressible thin layer. The
agreement with the results of Hayes et al. [11] is very good. In the ranges a/h < 0.1 and
a/h > 50, the asymptotic solutions of half-space and thin layer, respectively, are generally
good approximations. Bonded nearly incompressible and incompressible layers are slower
in the asymptotic behavior. It is interesting to note that the unbonded layer agrees almost
exactly with the more artificial case of a bonded layer with ν = 0.0. In fact, the evaluation
of the BEM kernel functions of the unbonded layer (29) and the bonded layer (31) with
ν = 0.0 gives almost the same numerical results for the whole parameter space.
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Figure 3. Normalized contact stiffness kN in terms of confinement ratio a/h. Symbols mark numerical
data taken from Hayes et al. [11].

Figure 4. Normalized contact pressure distribution under a cylindrical flat punch indented into a
bonded incompressible layer (ν = 0.5) for different ratios of radius to layer thickness a/h.

Table 1. Normalized contact stiffness and relation of indentation depth and contact radius δ(a) for a
paraboloid with radius of curvature R.

Norm. Contact Stiffness kN δP(a) for a Paraboloid

Half-space 1 a2

R

Bonded thin layer (ν < 0.5) π

2
(1− ν)2

(1− 2ν)

a
h

a2

2R

Bonded thin layer (ν = 0.5) 3π

64

( a
h

)3 a2

4R

Unbonded thin layer π

2
a
h

a2

2R

General layer κ(a/h, ν)
( a

h

)m(a/h,ν) a2

(1 + m(a/h, ν))R
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A B

Figure 5. Dimensionless parameters m (A) and κ (B) of the contact stiffness defined by
Equations (33) and (34). Symbols mark numerical data taken from Hayes et al. [11].

Finally, the needed flat punch solution has been obtained in numerical form for the
whole parameter space. With that, we show in the following section that the solution of
any axisymmetric indenter shape including adhesion or viscoelasticity is straightforward
using the MDR relations presented in Section 2. The numerical BEM solutions needed
for evaluation of the MDR relations, that is, the normalized contact stiffness and the
contact pressure distribution under a flat punch, are uploaded as Supplementary Materials
to this article. Here, we discretized the a/h space using 400 points with logarithmic
spacing between a/h = 0.001 and a/h = 1000 and the normalized radial coordinate r/a is
discretized with approximately 500 equally spaced points.

4. Case Studies

In this section, we demonstrate the capability of the MDR formulation presented in
Section 2 based on the numerical flat punch solutions presented in Section 3.2 by analyzing
exemplary cases. An advantage of the MDR is that the non-adhesive elastic formulation
can be easily expanded for JKR-adhesive problems and linear viscoelasticity. Here, the
implementation follows the well-known rules for the half-space, which are summarized, e.g.,
by Willert [23]. The evaluation of the one-dimensional integrals in Equations (11) and (12) is
realized by numerically efficient matrix–vector products. It is sufficient to set up the matrix
kernel, a given combination of normalized contact stiffness and flat punch pressure, once
for a given boundary condition (bonded or unbonded) and Poisson’s ratio (in the bonded
case), since it does not depend on other simulation parameters (profile shape, adhesive
properties, viscoelastic properties). The numerical BEM solution described in Section 3.2
needed to perform the following MDR calculations is uploaded as Supplementary Materials
to this article.

4.1. Indentation by a Truncated Cone

Consider the indentation of a layer with thickness h by a rigid truncated cone with
the profile

f (r) =

{
0 , ∀r < b
(r− b) tan(θ) , ∀r ≥ b ,

(35)

depicted in Figure 6. In the general case, the contact solution can only be obtained numeri-
cally as shown in Section 2. However, the asymptotic solutions can be derived explicitly
using the relations in Section 2.1. The resulting solution for the elastic half-space can be
found, for example, in [24]. For the bonded compressible thin layer and the unbonded thin
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layer, the layer acts as a three-dimensional Winkler foundation and the one-dimensional
MDR profile and contact pressure are directly given by Equations (17) and (22). The
resulting normal force is

FN = Ẽ
πa3

3h
tan θ

(
1−

(
b
a

)3
)

, (36)

where Ẽ = E(1− ν)/((1 + ν)(1− 2ν)) for the compressible thin layer and Ẽ = E∗ for the
unbonded thin layer. In the case of a bonded incompressible layer, the asymptotic thin
layer relations (20) yield the one-dimensional MDR-profile,

g(x) =


0 ∀x < b
1
3
(2x + b)

