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Abstract: In modeling the characteristics of a discharging valve in a hydrodynamic retarder, it is
commonly required to determine the value of the flow area to calculate the force on the spool. How-
ever, the flow area often relies heavily on empirical or simulation data, which leads to increased
uncertainty and computational cost, especially with the variation in the spool displacement. To over-
come these shortcomings, Res-SE-U-Nets (networks that combine residual connections, squeeze-
and-excitation blocks, and U-Net) are used to reconstruct the velocity field, and they have shown
exceptional performance in image-to-image mapping tasks. The dataset of computational fluid
dynamics (CFD) results for the velocity field is collected and verified using particle image velocimetry
(PIV). The results show that Res-SE-U-Nets can capture the location information of the flow field
using a training set of only 120 data points. By utilizing location information in velocity field recon-
struction, the flow area can be directly obtained under different spool displacements and pressures
to calculate the spool force. The valve characteristics calculated with this method show an error of
less than 2% when compared with CFD results, which confirms the validity and effectiveness of
this method. The proposed method, which utilizes location information extracted from flow field
prediction results, is capable of calculating valve characteristics. This approach also demonstrates the
feasibility of using Res-SE-U-Nets for flow field reconstruction.

Keywords: discharging valve; CFD; Res-SE-U-Nets; location information; flow force

1. Introduction

A hydrodynamic retarder is a kind of auxiliary braking that is widely used on heavy-
duty vehicles to avoid brake overheating and failure caused by frequent braking [1]. For hy-
drodynamic retarders, the spool displacement of the discharging valve can effectively
adjust the oil filling rate in the wheel cavity, changing the braking torque, which keeps
the speed constant when the vehicle is continuously braking down a long slope. In the
design of hydraulic components, it is crucial to study the influence of different design
parameters on the flow characteristics of the internal flow field [2]. Three-dimensional
simulation of the flow field techniques can accurately predict flow fields of different design
parameters, revealing the influence of different parameters on the flow characteristics [3].
However, solving such complex problems using traditional simulation methods requires a
high-quality mesh and considerable amount of time, resulting in a high cost of simulation
calculation [4]. Instead, the data-based flow field construction model enables engineers to
quickly overview the flow characteristics of a flow field [5,6].

To establish the mapping relationship between design parameters and flow field
results, a combination of computational fluid dynamics (CFD) and response surface model
(RSM) can be used, which is widely employed in optimization problems [7]. Zhang
et al. [8] established a surrogate model for pressure relief valves using RSM. In this work, a
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sensitivity analysis was performed after CFD to establish a mapping relationship between
the shape and blowdown capacity of the pressure relief valve. Yang et al. [9] established
the relationship between four variables and three optimization targets in hydrodynamic
retarders and carried out a multiobjective optimization design. In this work, CFD was used
to obtain the optimized retarder flow field to analyze the influence of design parameters on
the vortex field distribution. From the above research, it can be found that RSM can only
establish a mapping relationship on scalar values, which lacks the vector information of
the flow field compared with CFD. Artificial neural networks have more power to establish
a nonlinear relationship between input and output [10]. However, similar scalar-based
surrogate models have the same shortcomings. It is difficult to obtain accurate or inductive
results in the simulation analysis, where location information is more important [11].
To reduce the flow field data and reconstruct the unknown flow field, the proper orthogonal
decomposition (POD) method can decompose the flow field data into multiple modes, sort
the primary and secondary ordering, and use the dominant mode to describe the original
flow field accurately [12]. Kong et al. [13] established the extraction of the main features
of the flow field using POD. The results show that POD can effectively reconstruct the
pressure field and velocity field. Wang et al. [14] used the POD method to reconstruct
the three-dimensional flow in a complex flow channel, analyzing the physical meaning of
reconstructed flow field in different modes. The principle of POD is to project the control
equations onto the fundamental modes, not to establish the relationship between different
positions in the physical area [15]. While the POD method is a widely used technique
for flow reconstruction, it requires optimization for specific flow structures, and changes
in flow structure or channel shape may require reanalysis and rebuilding. In contrast, a
deep-learning-based method provides an alternative to the conventional POD method
for flow field reconstruction. By utilizing a single model to predict the flow field, the
deep-learning-based method effectively addresses this limitation, regardless of the flow
structure.

