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Abstract: Cyclone separators are active filtering devices suitable for a variety of industrial applica-
tions from conventional cutting oil pumps to recycling liquids. Since the vortex flow inside cyclones
is highly complicated, the performance and flow patterns of these filters should be thoroughly
researched. Liquid–solid cyclones mostly use water. Numerical studies on cyclones using higher-
viscosity oils are limited. In this study, a liquid–solid cyclone injected with medium-viscosity cutting
oil containing various sized-particles was comprehensively investigated. The reliability of compu-
tational fluid dynamics (CFD) methods was verified through a comparison with the experimental
results. Three models with different geometries were considered for the analysis. One model was
used for CFD verification. The other two models involved adding sockets for hopper length extension
and changing the shape of the bottom of the hopper. The models that changed the shape of the
hopper, thus directly affecting the cyclone performance, were investigated, and each model was
qualitatively compared using a validated method. In addition, particle separation efficiency was
evaluated by focusing on the velocity distribution to quantitatively confirm the influence of changing
the shape of the hopper. The tangential velocity was determined to be similar across all three models,
while the axial velocity was different and the change in the velocity of transport of the particles
affected the filter function.

Keywords: computational fluid dynamics; cutting oil; cyclone performance; hopper

1. Introduction

Today, as machining industries rapidly grow, cutting oil contaminated by metal chip
particles becomes an issue for production efficiency and the environment. The filters used in
conventional cutting oil pumps are passive filtering equipment requiring periodic cleaning
or replacement. Long-term use of a filter often leads to contamination or clogging, which
makes the filter dysfunctional, and consequently, the performance of the pump degrades
and its life is shortened. Therefore, an active filtration system should be developed to
improve pump performance. Especially, the development of geometrical modeling designs
of cyclone filters or separators is of great interest for its applications in automatic filtration
and reduction of fluid loss. This study is to establish a CFD method to accurately simulate
cyclone efficiency in removing dirty particles from medium-viscous cutting oil for recycling.

A cyclone is an active filtration device that uses centrifugal force to separate impurities
from fluids. It is widely used in various industries such as central coolant filtration,
steel rolling oil, wire drawing process, and semiconductor package sawing due to its
advantages such as geometric simplicity, low cost, ease of operation, and high separation
performance [1–3]. As shown in Figure 1, a centrifugal force is generated when dirty fluid
containing particles and impurities flows into the inlet in a tangential direction. The injected
fluid rotates spirally and flows downward due to the centrifugal force and gravity. The
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larger and denser particles are transported to the wall and collide with the inner walls.
Particles that deviate from the fluid flow accumulate in the hopper, whereas the cleaned
fluid rotates upward and is discharged through the upper outlet [4].
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Figure 1. Schematic representation of the cyclone principle.

Despite the simplicity of a cyclone, its internal vortex flow is highly complex due to
the vortex [5]. Therefore, detailed research is required to predict cyclone performance and
flow patterns. Generally, numerical methods, such as CFD, are used to predict cyclone
performance. This is advantageous since CFD is inexpensive and consumes less time
compared to the experimental approach. Several studies have demonstrated the reliability
of cyclone analysis using CFD [6–8].

While much research has focused on gas–solid cyclones, in which a low-viscosity gas
is injected [9,10], the performance characteristics of a liquid–solid cyclone injected with a
low-viscosity liquid are being actively studied. Most liquid–solid cyclones use water as
the liquid medium; numerical studies on cyclones using more viscous oils are limited [11].
This study investigated the feasibility of a liquid–solid (using a medium-viscosity cutting
oil and mostly metal particle impurities) cyclone design to replace the current pump filters
for cutting oil.

Additionally, characterizing the cyclone performance depending on the shape is
important due to changing the internal flow field [12]. To improve the overall performance
of the filter, research on the geometrical parameters, such as inlet and outlet shapes, length
of the cone, and dimensions of the vortex finder, is being actively conducted [13–16].
However, research on the hopper shape is limited, as many studies conducted without
hoppers matched the experimental results [17,18]. However, the actual particles collected
in the hopper are influenced by the overflow, resulting in re-entrainment of the particles
into the cyclone body during the operation. Since the re-entrainment of the particles was
not considered, the particle separation efficiency may be overestimated compared to the
actual value without a hopper. Hence, research involving hoppers should be conducted to
improve the accuracy of the analysis [19].