(
1− b

x

)2
tan θ ∀x ≥ b ,

(37)

the normal force,

FN =
Eπa2

120

( a
h

)3
tan θ

(
2− 5

(
b
a

)3
+ 3
(

b
a

)5
)

, (38)

and the contact pressure,

p(r) =
E tan θ

36

( a
h

)3


2− b3

a3

[
6 log

( a
b

)
+ 2
]
− 3
[

2− 3
b
a
+

b3

a3

]( r
a

)2
∀r < b

2− b3

a3

[
6 log

( a
r

)
− 3
]
− 3
[

2 +
b3

a3

]( r
a

)2
+ 4
( r

a

)3
∀r ≥ b .

(39)

Figure 6. Indentation of a layer by a truncated cone.

The solutions for the one-dimensional MDR profile and the contact pressure are shown
for different confinement ratios with b/a = 0.5 in Figure 7. The MDR profile is normalized
with the profile height at the contact radius. For increasing confinement ratio a/h, the
profile is flattened. Since the MDR profile is simply the relation of indentation depth and
contact radius, this means that the contact radius of a layer is always larger then that of
a respective half-space at the same indentation depth. For the bonded layer with high
Poisson’s ratios and a/h ≥ 2, the indentation depth is smaller than the profile height at
r = a, g(a)/ f (a) < 1, meaning that the material outside of the contact zone bulges upwards,
w(r > a) < 0. For increasing confinement ratios a/h, the contact pressure singularity at
the discontinuity of the profile at r = b weakens and disappears for a/h > 5. At the same
time, the normalized stress increases in the center and decreases toward the contact edge.
The asymptotic solutions are reached in all cases. However, for the bonded case with high
Poisson’s ratios, agreement with the thin layer solution is achieved only for much larger
a/h than for the unbonded case.
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Figure 7. Normalized MDR-profile and normalized contact pressure of a truncated cone with
b/a = 0.5 for an unbonded layer, a bonded layer with ν = 0.45 and a bonded incompressible layer at
different confinement ratios a/h.

4.2. Adhesive Detachment of a Cylindrical Flat Punch from an Elastic Layer

Generalized JKR-adhesion can be mapped exactly in the MDR space as shown by
Heß [16]. For this, we assume that the springs adhere to the one-dimensional indenter. In
the equilibrium state, the outermost spring have an maximum elongation of

∆l(a) =

√
2π∆γa
cN(a; h)

, (40)

where ∆γ is the work of adhesion [18]. Thus, the indentation depth for the adhesive
contact is

δ = g(a; h)− ∆l(a; h) . (41)

With that, the normal force of the adhesive problem is again determined by Equation (4)
with the one-dimensional spring displacements in Equation (2). The determination of the
critical values for complete detachment follows from a simple stability analysis as shown
by Heß [18]. For the following analysis, we normalize the maximum spring elongation in
Equation (40) using the definitions in Equation (10),

∆l(ξ) = ∆l(a; h)

√
E∗

2π∆γh
=

√
ξ

cN(ξ)
. (42)

Figure 8 shows the normalized spring elongation for the whole parameter range
including the asymptotic solutions for half-space and thin layer which follow directly
from Section 2.1. It is interesting to note that, for the unbonded case and the bonded
case with ν ≤ 0.3, the normalized spring elongation is monotonically increased with a/h,
but for the bonded layer with Poisson ratio’s ν ≥ 0.4, it has a maximum in the range of
a/h = 0.46− 0.92 (a/h = 0.46 for the incompressible case). We show in the following that
this has some important consequences for the detachment of axisymmetric indenters from
elastic layers.
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Figure 8. Normalized maximum spring elongation according to Equation (42) in terms of the
confinement ratio a/h.

For the simple case of the adhesive detachment of a cylindrical flat punch of radius a∗

from an elastic layer, the normal force before detachment is given by

FN = kN(a∗; h)δ (43)

and detachment begins when δc1 = −∆l(a∗; h) is reached. If

∂∆l(a; h)
∂a

∣∣∣∣∣
a=a∗

< 0 , (44)

in a displacement-controlled trial, the contact area decreases stably; otherwise, unstable
detachment occurs. Thus, for a∗ < 0.46h, detachment always occurs abruptly when
δc1 = −∆l(a∗; h) is reached. For the bonded layer with Poisson ratio’s ν ≥ 0.4 and large
a∗/h, the contact area in a displacement-controlled trial decreases until