The deep learning approach to flow field reconstruction, utilizing datasets constructed
from CFD results and allows for quick prediction of the flow field in response to changes
in channel geometry, thereby reducing computational costs associated with CFD [16].
Ribeiro et al. [17] obtained the velocity field and pressure field using convolutional neural
network (CNN). The results show that the method is able to learn the complete solutions
of the Navier–Stokes equations. Obiols-Sales et al. [18] proposed a coupling framework
for CFD and deep learning which uses CNN to calculate the rotor velocity field, pressure
field, and vortex viscosity. In this study, the proposed method is able to obtain the flow
field under different operating conditions and rotor shapes. Sekar et al. [19] used deep
learning to express the geometric shape nonparametrically and reversely design the airfoil.
The results show that the airfoil shape can be obtained according to the pressure coefficient
distribution using CNN. Thuerey et al. [20] predicted the pressure field and velocity field
of the rotor based on the U-Net network and researched the allocation of datasets and
weights. The results show the possibility of using deep learning to predict the flow field.
Deep learning methods use GPUs to obtain CFD results, which can reduce the prediction
time through parallel computation [21]. Flow field reconstruction technology based on
deep learning methods effectively extracts flow field data. However, the requirements
for model scale are relatively high. It is necessary to reasonably construct the model, set
various hyperparameters, and select appropriate input features and extraction methods.
Among various deep learning architectures, Res-SE-U-Nets have emerged as a promising
approach that combines the strengths of residual connections, squeeze-and-excitation
blocks, and U-Nets to enable effective feature extraction. In a recent study, Res-SE-U-Nets
were shown to exhibit exceptional performance in image-to-image mapping tasks [22,23].
The above studies primarily focus on developing surrogate models using deep learning
methods, with less emphasis on the practical utilization of prediction results.

In this study, based on CFD results, a velocity field reconstruction model of the dis-
charging valve was developed using Res-SE-U-Nets. First, the velocity field of the discharge
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valve was obtained under different spool displacements and pressure differences with CFD.
Second, the reliability of the CFD results was verified by particle image velocimetry (PIV).
Then, Res-SE-U-Nets was trained with the simulation-driven small dataset. Finally, the flow
area is extracted in the reconstructed velocity field and used to calculate the steady-state
flow force. This means that the uncertainty and inaccuracy caused by the empirical formula
calculations are avoided.

2. Methodology
2.1. Discharging Valve Simulation

The internal flow field of the hydrodynamic retarder discharging valve are affected
by the spool displacement [24]. To obtain the velocity field of the valve under different
spool displacements and pressure differences, a steady-state flow simulation by CFD was
conducted first, as shown in Figure 1.

Figure 1. CFD model of the hydrodynamic retarder discharging valve.

After the geometry cleanup of the discharging valve simulation model, a hexahedral
mesh was used for meshing. The size of the mesh can have a significant impact on the
numerical solution [25]. Due to the limited solving power of computers, it is necessary to
use an appropriate grid size that allows for accuracy, while avoiding high computational
costs. The global mesh size and corresponding flow rate and time consumption are shown
in Figure 2. In our study, we determined the final mesh size to be 2 mm, resulting in
approximately 660,000 meshes. The robust k − ω SST model was used to capture the flow
characteristics of the flow field [26]. As required by the y+ criterion, the total thickness of the
boundary layer is 1 mm, the mesh growth rate is 1.2, and there are 5 boundary layers in total.

According to the material properties of oil in tests, the density of the oil is 860 kg/m3,
and the dynamic viscosity is 0.028 Pa·s. Boundary conditions were set according to the
operating conditions of the valve. The inlet boundary condition is set as a stagnant inlet,
the outlet boundary condition is set as a pressure outlet, and the rest of the walls are set as
no-slip walls. The oil is assumed to be an incompressible viscous fluid, and the velocity of
the fluid near the nonslip wall is the same as the given velocity value of the wall.