This study used CFD to analyze liquid–solid cyclones using medium-viscosity cutting
oil and the numerical results were verified through a quantitative comparison with the
experimental results. Three models were analyzed through a validated method to evaluate
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the influence of the change in shape on the particle separation efficiency while focusing on
the velocity distribution.

2. Governing Equations of the Multiphase CFD Model
2.1. Navier Stokes Equation

The Navier–Stokes equation describes the behavior of a continuous phase. The change
in volume of the cutting oil under pressure is not significant, hence it can be assumed
to be an incompressible fluid with a constant density. For an incompressible fluid, the
momentum equations are given in [20].

u =
−
ui + u′i (1)

∂ρ

∂t
+

∂(
−
ui)

∂xi
= 0 (2)

∂(ρ
−
ui)

∂t
+

∂(ρuiuj)

∂xi
= − ∂

−
p

∂xi
+

∂

∂xj
(µ

∂
−
ui

∂xj
) +

∂(−ρui
′uj
′)

∂t
+ ρgi (3)

where u is the instantaneous velocity of the fluid,
−
ui the average velocity of the fluid, ui

′ the

fluctuating component of the velocity, xi the position,
−
p the average pressure of the fluid, ρ

the fluid density, µ the absolute dynamic viscosity of the fluid, and (−ρui
′uj
′) the Reynolds

stress tensor.

2.2. Turbulence Model

Since the precision of CFD results depends on the selected turbulence model, it is
necessary to determine a suitable turbulence model [21]. Complex internal flows with
extreme turbulence and anisotropy characteristics occur in the cyclone separators. The
Reynolds stress model (RSM) is considered to be a turbulence model suitable for cyclones
with anisotropic characteristics, and its accuracy has been demonstrated [22,23]. In this
model, the term (−ρui

′uj
′), as the Reynolds stress tensor, is calculated using the transport

equation. Equation (4) describes the transport equation for the RSM.

∂

∂t
(ρui

′uj
′) +

∂

∂xi
(ρuk

¯
uiuj) = DT,ij + Pij + φij + εij + Fij (4)

where DT,ij is the turbulence diffusion, Pij the stress production, φij the pressure strain, εij
the dissipation term, and Fij the rotation production.

2.3. Discrete Phase Model

The discrete phase model (DPM) was used to calculate the motion of the dispersed
phase (particle) individually. DPM can be applied when the dispersed phase has a low
volume fraction (10–12%). In this case, the dynamic interaction is assumed to be a one-way
coupling, in which the fluid affects the particles and the particles do not significantly affect
the physical properties of the fluid. Additionally, the influence of particle–particle collisions
and particle collisions with the cyclone wall on the momentum transfer of the mixture was
neglected. Equation (5) describes the momentum equation of the particles [24].

dup

dt
= FD(ui − up) +

(ρp − ρ)

ρp
gi +

∇P
ρ

+ Fs (5)

where up is the velocity of the particles, FD(ui − up) the drag force per unit mass, ρp
the density of the particles, gi the gravitational acceleration, and Fs corresponds to the
additional forces acting on the particles.
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3. Numerical Approach to Multiphase Flow Cyclone
3.1. Cyclone CFD Model

To investigate the effects of hopper length and diameter on cyclone performance, a
step-by-step extension of the length and shape change was conducted. Model 1 is for CFD
verification, and Model 2 and Model 3 added sockets for hopper length extension and
shape change at the bottom of the hopper, respectively. The increased length in Model
2 was selected based on the aspect ratio used in a previous study [19]. In contrast to
previous studies where the diameter of the hopper was modified, this study presented
Model 3 which abruptly reduced the hopper’s cross-sectional area to mimic the shape
of an hourglass. Figure 2 shows the numerical model used to study the performance
characteristics according to the geometrical change of the cyclone hopper. Table 1 presents
the dimensions of each model.
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and (c) Model 3 (added socket 2).

Table 1. Dimensions of the cyclone models.

