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Abstract: In this paper, a space-time absolute nodal coordinate formulation cable (SAC) element
forming technique based on the Lagrange family of shape functions is proposed. Two distinct
SAC elements, each with a distinct spatial shape function, have been generated by this method.
Moreover, the external forces such as the bending moment and the air resistance formula have
been accounted for. The Lagrange multiplier method, along with the concepts of replacement
constraint and supplementary constraint, has been employed to provide a solution for the dynamics
of constrained mechanical systems. Additionally, a constraint conversion strategy has been suggested.
The solver has been constructed through Hamilton’s law of varying action. The space-time finite
element method is used to solve dynamic problems, employing the Newton algorithm and quasi-
Newton algorithm. The accuracy and efficiency of the solution has been verified by three simulations
and one experiment. The circle-bending static simulation and the double-ended velocity impact
dynamic simulation demonstrate the accuracy of the two elements. The correlation between statics
and dynamics has been studied for different discretization methods and different solvers’ calculation
accuracy and efficiency. Different modeling methods, time steps, order and the application of the
quasi-Newton method all have a bearing on the efficiency of the solution. Finally, a comparison
with an experiment in the free-pendulum simulation reveals the capability of this model to simulate
dynamic problems with air resistance.

Keywords: space-time finite element method; absolute nodal coordinate formulation; cable element;
constraint; dynamic solver

1. Introduction

Currently, flexible cable is wildly used in many fields, such as cable-driven parallel
robots [1–3], submarine communication cables [4], high tension power lines [5] and some
spacecrafts [6]. Flexible cable is anisotropic in mechanics. A flexible cable under tension
can usually be simplified as a two-force bar on some occasions [7]. However, it undergoes
a complex deformation and dynamics such as self-collision and self-winding when it turns
into a slack cable. The low Young’s modulus and the surrounding environment intensified
this condition [8]. The flexibility of the cable should be considered in laying submarine
cables and electric wiring. One of the most infamous cases without taking the flexibility
of cable into consideration is the failure of the tethered satellite system TSS-1 of Italy in
1992. Therefore, the simulation of flexible cables is one of the most important problems in
multibody dynamics.

With the development of multibody dynamics, two major modeling methods are used
in multibody dynamic called floating frame reference formulation (FFRF) and absolute
nodal coordinate formulation (ANCF). ANCF is proposed by Shabana [9]. It uses position
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vector and the position vector gradient to describe the movement. Compared with FFRF,
ANCF has better performance in large deformation [10] and rotation [11,12]. At first, the
gradient vector is defined in the beam element [13], and extend to the plate element and
solid element. Flexible cables are often stressed by tension and bending forces without
torsion. Gerstmayr [14] proposed the cable element. With the improvement of accuracy
and efficiency, it is appropriate to simulate the dynamic of flexible cables. This ANCF cable
element is proposed by simplification from a three-dimensional beam. Gerstmayr [15], and
Sugiyama [16] replaced the geometrical curvature with a material measure of curvature [17]
for raising the calculation accuracy in the bending process. The stress continuity is C1

at the middle of the cable, but it is C0 at the boundary. This phenomenon will decrease
the accuracy of stress between two elements. In view of this situation, Zhang [18] used
high-order interpolation to improve the stress discontinuity in different element sections.

The discretization of the original ANCF is basically used in the space direction to trans-
form a partial difference equation (PDE) into an ordinary difference equation (ODE). Many
ODE solvers can be used for ANCF dynamic solutions, such as Newmark method [19],
generalized α method [20] and Runge–Kutta method [21]. These methods are called half
space-time finite element methods, which means the PDEs are discretized by finite ele-
ment method in space and solved by ODE solvers. Half space-time discretization is not
usually symplectic preserving. The energy convergence and long-term stability of the
non-symplectic algorithm is worse than that of the symplectic preserving algorithm [22].
Moreover, half space-time discretization usually cannot use unstructured grids in the time
dimension, which may cause a lack of flexibility in inconsistent time advancing for different
regions [23].