In this paper, a numerical simulation of the discharging valve was performed with
FLUENT. When the solution converges, the velocity field of the valve can be derived.
To verify the accuracy of the CFD results, an experimental test platform was built using
PIV technology to observe the velocity field. PIV is a noncontact flow field measurement
method. Since the 1980s, it has been mainly used in flow visualization research and has been
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widely used in valve research [27]. In this study, the experimental system shown in Figure 3
is constructed, which mainly includes optical test components, a laser section generation
system, and an image acquisition system. An MGL-N-532-5W all-solid-state laser and a
high-speed camera model SpeedSense VEO 410 are used. Silver glass microbeads are used
as tracer particles, matched with No. 110 nonfluorescent industrial white oil to ensure the
visibility of the tracer particles inside the oil.

Figure 2. Mesh size and flow rate and time consumption.

Figure 3. PIV experimental equipment and arrangement.

According to the CFD results, the velocity field distribution in the X direction and the
Y direction of the discharge valve section is obtained. The simulation results are compared
with the PIV test results in this area, as shown in Figures 4 and 5. In image processing, the
comparison between images is essentially a matrix operation. Consequently, the PIV test
results and CFD calculation results are converted into numerical matrices, and matrices
Amn and Bmn are constructed for v̄(x, y). Matrix correlation analysis is used to compare the
correlation between CFD and PIV images. The correlation coefficient r between matrices is
defined as follows [28]:

r = ∑m ∑n(Amn − Ā)(Bmn − B̄)√
(∑m ∑n(Amn − Ā)2)(∑m ∑n(Bmn − B̄)2)

(1)

where Amn is the value of PIV image matrix, Bmn is the value of the CFD simulation image
matrix, and Ā and B̄ are the mean values of the PIV and CFD image matrices, respectively.

Based on the correlation analysis, as shown in Table 1, strong correlations were found
in both X and Y directions at low flow velocities, while a medium correlation was observed
at high flow velocities [29].
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Table 1. Correlation coefficient in different working condition.

Direction 10 L/min 20 L/min 30 L/min

x 0.67 0.60 0.73
y 0.57 0.46 0.42

Figure 4. Comparison of PIV test results with simulation results in X direction.

Figure 5. Comparison of PIV test results with simulation results in Y direction.

In the X direction, no obvious velocity missing areas were detected, as shown in
Figure 4. The oil velocity field distribution exhibited similar characteristics, with high-
speed regions gradually concentrating at the cone angle of the spool as velocity increased.
However, the PIV test results show a slightly higher overall velocity amplitude in the X
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direction compared with CFD simulation results. This difference is attributed to limitations
in test site and equipment, which led to actual PIV test results being larger than the expected
settings.

In contrast, the Y-direction comparison revealed a missing velocity region in the PIV
image, as shown in Figure 5. Both simulation and test results show a significant increase
in overall velocity amplitude as the flow rate was increased, particularly at the spool to
the right wall, where high-speed flow regions were observed. However, missing particles
themselves were more susceptible to the influence of gravity, leading to larger differences
between velocity distribution in the Y direction and CFD calculation results. As a result,
the integrated correlation coefficient and flow field distribution confirmed the accuracy of
the numerical calculation results.

2.2. Flow Field Reconstruction Using Deep Learning

The deep learning flow field reconstruction model can extract geometric features and
rules from input data to obtain the same flow field as CFD [30]. This paper utilizes CFD
simulation results as a dataset to train the deep learning model and reconstruct the flow field,
as shown in Figure 6. The trained model is verified with a test set, and the flow field prediction
model is obtained if it passes verification without underfitting or overfitting. Otherwise, the
training and testing process needs to be repeated with new parameters and dataset.

Figure 6. Process of deep learning flow field construction.