δc2 = −
√

2π∆γh
E∗

max(∆l(a/h)) . (45)

is reached and detaches abruptly afterwards. For bonded incompressible layers, this detach-
ment behavior has already been found and experimentally confirmed by Webber et al. [7]
(they found the value a = 0.45h). The force displacement relation for the adhesive contact
of a cylindrical flat punch and a incompressible layer is shown in Figure 9 for a flat punch
with radius a∗ on layers of different thickness h. By decreasing the layer thickness, the
linear force–displacement relation before detachment becomes a steeper slope due to the
increased contact stiffness. Although the critical displacement δc1 decreases for higher
a∗/h, the adhesion force (|min(FN)|) increases. As discussed, stable detachment occurs
if δc1 < δc2 (dotted lines in Figure 9). The absolute value of the normal force during
stable detachment,

FN = −kN(a; h)∆l(a; h) , (46)

is always smaller than the adhesion force FA = kN(a∗; h)∆l(a∗; h). Thus, in a load-controlled
trial, detachment always occurs abruptly.

It should be noted that if the high confinement ratio is high, adhesive instabilities
are expected during the detachment of a flat punch from a bonded layer. In this case,
the contact area loses its axisymmetric and compact shape and, hence, the MDR is not
applicable. Webber et al. [7] argue that the detachment mechanisms change when the
pressure distribution under the flat punch has a second maximum in the center of the
punch. According to Figure 4, the second maximum develops for a/h ≥ 2 for the bonded
incompressible layer.
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Figure 9. Normal force in terms indentation depth normalized with the critical half-space solution
for the detachment of a cylindrical flat punch from a bonded incompressible layer. For confinement
ratios a∗/h > 0.46 in a displacement-controlled trial, stable detachment occurs until a = 0.46h.

4.3. Quasi-Static Impact with an Incompressible Viscoelastic Layer

In many cases, it is possible to solve contact problems involving viscoelastic bodies
based on the solution of the elastic problem (correspondence principle, see e.g., [23]).
Argatov and Popov [25] have shown that the MDR can be used to solve rebound indentation
problems involving incompressible viscoelastic half-spaces, where the contact radius has
a single maximum. One common option to include viscoelastic behavior is the use of
rheological models that consist of linear elastic and linear viscous elements. A large
range of different linear viscoelastic behaviors may be modeled in this way. In the one-
dimensional MDR picture, the independent springs are simply replaced by the chosen
rheological model as shown in Figure 10. To consider viscoelastic layers, the dimensionless
scaling factor cN(x/h) that accounts for the geometric confinement has to be adopted
from the purely elastic bedding. Using the simple example of a Kelvin–Voigt model, a
parallel combination of spring and a dashpot as shown in Figure 10, the contact force for a
viscoelastic incompressible layer may be calculated similar to Equation (4),

FN = 8
a∫

0

c̄N(x/h)
[
G w1D(x; h) + η δ̇

]
dx

= 8G
a∫

0

k̄N(x/h)x g′(x; h)dx + 8η a k̄N(a/h)δ̇ ,

(47)

with the indentation velocity δ̇ and the shear modulus G = E∗/4 (incompressible).

Figure 10. To model (incompressible) viscoelastic behavior, the independent springs of the one-
dimensional MDR bedding are exchanged with rheological models (Kelvin–Voigt model in the example).
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One of the simplest cases is the quasi-static impact of a rigid cylindrical flat punch
with an incompressible viscoelastic layer whose response is modeled using the Kelvin–
Voigt model. Within the assumption of quasi-stationarity, inertia effects such as wave
propagation are neglected. The differential equation of the impact of a flat punch with mass
M and radius aFP takes the following form:

Mδ̈ + 8 kN(aFP/h) η aFP δ̇ + 8 kN(aFP/h) G aFP δ = 0 . (48)

The easily found solution for the coefficient of restitution (COR, ratio of rebound
velocity to initial velocity) is for example given by Argatov [17],

ε = exp

[
− 2D√

1− D2
arctan

(√
1− D2

D

)]
, D < 1 . (49)

The expressions for higher damping ratios, D ≥ 1, are listed by Willert [23]. For the
viscoelastic layer, the damping ratio according to Equation (48) is

D = η

√
2aFPk̄N(aFP/h)