A series of space-time finite element methods are proposed for good energy conver-
gence and high efficiency. The first space-time finite element method was proposed by Ar-
gyris [24,25]. The early space-time finite element method used the Galerkin variation formu-
lation [26], which makes the space-time meshing and asynchronous solution possible [27].
It also makes the meshing adapt to the time-varying boundary conditions [28,29], increased
grid flexibility and computational efficiency. The Hamilton variation method improves
the efficiency and long-term stability. Zhong [30] proposed a Hamiltonian FEM method in
the time direction. It shows good energy conservation and solution efficiency. Gao [31–33]
developed this method and extended it to the space-time finite element method. Then,
Mergel [34] and Sánchez [35] extended it to Hamilton’s law of variable action, so that work
generated by non-conservative force can be calculated in natural variations. Additionally,
the space and time directions are regarded the same in space-time finite element method.
The position and velocity of one or more steps in the space-time finite element are pre-
sented as variables in discrete form and solved in explicit formulation. In this way, the
PDE can be discretized into nonlinear equations without using ODE method. Space-time
discretization simplifies the discrete scheme and also improves the flexibility and efficiency
of the solution.

At this time, many algorithms to solve nonlinear equations such as Newton iteration
algorithm and Quasi-Newton algorithm can be used to solve the dynamic problem in
space-time discretization formulation [36]. The Newton iteration algorithm family is wildly
used in solving nonlinear equations due to its second-order rate of convergence and its
robust characteristic [37]. However, it needs to calculate the inverse of Jacobian matrix each
iteration. The quasi-Newton algorithm can increase the efficiency via decrease inversions,
and some of the quasi-Newton methods have superlinear convergence. Both methods are
used in different aspects. Quasi-Newton methods should be preferred for compressible me-
chanics, whereas inexact Newton–Krylov methods should be preferred for incompressible
problems [38]. In the quasi-Newton algorithm, Davidon–Fletcher–Powell (DFP) formula
and Broyden family formula [39] are two ordinary formulas. Broyden methods can be
further divided into a rank-1 method and rank-2 method according to the rank difference.
A higher rank takes higher complexity and lower efficiency [40]. However, less inversion
times do not necessarily mean that the computational efficiency will be improved. The
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computational efficiency of the Newton method or quasi-Newton method is different for
practical problems [41]. A lower matrix dimension and higher non-linearity will make the
Newton method with better convergence have higher computational efficiency [42].

This article proposes a space-time absolute nodal coordinate formulation discretization
method, which can convert ordinary ANCF cable elements into space-time ANCF cable
elements. In Section 2, two kinds of space-time ANCF cable (SAC) elements are proposed
with this method. Formulations of volume force, bending moment and air resistance are
also given. A dynamic solver based on natural variation and two kinds of constraints are
proposed. In Section 3, a single-end bending model is proposed to verify the accuracy of
different elements with a static simulation of cantilever under end bending moment. An
opposite velocity impact alone and vertical to the centerline of the cable is another example
to show the efficiency of different elements and solvers. In Section 4, a dynamic simulation
and an experiment of a free pendulum is shown to study the influence of air resistance.

2. Establishment of SAC Element

To generate spatiotemporal elements, it is important to distinguish between the space-
time ANCF cable (SAC) element and the original ANCF cable (OAC) element. The main
difference between the SAC and OAC elements lies in the shape function. When finite
element method is used for discretization in both space and time domains, the shape
function includes space and time parameters. The location vector and gradient vector
can both affect the calculation of the displacement field. SAC introduces the gradient of
material coordinate and its speed for kinematic description [43], which means that the
generalized coordinates include both position vectors and velocity vectors.

The spatiotemporal generalized coordinate in the matrix format is given in

r = S(x, t)qm. (1)

r represents the position coordinate of a random point on the neutral axis. S is the
element shape function at one dimension, and qm is the generalized coordinates and
velocities. The material coordinate x and time coordinate t in the shape function are
independent and the shape function and the number of degrees of freedom (DOFs) are
determined by both the material coordinate component and the time direction component
of the shape function.