The deep learning model used in this paper is based on the U-NET structure, which is
widely used in semantic segmentation [31]. To further enhance the prediction capability and
location information extraction ability of U-Nets, the Res-SE module consists of a residual
network, and an attention mechanism is added before the upsampling of U-Nets [32],
which leads to Res-SE-U-Nets, as shown in Figure 7. The specific parameters and related
activation functions of each layer are shown in Table 2. The RES module can deepen the
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influence of shallow networks and avoid accuracy decay through residual connections.
In the SE module, the global pooling layer is used to compress each two-dimensional
channel into a real number, and then two fully connected layers are used to establish the
correlation between channels and obtain weights. The resulting normalized weights are
applied to each channel. The SE module is combined with the RES module, which means
combining the attention mechanism with the residual network, as shown in Figure 8.

Figure 7. Architectures of Res-SE-U-Nets in flow field construction.

Figure 8. Res-SE block used in this study.
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Table 2. The hyperparameters of Res-SE-U-Nets.

No. Layer Kernel Stride Padding Function

1 Convolutional layer 2 2 0 Sigmoid
2 Convolutional layer 2 2 0 ReLU
3 Convolutional layer 2 2 1 ReLU
4 Transposed convolutional layer 3 3 1 ReLU
5 Transposed convolutional layer 2 2 0 ReLU
6 Transposed convolutional layer 2 2 1 ReLU
7 Convolutional layer + Batch Normalization - - - ReLU
8 Global pooling layer - - - -
9 Fully connected layer - - - ReLU
10 Fully connected layer - - - Sigmoid

According to the simulation model, the input variables are discretized into
360 × 360 pixels, and each input comprises two image channels. The size and the number
of channels mainly depend on the grid size and the number of variables in the CFD [33].
In downsampling, the image size is gradually reduced from 360 × 360 to 12 × 12, and
the number of channels is increased from 2 to 512. The purpose is to fully extract the
location information under different variables in the input image. The images are then
processed by 6 serial Res-SE blocks and imported for the upsampling, where the images of
size 12 × 12 are increased to feature images sized 360 × 360 by a series of deconvolution
layers. After the processes of downsampling, RES-SE blocks, and upsampling, the input
images are increased into an output image of 360 × 360 × 1, which corresponds to the
prediction result in the simulation model. In this process, the images in the downsampling
will be added to the upsampling through the residual connection to enhance the location
information extraction ability of the model.

The Adam optimization algorithm is used as the optimizer [34], and the activation
function uses two functions: sigmoid and ReLU. The mean square error (MSE) loss is
applied to calculate the similarity between the calculated model and the expected output,
which is widely used to evaluate artificial intelligence models, and the MSE loss is defined
as follows [35,36]:

MSE =
1
n

i=1

∑
n
(ŷi − yi)

2 (2)

where n is the total output, ŷi is the expected value of the i-th element of the output vector,
and yi is the calculated value of the i-th element of the output vector.

3. Velocity Field Reconstruction
3.1. Simulation-Driven Dataset

According to the CFD results of the discharge valve, the velocity field under different
spool displacements h and pressure differences ∆p is obtained. The changes in different
spool displacements with position information lead to changes in the internal flow path
structure, thereby changing the flow field of the discharge valve. The above two variables
are selected as input, and the velocity field of the discharge valve section is used as output
to construct the dataset. The value range of the spool displacement h is 1 mm to 15 mm,
and the value interval is 1 mm. The value range of the pressure difference ∆p is 1 bar to
9 bar, and the value interval is 1 bar. The CFD results of different design parameters are
obtained, and the datasets contain 135 samples, which are shuffled and then divided into a
training set and a test set according to the test ratio of 8:1.