Geometry Symbol
Dimensions (mm)

Model 1 Model 2 Model 3

Cylindrical length h 112
Conical length H 187
Inlet diameter Di φ 38.5

Cylindrical diameter D φ 74
Vortex finder diameter De φ 36.75
Conical under diameter B φ 18.5

Socket 1 diameter a - φ 21.5 -
Socket 1 length b - 70 -

Socket 2 diameter c - - φ 30.26
Socket 2 middle diameter d - - φ 6

Socket 2 diameter e - - 70

3.2. Grid Generation

Figure 3 shows the mesh structure of the generated fluid domain. The analysis mesh
consisted of tetrahedral cells [25]; ANSYS meshing was used for the preprocessing of the
mesh generation. ANSYS 19.2 Fluent (Ansys Korea, Seoul, Republic of Korea) was used as
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a solver. The generated mesh quality is an important factor that affects the accuracy and
convergence of the analysis results. Here, the mesh quality was evaluated based on the
aspect ratio (AR), orthogonal quality (OQ), and skewness (S). The aspect ratio represents
the vertical and horizontal ratios between the elements; furthermore, an increase in this
value indicates a decrease in quality. Skewness determines the mesh quality through the
slope against the ideal element (equilateral triangle). It is evaluated in the range of zero to
one, and the closer the value is to zero, the better the mesh quality. The orthogonal quality
represents the extent of the closeness between the angle made by the adjacent element faces
and the optimal angle. It is evaluated in the range of zero to one, and the closer it is to
one, the more appropriate the mesh [26]. Table 2 lists the number of elements and mesh
quality used in each cyclone model. The mesh independence has been similarly verified in
the previous study [11]. Since the mesh quality used in the analysis is important, it can be
confirmed that the same quality was applied to all the three models used in the analysis.
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Table 2. Mesh quality of cyclone models.

Cyclone models Model 1 Model 2 Model 3

Number of Elements 178,578 189,306 205,476

Mesh quality
AR OQ S AR OQ S AR OQ S

9.75 0.99 0.81 14.88 0.99 0.85 12.49 0.99 0.82

3.3. Boundary Conditions and Numerical Settings

In this study, liquids and solids were injected into the cyclone; hence, a multiphase
model was used to calculate the flow of the two different phases. DPM was used to calculate
the motion of the dispersed phase, while RSM was used to analyze the effect of turbulence
in the cyclone’s internal flow. Here, the behavior of the particles is determined based on
the fluid flow.

Cutting oil mixed with aluminum particles (density: 2719 kg/m3) was used as the
injection fluid (density: 998.2 kg/m3, viscosity: 2.7 cSt). For the boundary conditions,
the inlet velocity of the fluid was 2.15 m/s and the outlet pressure in the atmospheric
conditions was 1 atm, which was applied equally to each model. The Reynolds number of
the continuous phase used in the simulation was 5.9 × 104. To confirm the performance of
the cyclone filter according to particle size, particles of various sizes (10, 15, 20, and 25 µm)
were mixed and then injected. The volume fraction of the dispersed phase was considered
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to be 5% (case 1), and 0.5% (case 2) of the total. Case 1 verified the numerical method of
the liquid–solid cyclones and Case 2 compared the cyclone performance according to the
change in shape. As the wall roughness directly influences the filter efficiency, an equal
value of 3.2 µm was used in the experiment. Table 3 lists the boundary conditions used for
the analysis.

Table 3. Boundary conditions.

Section
Boundary Conditions

Category DPM

Inlet Velocity inlet Reflect
Upper outlet Pressure outlet Escape
Under outlet Pressure outlet Trapped

Wall - Reflect

The overall cyclone performance was analyzed using a steady-state CFD model.
Pressure–velocity coupling was used as a discretization scheme; the semi-implicit method
for pressure-linked equations (SIMPLE) was applied as an algorithm; pressure staggering
option (PRESTO!) was chosen as the pressure interpolation scheme; and a first-order
upwind scheme was selected for the RSM. Finally, others were used as second-order
upwind schemes. The simulations were assumed to have reached convergence when
the residuals were less than 10−3 and the main variables (inlet pressure and outlet flow
rate) had a constant value for a period of time. While solving, as the first step, the initial
conditions were considered only for the fluid flow. As the second step, particle tracking of
various sizes was performed based on the fluid flow.