The Lagrange method is a way to generate the shape function of a rectangular space-
time element by multiplying the spatial and temporal shape function with the Lagrangian
family base function. The algorithm is shown in

S(ξ, τ) = SX(ξ)ST(τ). (2)

where ξ and τ are dimensionless coordinates represented in

ξ =
x
l

, τ =
t

∆t
. (3)

when using the Lagrange method, since the shape functions of time and space are inde-
pendent of each other, it is possible to adjust the shape function in a single direction to
satisfy the different continuity requirements between elements. Two cable elements based
on different spatial shape functions are proposed for verifying the validity of this method.
Berzeri and Shabana [44] proposed the first of the two spatial shape functions, which
employs Hermitian interpolation and is expressed as

SX(ξ) =
[

1− 3ξ2 + 2ξ3, l
(
ξ − 2ξ2 + ξ3), 3ξ2 − 2ξ3, l

(
−ξ2 + ξ3) ]. (4)

Zhang [18] proposed the second of the two shape functions to ensure the continuity
of stress in the section between different elements, which includes curvature terms as
shown in
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SX(ξ) =



−6ξ5 + 15ξ4 − 10ξ3 + 1
l
(
−3ξ5 + 8ξ4 − 6ξ3 + ξ

)
l2
(
− 1

2 ξ5 + 3
2 ξ4 − 3

2 ξ3 + 1
2 ξ2
)

6ξ5 − 15ξ4 + 10ξ3

l
(
−3ξ5 + 7ξ4 − 4ξ3)

l2
(

1
2 ξ5 − ξ4 + 1

2 ξ3
)



T

. (5)

The first of the two elements (SAC-2) employs four vectors to interpolate the shape
function, including the position vector, gradient of material coordinate, velocity vector, and
the velocity vector of gradient. The second of the two elements (SAC-3) incorporates two
additional vectors, namely the curvature vector and its velocity, resulting in a total of six
usage vectors. To ensure the temporal continuity, Hermitian interpolation is employed,
requiring the use of shape functions. The shape function is expressed as

ST(τ) =
[

1− 3τ2 + 2τ3, ∆t
(
τ − 2τ2 + τ3), 3τ2 − 2τ3, ∆t

(
−τ2 + τ3) ]. (6)

The displacement field of an element can be expressed using two different shape
functions, as shown in Table 1. Though their temporal component remains the same,
their spatial components differ. With this method, two spatiotemporal finite elements are
constructed, one ensuring spatiotemporal C1 continuity (SAC-2) and the other ensuring C2

continuity in the spatial direction and C1 continuity in the time direction (SAC-3).

Table 1. The shape functions of different elements.

Element No. SFC 1-x SFC 1-t

SAC-2 Equation (4) Equation (6)
SAC-3 Equation (5) Equation (6)

1 shape function component.

Due to the Euler–Bernoulli assumption, the cross-section of the beam is perpendicular
to the neutral axis, and the section of cable is considered to be rigid. Under this assumption,
it is considered that the strain on the cross-section is linear distributed with respect to the
distance against the neutral axis. The strain of the cable can be generated with

ε = εc + κy. (7)

εc is the centerline strain and can be directly calculated with position vectors rx as
shown in

εc =
1
2
(rxrx − 1). (8)

The curvature term κ is presented in

κ =
|rx × rxx|
|rx|2

. (9)

The dynamic equation of the SAC element needs to be established using Hamilton’s
law of varying action to ensure the energy conservation properties of the element in a
conservative system and its adaptability to non-conservative external forces [34]. The action
of the element can be expressed as

Ae =
∫

Ledt =
∫ (

Te −Ue + ∑ We)dt. (10)

Action Ae is the time integral of Lagrange function Le. Te is kinetic energy, Ue is
deformation energy and the additional work We by external forces. Te and Ue can be
shown as
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Te =
1
2

qT
m

∫
V

ρST ·SdVqm. (11)