M G
= DHS

√
k̄N(aFP/h) , (50)

where DHS is the damping ratio for the viscoelastic half-space. We can interpret the
damping ratio as the ratio of relaxation time of the Kelvin–Voigt element τ = η/G and the
impact duration in the purely elastic case. For this simple impact case, the enlarged stiffness
due to the finite geometry reduces the impact duration of the elastic problem and thus
increases the damping ratio. Since Equation (49) is a monotonic decreasing function of the
damping ratio, the COR decreases with the confinement ratio. Figure 11 shows the COR in
terms of the damping ratio for the elastic half-space and the confinement ratio for bonded
and unbonded layers. For a/h ≤ 0.1, the half-space solution is a good approximation. Due
to the much larger dimensionless contact stiffness for bonded layers with a/h > 1, the COR
has a significant dependence on the boundary condition at the interface.

Figure 11. Coefficient of restitution for the quasi-static impact of flat punch with a viscoelastic layer
modeled using the Kelvin–Voigt model.

A less simplistic impact problem is that of a rigid sphere with an incompressible
viscoelastic layer that is modeled with the well-known standard model shown in Figure 12,
where usually G∞ � G1. If the confinement factor cN(x/h) is taken into account (as for
the Kelvin–Voigt model described above), the simple explicit time integration procedure
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described by Willert et al. [26] for the impact with a viscoelastic half-space can be applied.
The only difference is the spatially varying factor for the reaction force of a single element
at position xi = i ∆x,

fi = 4∆x cN(xi/h)
[
G∞wi + η(ẇi − ẇi)

]
, (51)

where wi denotes the displacement of the inner point that is determined from the equilib-
rium condition,

G1wi + η(ẇi − ẇi) = 0 . (52)

For the impact of a spherical indenter with a viscoelastic half-space, the ratio G∞/G1
and the dimensionless variable

χHS = η

(
Rv0

M2G3
∞

)1/5
(53)

are defining [23]. For the asymptotic thin layer cases described in Section 2.1, we can easily
find the defining dimensionless variables for incompressible layers,

χTL = η

(
Rv0

hM G2
∞

)1/3
, for the unbonded thin layer,

χTL = η

(
R2v2

0
h3M G3

∞

)1/4

, for the bonded thin layer.

(54)

It is impossible to find similar simple defining variables outside of the asymptotic
ranges, if the contact area changes during the impact. Thus, the influence of the impact
parameters on the finite geometry is more complex for the sphere.

A

B

C

Figure 12. Quasi-static impact of sphere with a viscoelastic layer modeled using the standard model;
(A) normal force vs. indentation depth; (B) confinement ratio a/h vs. impact time; (C) indenter
velocity vs. impact time; normal force, indentation depth and impact duration are normalized with
the corresponding maximum values of the elastic half-space.
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In Figure 12, we used the parameters G∞/G1 = 0.11 and χHS ≈ 2.65 and varied the
layer thickness. Then, it can be shown numerically that impact velocity v0 and radius
R of the indenter are free parameters. The other non-free parameters were chosen as
τ = η/G1 = 1 ms, G1 ≈ 7.5 MPa, M = 20 g and layer thicknesses h = {1 mm, 2 mm, 3 mm}.
Figure 12A shows typical hysteresis curves of normal force in terms of indentation depth,
both normalized with the maximum value of the elastic half-space with G = G∞ + G1.
Figure 12B shows the confinement ratio a/h and Figure 12C shows the normalized velocity
v/v0, both in terms of the normalized impact time. For the elastic layer and, with the
given parameter combination, also for the viscoelastic layer, the impact duration decreases
with decreasing layer thickness. The maximum confinement ratio of approximately 1 is
found for the 1 mm layer and here the maximum normal force is twice as high compared
to the viscoelastic half-space. The contact radius of the elastic and viscoelastic layer differs
almost only during the retraction phase, which is shorter then the indentation phase for the
viscoelastic layer. The COR at the given parameter variation can be read from Figure 12C. It
is approximately 0.45 for the viscoelastic half-space and 0.6 for the 1 mm thick viscoelastic
layer, and thus increases with decreasing layer thickness. However, for other parameter
combinations of G∞/G1 and χHS, opposing trends can be obtained.