4. Results and Validation
4.1. Experiment Set Up

The CFD numerical method used in this study for liquid–solid cyclones was experi-
mentally verified. The experimental equipment comprised a pump, pressure gauge, flow
meter, cyclone body, and collector tank. The dirty fluid was supplied while maintain-
ing a pump pressure of 1.8–1.9 bar and the flow rate discharged to the upper outlet for
a certain time was measured. In this case, the accuracy of the numerical method was
verified using the flow rate discharged from the upper outlet. Additionally, the particle
separation efficiency of the experimental model was evaluated by measuring the number
of particles contained per volume of discharged fluid, and the filter function of the other
models that changed the geometry was predicted. Figure 4 shows the composition of the
experimental equipment.
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4.2. Simulation Results and Discussion

Figures 5 and 6 show the contour and profile of the total pressure and velocity distri-
bution when 5% particles are injected, respectively. In Figure 6, the profile represents the
value of the cross-sectional centre of the cylinder (y1) and conical (y2) in the cyclone. The
pressure had a minimum value at the centre, which increased in the radial direction. The
velocity distribution represents the velocity values of the external and internal vortices, and
the boundary between the two vortices is distinguished, where the velocity is maximized as
shown in the cross-sectional profile in Figure 6b. The maximum value of this velocity was
caused by the rotation of the external and internal vortices in the same direction. This was
confirmed to be similar to the pressure and velocity distributions of general cyclones [27].
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4.3. Comparison of CFD and Experiment

Figure 7 shows a comparison between the values measured in the experiment and
those calculated by the CFD numerical method. The average inflow pressure was numer-
ically found to be 1.89 bar, consistent with the experimental value. When a pressure of
1.89 bar is applied, a discharge flow rate of 98.27 L/min is generated at the upper outlet,
which is a 12% deviation from the experimental value. The errors are thought to be the
result of variables that were not considered in the analysis, such as the ratio, shape, and
collision of particles in the experiment. Overall, the numerical and experimental results
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are fairly consistent, and the analysis method for the liquid–solid cyclone using medium-
viscosity oil is verified. Table 4 lists the average values obtained from the experiments and
the CFD analysis.
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Figure 7. Comparison of calculated and measured results; (a) inlet static pressure and (b) upper
outlet flow rate.

Table 4. Averaged values obtained by measuring and calculating.

Comparison Inlet Static Pressure (bar) Upper Outlet Flow Rate
(L/min)

Measured 1.85 (±0.5) 111.27 (±6.18)
Calculated 1.89 (±0.08) 98.27 (±3.74)

5. Analysis of Comparative Study Results

The performance of the cyclone filter was determined by the tangential and axial
velocities. The tangential velocity is the dominant velocity component in a cyclone and
affects the centrifugal force required to separate particles from the fluid. As the tangential
velocity increased, the centrifugal force also increased, thereby improving the separation
efficiency. The axial velocity is important for the particles to move to the collection tank.
As the axial velocity of the flow into the lower part of the hopper increased, the filter
performance improved by preventing the re-entrainment of particles due to the internal
vortex [28].

5.1. Tangential Velocity

Figures 8 and 9 show the contour and profile of the tangential velocity for each
model, respectively. The tangential velocity profile has an inverted-W trend in the hydrocy-
clone [29]. The analysis found that the maximum values of the tangential velocity were
almost identical in the three models. This confirms the previous research findings that dust
outlet geometry has minimal effect on tangential velocity [19]. The applied centrifugal
force was expected to be similar since the influence of the shape of the lower hopper on
the tangential velocity was insignificant. Thus, it can be concluded that tangential velocity
does not significantly affect the performance of the cyclone filter.
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5.2. Axial Velocity

Elsayed and Lacor reported that the axial velocity varies with the shape of the hopper,
and there is a significant difference in the center [19]. Figure 10 shows the contour and
profile of the axial velocity for each model. The profile represents the average value in
the central region, where the difference in axial velocity was observed. Here, the x-axis
of the axial velocity indicated the discharge velocity, which was positive and negative
in the upward and downward directions, respectively. Comparing the axial velocities of
Model 1 and Model 2, no significant difference was found. However, the axial velocity
increased significantly in Model 3, which contained a socket of hourglass geometry. This
increase was caused by the sudden concentration of the overflow due to the decrease in
the cross-sectional area. In previous studies, a rapid expansion of the downward flow was
observed by increasing the diameter of the hopper, while in this study, an increase in the
upward flow due to a decrease in the cross-sectional area was observed. Overall trends
were consistent with previous studies. Therefore, it can be concluded that axial velocity
is influenced by the geometrical shape of the lower hopper and was more affected by the
diameter than the length.
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5.3. Cyclone Performance

The performance of the cyclone was evaluated based on the discharge flow rate from
the upper outlet and the filter functions. Table 5 shows a comparison of the discharge flow
rate of each model, and Figure 11 shows a comparison of the cyclone filter performance
according to the particle size. The discharged flow rates in Model 1 and Model 2 were
similar and increased in Model 3. The discharge flow rate was influenced by the velocity,
with the axial velocity significantly affecting the discharge rate. The tangential velocity did
not change much across the three models and therefore did not influence the discharge
flow rate. The separation efficiency was obtained by calculating the ratio of the trapped (at
outlet) and released (from inlet) particles according to the particle tracking method [30].