Ue =
1
2

∫
V

(
EAε2

c + EJκ2
)

dV. (12)

The external work We has two components, We
v f and We

s f , generated by equivalent
nodal forces. These correspond to the work of the volume force and surface force, respec-
tively, and can be expressed as integrals over their corresponding volumes or surfaces, as
shown in

We
v f =

∫
V

ρAg · rdV. (13)

We
s f =

∫
S

F · rdS. (14)

In Equation (13), ρA is the linear density of the cable. g is the volume force density
and the F is the surface nodal force. Besides, the moment can be regarded as a special nodal
force that can be calculated as additional work by integrating the moment and torsion
angle. The work generated by the moment can be given in tensor form:

WM = Mijθij. (15)

In Equation (15), Mij is the moment with tensor expression. The bending angle θij is
obtained as the arctangent of the material coordinate gradient in the SAC expression, as
shown in

θij = tan−1

(
ri,x

rj,x

)
. (16)

ri,x is the component if the position gradient rx at i direction. If the bending angle lies
in the x-y plane, then i = 1 and j = 2.

Air resistance is a typical case to show the influence of resistance and can be regarded
as a kind of surface force, while the plane of action is the windward section. The value of air
resistance related to the resistance parameter, the density of air, the area of the windward
section and the velocity of the test node on the neutral axis and the direction is opposite to
velocity. The work made by air resistance is shown in

We
f ar =

∫
x

−CρAirSwv · v
2

· r · v
|v|dx. (17)

In Equation (17), C is the drag coefficient, and it is related to the Reynold number,
the shape of the windward and some other conditions. ρAir is the density of air. Sw is the
surface area of the windward. v is the velocity vector.

Equations (11)–(13) and (17) involve numerical integration, particularly Gauss inte-
gration in the spatial domain. The action given in Equation (10) is also evaluated using
Gauss integration in the time domain. The number of Gauss integration points depends on
the shape function and the calculation of kinetic energy, potential energy, and work. This
process is similar to selecting Gauss integration nodes in a static planar problem. However,
unlike in planar static problems, the selection of spatiotemporal Gauss integration nodes
replaces the y-axis with the time axis, as shown in Figure 1.
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Figure 1. The frame of SAC element and the distribution of Gauss point.

Each element must satisfy the Courant–Friedrichs–Lewy (CFL) condition to ensure
a convergent solution when using a rectangular space-time mesh. The CFL condition for
longitudinal waves is given in

C =

√
E∆t
ρ∆x

≤ 1√
2

. (18)

This means that when the mesh in the spatial direction is determined, the maximum
time step is also determined. However, this condition does not restrict the assembly in the
time direction, which can circumvent the CFL condition and enable long-step solutions.

In this section, the establishment method from OAC element to SAC element is
proposed and two types of SAC element are constructed with different spatial shape
function. The integral of Lagrangian function and action by kinetic energy, elastic energy
and external force are given. The bending moment and air resistance formulation are given.
The numerical integration method point is also discussed at last.

3. Element Assembly and the Solver Construction

In the preceding section, the establishment of SAC elements is discussed. The global
action can be expressed as the sum of element actions. In this chapter, the assembly of SAC
elements and the expression of the global action will be discussed.

The beginning and the ending frame of a space-time assembly should be study alone
in some discretization method due to the particularity. So, the space-time nodes are divided
into input time node (t = ta), intermediate time node (t = ti) and output time node (t = tb)
according to their time. The DOFs have time property, which subject to nodes and be
divided. Node and its DOFs have the same definition in time. The Hamilton’s law of
varying action is shown as

δA =

[
H1

(
n

∑
E=1

∂AE

∂q
+ Mabq

)
+ H2

(
qG − qG0

)]
δqG

e +

[∫
λT ∂R

∂qG
e

dt
]

δqG
e . (19)

qG
e is composed by the global generalized coordinate qe with Lagrange multipliers