To verify the feasibility of small datasets in simulation-driven deep learning flow
field reconstruction, the datasets constructed in this paper contain only 135 samples.
For simulation-driven datasets, unlike the classification problem, there is a corresponding
relationship with physical meaning between the input and output. For example, in the flow
field of the discharge valve in this study, the output reflects the flow velocity, and there is a
physical law between pressure and velocity [37]. In classification problems, the result of the
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output vector usually abstractly refers to a certain category of subjects. In addition, during
the training process, the dataset comes from the CFD results, which are obtained under
the constraints of various boundary conditions and reflect the inherent characteristics of
the fluid in the steady state. Therefore, the samples contain less noise, which reduces
the training difficulty of the model. The above factors are conducive to establishing the
mapping relationship between input and output in deep learning training, which can
effectively reduce the size of the dataset [38].

Another purpose of using CFD results to establish the datasets is to show that the
established model can effectively extract location information in the flow field without
relying on big data. To illustrate the importance of location information in the flow field,
Figure 9 shows the influence of different spool displacements on the velocity field when
the pressure difference between the inlet and outlet is 9 bar. As the spool displacement
increases, the direction of the oil velocity at the orifice changes. This will lead to a change
in the flow area, which shows that location information in the flow field is necessary.
The pressure–flow characteristics of valves are crucial in describing their ability to control
fluids, and related simulations and experiments reflect the valve’s performance in relation
to variations in pressure–flow characteristics [39,40]. Figure 10 displays the velocity field of
the discharging valve with varying inlet and outlet pressure differences, observed at an
8 mm spool displacement. As the pressure difference increases, the flow rate within the
discharging valve also increases.

(a) (b) (c)

Figure 9. Discharging valve velocity field under different spool displacements: (a) h = 5 mm;
(b) h = 10 mm; (c) h = 15 mm.

(a) (b) (c)

Figure 10. Discharging valve velocity field under different pressure differences. (a) ∆p = 4 bar;
(b) ∆p = 6 bar; (c) ∆p = 8 bar.

3.2. Results Analysis

To evaluate the flow field reconstruction ability of Res-SE-U-Net, the trained model
is applied to predict the velocity field of the discharge valve, and the test set is used
for verification. To test the ability of the prediction model to extract flow field location
information, pixel-wise error (PWE) is applied to evaluate the difference between the
simulated flow field and the predicted flow field. Figures 11 and 12 show the simulated
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flow field, reconstructed flow field, and pixel-to-pixel error maps of the training set and
test set.

Figure 11. Velocity field reconstruction in training set.

Figure 12. Velocity field reconstruction in test set.

The reconstructed flow field is almost the same as the simulated flow field, the PWE
value is small, and the large error mainly occurs near the wall, where the velocity gradient
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changes greatly, as shown in Figure 11. The flow field reconstruction model maps the data as
a 360 × 360 pixel image, which leads to the neglect of velocity gradient variation near the wall.
This is the main reason for the large error observed in the near-wall region. However, it should
be noted that the location information can still be obtained accurately, since the reconstructed
flow field is almost the same as the simulated flow field in other regions.

The PWE of the test set is slightly larger than that of the training set, and the main
distribution area of the large error is also concentrated near the wall. The error value has
little influence on the overall flow characteristics, and the error is within an acceptable
range, as shown in Figure 12. The error of the traditional surrogate model such as RSM can
only reflect the magnitude of the value, but the error of the model in this paper can reflect
the location information of the error, providing more information to analyze the original
source of the error.

The above analysis shows that Res-SE-U-Nets flow field reconstruction model can
effectively extract location information, predict unknown flow fields, and realize flow field
visualization. Compared with the surrogate model that only predicts scalar data, the flow
field reconstruction method based on deep learning provides more information for flow
field research.

4. Steady-State Flow Force Calculation

In the study of the discharging valve, the flow force has a great influence on the
balance and opening characteristics of the spool [41]. Theoretically, the force of the oil
on the spool depends on the inlet pressure and the area of the spool. However, the oil
velocity at the orifice changes abruptly in direction and magnitude, which in turn affects
the pressure distribution at the bottom of the spool. The actual force on the spool is less
than the theoretical force because of the presence of flow force. The flow force is divided
into the steady-state flow force and transient flow force. The transient flow force is too
small to be ignored, so the steady-state flow force is mainly considered when analyzing the
force on the spool. Figure 13 shows the structure of the discharging valve, which is mainly
composed of a spool and sleeve.