Since the validity of the MDR for rebound problems with viscoelastic media has been
formally proven only for the half-space geometry [25], we also simulated the quasi-static
impact problem of sphere and viscoelastic layer with the finite element method (FEM)
using ABAQUS Explicit. For the material behavior, we chose the elastic parameters in
combination with a Prony series corresponding to the standard medium mentioned above.
Figure 12 shows that FEM results (dashed lines) and MDR results (solid lines) agree almost
exactly. It should be noted that the BEM formulation described in Section 3.1 could also be
used to solve the viscoelastic impact problem by applying the correspondence principle.
For the impact with a viscoelastic half-space, BEM and MDR have been shown to agree
except for negligible numerical errors, with MDR having an enormous advantage in terms
of computational time [26]. In this newly proposed MDR implementation, where the elastic
flat punch solution obtained with BEM is the basis for the MDR solution, FEM is used as
a completely independent method for comparison. The results indicate that the MDR in
the present form is indeed valid for rebound problems with viscoelastic layers. The MDR
algorithm for the viscoelastic impacts in Figure 12, implemented in Python on a regular
laptop (Intel i7 processor), took less than one second for a single impact. In comparison,
the FEM implementation is poorly parameterizable and much slower (several minutes
of computational time), so the proposed MDR routine is very useful for comprehensive
parameter studies.

5. Conclusions

In this paper, a simple, versatile and numerically efficient semi-analytical solution
method for axisymmetric contact problems involving bonded and unbonded layers is
presented and applied for exemplary cases. The method represents a recently published
generalized version of the method of dimensionality reduction (MDR) [14], which is based
on the pre-required contact solution of a cylindrical flat punch. In the present paper, this
flat punch solution is obtained numerically using the boundary element method (BEM)
for a single bonded or unbonded layer. It is provided as Supplementary Materials to
this paper. With this flat punch solution, the contact solution for arbitrary axisymmtric
indenter shapes and arbitrary layer thickness is reduced to the numerical evaluation of
one-dimensional integrals. Furthermore, we show that solely based on this provided flat
punch solution, the adhesive contact with elastic layers and the influence of viscoelasticity
can easily and efficiently be investigated using the well-established MDR formalisms. In
the application examples, qualitative and quantitative effects due to the finite geometry
are elaborated in extensive parameters studies. Comparisons with the literature and finite
element simulations show very good agreement. For the asymptotic case of a bonded
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incompressible thin layer, closed-form MDR expressions for arbitrary indenter shapes are
presented for the first time.

Due to the possibility of rapid parameter studies, the proposed semi-analytical method
will be very helpful to study thickness effects in various applications such as contacts with
cartilage layers. The stress tensor and hydrostatic pressure gradient inside the layer can be
determined using the superposition idea as was performed for the half-space geometry [27].
It is easy to adapt the proposed MDR procedure for other interesting contact problems
including bodies with multiple layers or functionally graded layers. The extension for
slightly non-axisymmetric contacts involving elastic layers applying the principles of the
work by Popov [28] is planned for the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines11040474/s1.
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Abbreviations

FP Cylindrical flat punch
P Paraboloid
MDR Method of dimensionality reduction
BEM Boundary element method
FEM Finite element method
COR Coefficient of restitution
HS Half-space
TL Thin layer
r Radial coordinate
α Dimensionless radial coordinate
f Indenter profile
f Dimensionless indenter profile
x MDR coordinate
ξ Dimensionless MDR coordinate
a Contact radius
ξa Dimensionless contact radius
w1D Spring displacement
w1D Dimensionless spring displacement
kN Contact stiffness
kN Dimensionless contact stiffness
cN Spring stiffness
cN Dimensionless spring stiffness
p∗ Pressure under FP (unit indentation)
p Dimensionless pressure under FP
g MDR profile
h, h∗ ,h1 ,h2 Layer thickness
w Surface displacement
δ, δP Indentation depth
FN Normal force
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R, R∗ ,R1 ,R2 Radius of curvature
w∗ FP displacement (unit indentation)
p Contact pressure
E Elastic modulus
ν Poisson’s ratio
E∗ Effective elastic modulus
Ẽ Thin layer modulus
k Wave vector
u Displacement vector
U0 Fundamental solution
K Compliance matrix
m, κ Dimensionless stiffness parameters
b Geom. parameter truncated cone
θ Angle of truncated cone
∆γ Work of adhesion
∆l Max. spring elongation
∆l Dimensionless spring elongation
η Viscosity
G, G1, G∞ Shear modulus
δ̇ indentation velocity
ε Coefficient of restitution
M Mass of indenter
D Damping ratio
fi Reaction force viscoelastic element
∆x Element distance
wi Displacement of inner element point
ẇi Velocity of inner element point
χHS, χTL Defining parameter for impact
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