λ. qG0 is the initial value of global generalized coordinate. AEis the derivation of element
action with respect to qe. R are constraints constructed by the Lagrange multiplier method.
The assembly of action is similar to original assembly of FEM, but there are three main
differences, which are choices of Mab, H1 and H2. These three parameters are related to
the input–output time node and the moment expression. That is why different temporal
nodes are defined at the beginning of this section. The moment expression proposed by
Marsden and West and the pseudo-moment expression depicted the relationship between
the position and velocity in input time and output time. Refer to the study of convergence,
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stability and symplectic preserving characteristics of the solver by Mergel [34]. It performs
well in most of aspects to use the P2 formula to construct the solver, in which its Mab is
given as

Mab = diag
(

Ma 0 −Mb ). (20)

Ma is the mass matrix at time ta and Mb is the mass matrix at time tb. The element
mass matrix at a random time slice of SAC is equal to the element mass matrix of OAC.
Moreover, both H1 and H2 are given as{

H1 = diag
(

Iea Iei Ieb 0va Ivi 0vb 0λ

)
H2 = diag

(
0ea 0ei 0eb Iva 0vi Ivb 0λ

) . (21)

ea, ei, and eb are the position at input, intermediate and output time. va, vi, and vb are
the velocities at input, intermediate and output time. The discretized dynamic functions
are presented with the following three equations:

∂A
∂ea

+ Mava = 0
∂A
∂ei

= 0
∂A
∂eb
−Mbvb = 0

∂A
∂vi

= 0

. (22)

{
ea − e0 = 0
va − v0 = 0

. (23)

R = 0. (24)

Notably, two types of constraint equations are proposed in this paper, which are
called replaceable constraint (RC) in Equation (23) and supplementary constraint (SC) in
Equation (24) separately. These two constraints can replace each other between the two
equations under the solver formulation. In the absence of SCs, RCs usually appear as
constraints of initial value conditions. However, the form of RCs is not fixed. In P2 solver,
RCs could not include the velocity term, which will lead to the matrix singularity, such as
the fixed end constraint and hinged constraint. These constraints require both the position
and velocity constant in P2 solver. When the SCs contain the velocity term, it is necessary to
convert some position constraints of the RCs to the velocity constraints in the SCs. That is,
the same number of position constraints in SCs are changed into RCs, and the same number
of nodal velocity SCs are replaced with position constraints of RCs. The total number of
constraints remains the same. This process is called constraint conversion. The SCs will not
contain any terms that include velocity at the input and output time, while the RCs may
contain both velocity items and position items. Moreover, RCs only replace the velocity at
the input and output time. The constraints of intermediate time are calculated as SCs. This
characteristic is defined due to the particularity of input and output time.

It takes the fixed end constraint as an example in Figure 2 to specify the constraint
conversion process. If a cable without constraint as shown in Figure 2a, there are no SCs in
this formulation, and all the constraints are the initial conditions and set in RCs. Figure 2b
shows a cable with a cantilever constraint. After meshing this cable in four elements, the
position and velocity keep constant in nodes 1, 4, and 7. So, all the DOFs including position
and time subject to the nodes 1, 2, 3 are set as RCs, and the nodes 4 and 7 are set as SCs.
The SCs in nodal 7 are needed to start the constraint conversion process by replacing all the
velocity constraints to SCs. When the position constraints are finished, the RCs are all the
position constraints, the SCs are the velocity constraints of the input and output time and
both are constraints of the intermediate time.
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Figure 2. (a) RC and SC constraints in no-constraint cable. (b) RC and SC constraints in cantilever
cable and the constraint conversion process.