Figure 13. Cross-section diagram of the discharging valve.

Considering the force on the spool and using Newton’s third law, the steady-state flow
force Fflow can be expressed as [42]

Fflow = Pin Ain + F0 − Fspool (3)

where Pin is the inlet oil pressure of the valve, Ain is the flow area of valve, F0 is the force
exerted by the sleeve, and Fspool is the force of the oil acting on the spool.
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Applying the momentum theorem, the steady-state flow force can be expressed as [43]

Fflow = ρq(v2cosα − v1) (4)

where ρ is the oil density, q is the flow rate of the valve, α is the jet angle, v2 is the oil flow
rate at the valve outlet, and v1 is the oil flow rate at the valve inlet.

According to the empirical formula [44], the above equation can be simplified. The jet
angle α can be replaced by the semicone angle of the sleeve. The inlet flow rate v1 can be
ignored, since it is much smaller than the outlet flow rate v2. The flow area Ain is simplified
as the vertical surface at the nearest position from the sleeve to the spool. According to the
flow formula of the valve, the steady-state flow force can finally be expressed as

Fflow = 2C2
d Ahcosθ∆P (5)

Ah = πhsinα(dspool +
1
2

hsin2α) (6)

where Cd is the flow coefficient and is taken as a constant value of 0.7, according to the
Reynolds number > 1000 in this study [45], Ah is the flow area when the spool displacement
is h, θ is the semicone angle of the sleeve, ∆P is the pressure difference between the inlet
and outlet of the valve, h is the spool displacement, and dspool is the diameter of the spool.

In the flow field inside the discharge valve, the velocity and pressure around the spool
will change sharply. It is difficult to accurately describe the distribution of velocity or pressure
with empirical formulas. In the traditional method, to accurately calculate the steady-state
flow force, it is necessary to establish a CFD model, which involves a large calculation cost.
By using Res-SE-U-Nets, the velocity field can be quickly reconstructed, and the velocity
distribution around the spool, as well as the flow field including location information such as
the jet angle and flow area, can be obtained. Therefore, the calculation problem of the steady-
state flow force is effectively solved, and the calculation accuracy is guaranteed, while the
flow field is reconstructed rapidly. When using a fluid field for steady-state flow calculation,
instead of simply using numerical values for fitting, the flow area is obtained directly from
the image. Figure 14 shows the postprocessing results of the fluid field reconstruction with
a pressure difference of 9 bar under different spool displacements. The points with a large
velocity gradient in the velocity field are extracted, which are approximately distributed on the
line with the shortest distance between the spool and the sleeve. The boundary line formed
by the extracted points can be regarded as the flow area of the discharge valve, which can be
used to calculate the steady-state flow force.

The size and direction of the flow area change with increasing spool displacement,
which is not consistent with the assumptions of the empirical formula. Therefore, the
adoption of the empirical formula for the flow area will lead to errors. The magnitude
of the steady-state flow force is calculated according to the flow area by the flow field
reconstruction and compared with the calculated value of the empirical formula and the
CFD, as shown in Figure 15. When the spool displacement is greater than 12 mm, the
bottom of the spool is higher than the sleeve. In this case, the empirical formula is no longer
applicable, so the calculation results are distorted. However, the flow field reconstruction
results contain location information, so the flow area can be extracted according to the
physical meaning. The calculation result is not affected by the change in the flow channel
structure. Although the error of h = 10 mm was slightly larger, the final error in the flow
force calculation was less than 2%.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Extraction of location information in postprocessing reconstructed velocity field:
(a) h = 7 mm; (b) h = 8 mm; (c) h = 9 mm; (d) h = 10 mm; (e) h = 11 mm; (f) h = 12 mm; (g) h = 13 mm;
(h) h = 14 mm; (i) h = 15 mm.