Table 5. Comparison of upper outlet flow rate for cyclone models 1, 2, and 3.

Comparison Upper Outlet Flow Rate
(L/min)

(Inlet/Upper Outlet) × 100
(%)

Model 1 100.93 67.29
Model 2 101.30 67.53
Model 3 137.93 91.95
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As shown in Figure 11a, compared to Model 1, the overall particle separation efficiency
of the cyclone increased in Model 2 and decreased in Model 3. As the particle size decreased,
the functional efficiency of the filter decreased, and the difference between the models
increased. Compared to the base model (Model 1), the extended length model (Model 2)
increased the discharge velocity from the bottom of the hopper, thereby preventing the
re-entrainment of the particles. Model 3 had the same length as Model 2; however, due
to an abrupt decrease in the cross-sectional area, the axial velocity of the internal vortex
increased, and particles with smaller inertia were discharged with the fluid by the upward
flow before reaching the hopper bottom, resulting in a decrease in the filter function. For
the 25µm particles, the effect of velocity was less significant due to their larger inertia, and
the particle separation efficiency was similar across the three models.

Figure 11b shows the predicted number of particles in the discharged 100 mL of
fluid based on the experimental model (Model 1). Particle contamination was evaluated
based on a criterion stipulated by the NAS (National Aerospace Standard) 1638 [31]. NAS
classification is based on the size and number of particles contained in 100 mL of fluid and
follows a template—class #: particle size (µm): number of particles. In particular, class
eight: 5–15: 64,000, 15–25: 11,400, 25–50: 2025; and class nine: 5–15: 28,000, 15–25: 22,800,
25–50: 4050. In the three models, the particle sizes within 25 µm were included in the
class eight range, but the number of particles with a size of 25–50 µm exceeded the class
eight range and were included within class nine. Therefore, the three models were equally
represented as class nine, and all the models were suitable to be used as filters since the
target value of particle contamination in the newly designed was less than class 10. In the
case of a conventional filter, the efficiency of particle separation was noticed as class 10:
5–15: 128,000, 15–25: 22,800, 25–50: 4050.

6. Conclusions

The passive filter of the conventional pump may be replaced with a cyclone filter,
which is an active filtration device. The inner flow of the cyclone changed according to
its shape, and it is important to characterize the cyclone’s performance according to the
geometric parameters.

This study verified the numerical method of a liquid–solid cyclone using medium-
viscosity oil by comparing the flow rate discharged to the upper outlet of the experiment
and simulation. In addition, after changing the shape of the lower hopper, a simulation was
performed using a verified method to predict the particle separation efficiency according to
the geometry. Since the efficiency of particle separation is mainly affected by the fluid flow
patterns, this research focused on the velocity distribution.

As a result, it was confirmed that the shape change of the hopper barely affected the
tangential velocity and only affected the axial velocity. Comparing Model 1 and Model 2,
the discharged flow rates were similar. However, since the overall filter performance in
Model 2 was increased, it can be said to be a more suitable model for filtering fine particles.
In contrast, the discharged flow rate of Model 3 was 1.37 times that of Model 1; however, it
was not suitable for filtering fine particles because the filter performance degraded with
the decrease in particle size.

This study established a numerical method for cyclones using oil with medium vis-
cosity and showed that the shape of the hopper affects particle separation efficiency. In
the future, geometric optimization of the cyclone should be performed according to the
particle size to be used for the application at hand.
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Nomenclature
u Instantaneous velocity of fluid.
−
ui Average velocity of fluid.
ui
′ Fluctuating component of velocity.

xi Spatial position.
−
p Average pressure of fluid.
ρ Fluid density.
µ Fluid absolute dynamic viscosity.
−ρui

′uj
′ Reynolds stress tensor.

DT,ij Turbulence diffusion.
Pij Stress production.
φij Pressure strain.
εij Dissipation term.
Fij Rotation production.
up Velocity of particles.
FD Drag force.
ρp Density of particles.
gi Gravitational acceleration
Fs Corresponds to the additional forces.
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