The Equations (22)–(24) are nonlinear functions, which can be solved with Newton–
Raphson (N-R) algorithm and Broyden rank 1 (BR1) algorithm. The format of N-R algorithm
is shown as

Xi+1 = Xi − Fq
−1Fi. (25)

X is the variables, and F is nonlinear equations. F,q is the Jacobian matrix of the
nonlinear equations. i is the times of iteration. The terminal condition of N-R algorithm is
the 2-norm of residual error less than tolerance. This relation is shown as

|Xi+1 − Xi| < R0. (26)

The BR1 algorithm is a kind of quasi-Newton method and it is shown with
Xi+1 = Xi − BiFi

yi = Fi+1 − Fi

Bi+1 = Bi +
(si−Biyi)siXi

XiTBiyi

. (27)

Both N-R algorithm and BR1 method need to calculate the Jacobian matrix at the initial
time. The initial matrix B0 is the inverse of Jacobian matrix F0

,q. However, the BR1 method
only calculates the inverse of the Jacobian matrix one time different from N-R algorithm,
which calculates the inverse of the Jacobian matrix at each iteration. Hence, the BR1 method
has a higher efficiency in one iteration than N-R algorithm.

In this chapter, a solution method based on natural variation is used to assemble the
space-time discrete dynamic formulation. The mass matrix in different times and the P2
formula are used to construct this solver. Two types of constraints and the constraint con-
version method are proposed. Newton–Raphson algorithm and BR1 method are introduced
to solve the dynamic functions.

4. Simulation and Verification

A static simulation and a dynamic simulation are presented to show the differences
between SAC-2 and SAC-3. The accumulation difference in two different elements are
studied with the end bending moment in a static simulation. In the dynamic simulation, the
conservation of total energy is discussed at first. The continuity of stress and the efficiency
of different modeling methods are also discussed.

4.1. Static Simulation

To verify the accuracy of the elements and constraints derived, a static example of
a cantilever beam subject to the single-end bending moment is presented. In theory, the
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solution of the static equation is independent of time, and the time integral of the space-time
finite element method reduces to a constant value. Moreover, the presence of temporal
Gauss integral points extends the solution time, which takes more time than using the
principle of virtual displacement. Using the space-time finite element method to solve the
static problem can not only confirm the accuracy of the different elements, but also provide
a good example to demonstrate the constraint conversion mentioned previously.

In this section, a one-meter PVC cantilever is used as an example. The cantilever’s
properties are listed in Table 2, with the fixed end referred to as End A and the free end as
End B. The cantilever is discretized with 5 SAC-2 elements and 10 SAC-3 elements in space.
A constant bending moment M is applied at End B, and the effect of gravity is neglected
throughout the bending process. The relationship between the bending moment and the
rotation angle at End B is presented as

M =
λπEI

l
. (28)

The E is the Young’s modulus of the cantilever. I is the moment of inertia. l is the
length of the cantilever. When λ = 1, the constant bending moment can make the cantilever
into a semicircle, and it can also make the cantilever into a circle theoretically when λ = 2.

Table 2. Material properties of static simulation.

Material Properties Value

Elastic modulus (GPa) 3.4
Density (kg/m3) 1380

Moment inertia (m4) 1.25× 10−13

Area (m2) 3× 10−6

The bending situation is shown in Figure 3, and the deviation in the X direction is
shown in Table 3. Both SAC-2 and SAC-3 can bend into a semicircle under the application
of a bending moment using 10 elements. However, SAC-3 can bend more accurately into a
circle with less error compared to SAC-2. The horizontal error of 5 SAC-3 elements is even
less than that of 10 SAC-2 elements, indicating that SAC-3 elements have higher accuracy
in bending problems.

Table 3. The horizontal error of ending point with moment.