Figure 15. Comparison of the results of different steady-state flow force calculation methods.
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Upon observing the curve calculated based on the field reconstruction, a larger error
was found at the spool displacement of 10 mm. Upon comparing the error plots for
h = 10 mm and h = 11 mm, it was discovered that the error near the 10 mm overflow section
was greater than that of 11 mm, as illustrated in Figure 16. The error diagram for h = 10 mm
indicated a larger error in the region of the orifice, where larger points of velocity gradient
are concentrated. This error affected the extraction of the flow area. On the other hand, the
error of h = 11 mm showed less error near the orifice and accurately reflected the jet angle.
This analysis reflects the advantage of the proposed method in this paper. The method
effectively analyzes errors using location information in the prediction results and clarifies
their cause. Therefore, the method proposed in this paper can effectively extract location
information in the flow field and calculate the steady-state flow force.

(a) (b)

Figure 16. Comparison of error for different spool displacement: (a) h = 10 mm; (b) h = 11 mm.

5. Discussion

In this study, a deep learning method was proposed for the reconstruction of velocity
fields in the discharging valve of a hydrodynamic retarder. The purpose of this method is to
overcome the shortcomings of relying heavily on empirical or simulation data to determine
the flow area, which leads to increased uncertainty and computational cost, especially with
the variation of the spool displacements.

Firstly, the accuracy of simulation results was validated by comparing them with
experimental data obtained using PIV tests. The results show a strong correlation in the
X direction (0.60–0.73) and a strong or medium correlation in the Y direction (0.42–0.57).
The agreement between the simulated velocity field distribution and that obtained by
Kong et al. [13] provides further confirmation of the accuracy of our simulation analysis.
Additionally, the PIV test results provide a visual observation of the velocity field, which
deepened the understanding of the internal flow field distribution and flow structure.

Secondly, Res-SE-U-Nets were utilized to predict the velocity field of the discharging
valve. The pixel-to-pixel error results shown in Figures 11 and 12 demonstrated that the
model could produce results consistent with simulation results. Res-SE-U-Nets have been
used in simulation surrogate model studies in multiple disciplines, and related research has
also used location information in the results for analysis [32,33]. This study demonstrates
the potential application of this method in fluid simulation.

Finally, the flow area was extracted from the reconstructed velocity field to calculate the
steady-state flow force. The errors between the calculated results and the simulation results
were less than 2%. This result proves that reliable location information can be effectively
extracted in predicting the flow field and further analyzed using the reconstructed velocity
field. It is worth noting that the error in the velocity field reconstruction is greater near
the wall surface. This is because the mapping of the simulation results to 360 × 360 pixel
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neglects the variation in near-wall velocity gradient. To extract more reliable information
in predicting the flow field, improvements can be made in future research.

For future work, we intend to further investigate the potential of using small datasets in
deep-learning-based flow field reconstruction. In this study, we highlighted the benefits of
utilizing simulation results to train deep learning networks. We utilized only 120 datasets for
training, which were selected randomly. However, employing a more scientific approach to
choose the training sets is likely to result in even fewer required datasets.

6. Conclusions

In this paper, a Res-SE-U-Nets-based velocity field reconstruction method is proposed
to extract location information and calculate steady-state flow forces for modeling the
characteristics of a discharging valve in a hydrodynamic retarder. The proposed method
demonstrates its ability to reconstruct velocity fields under different spool displacements
and pressure differences. The calculated steady-state flow force remains unaffected by
alterations in the valve channel structure, surpassing the traditional empirical formula
method that exhibited distorted outcomes with an increase in spool displacement. The error
observed between the steady-state flow force calculated from the method’s result and the
simulation results is less than 2%. However, the current method still produces inaccurate
predictions when it comes to reconstructing near-wall flow fields. In the future, we plan to
explore ways to improve accuracy through scientific training dataset selection or network
architecture adjustments.

Overall, this work confirms the potential of Res-SE-U-Nets in fluid simulation for flow
field reconstruction. The findings show that Res-SE-U-Nets can effectively extract location
information and produce accurate results.
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