Element Type and Constraint
5 Elements 10 Elements

Semicircle Circle Semicircle Circle

SAC-2 65.31 −197.3 0.400 18.30
SAC-3 without
rxx constraint 0.172 1.380× 10−3 −4.622× 10−4 2.636× 10−6

SAC-3 with
rxx constraint No data No data 21.17 0.063

However, the constraints of SAC-3 present certain issues due to the absence of physical
meaning of high-order gradients. In the static solution, all the velocity-related parameters
need to be set as replaceable constraints with a constraint conversion method, and the posi-
tion vector and position vector gradient at End A are also set as supplementary constraints
in both the input and output time to restrict the movement and rotation of End A. If the
constraint of the second-order gradient is set, the error increases, as shown in Table 3. The
position vector of the analytic solution at the beginning and end of the bending process is
compared, and the expression of the analytic solution is presented as
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{
rts =

[
x, 0, 0

]
rt f =

[
y0 cos θ, y0 sin θ + y0, 0

] . (29)

At the beginning, the neutral axis is a segment with a material coordinate to coincide
with the global coordinate. It becomes a circle with a radius of y0 and the center is[

0 y0 0
]

at the end. y0 is related to the length of the cable as

2πy0 = l. (30)

The second derivative of Equation (29) is presented as
∂2rts
∂x2 =

[
0, 0, 0

]
∂2rt f
∂x2 =

[
0, cos 2θ

y0sin2θ
, 0

] . (31)

The vector of the second derivative is
[

0, 0, 0
]

at origin point at the beginning and[
0, 2π, 0

]
at origin point at the end, the error of which is 1.15% with the simulation by

SAC-3. So, in the fixed end bending simulation, the second-derivative should not be fixed.

� � � � 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

Y (
m)

X  ( m )

 S A C - 3  5 E s
 S A C - 2  1 0 E s
 S A C - 2  5 E s

Figure 3. The circle-bending example with 5 and 10 SAC-2 elements and 5 SAC-3 elements.

4.2. Double-Ended Velocity Impact Simulation and Verification

The example of double-ended velocity impact primarily demonstrates the energy
convergence of the space-time ANCF formulation. A pair of symmetric velocity vectors
are applied to both ends of the cable, and no constraints are imposed on the cable. The
simulation involves a 4-meter PVC cable with section and material properties listed in
Table 2. The cable is modeled using 8 SAC-2 and SAC-3 elements separately to observe the
distribution of stress waves at different times. The application point and velocity vector of
the symmetric velocity are presented in Table 4. This model is designed for simplicity, with
only one layer of SAC elements and a time difference of ∆t between the two points.
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Table 4. The initial condition of two examples.

No. of Examples
Initial Condition of A End Initial Condition of B End

Position Vector Velocity Vector Position Vector Velocity Vector

No.1
[
−2, 0, 0

] [
10, 0, 0

] [
2, 0, 0

] [
−10, 0, 0

]
No.2

[
−2, 0, 0

] [
0, 10, 0

] [
2, 0, 0

] [
0, −10, 0

]
In example-1, the response to the opposite velocity impact is illustrated in Figure 4.

This velocity impact excites a compressive stress wave along the material coordinate. These
two waves have an affected region of approximately 0.5 m and transmit at a longitudinal
wave velocity of 1480 m/s, which is the reciprocal of the slope of the characteristic line.
They then add at the center of the cable and cause a maximum absolute stress of 23.5 MPa.
In the absence of any changes in material properties, the waves transmit without interaction
until they reach the boundary. At the free boundary, reflection occurs and the compressive
stress changes into tensile stress. The subsequent wave transmission is similar to the
compressive stress wave, except for the change in stress direction.

The continuity of stress is not the same when different elements are used for discretiza-
tion. Sharp stress distribution occurs at the boundary between two SAC-2 elements, as
shown in Figure 4a,b. In contrast, the stress distribution at the boundary is smooth with
SAC-3 element discretization. The reason for this is that 5th-order interpolation guaran-
tees C1 stress continuity at the boundary, while 3rd-order interpolation only guarantees
C0 stress continuity at the boundary. Therefore, high-order interpolation can improve
stress continuity, which enhances the accuracy of elastic stress wave calculations between
two elements.

Figure 4. The transfer of longitude stress waves along the cable. (a) The 3D space-time stress
distribution figure discretized by SAC-2 element. (b) The contour line figure of (a). (c) The 3D
space-time stress distribution figure discretized by SAC-3 element. (d) The contour line figure of (c).
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In example-2, the response to asymmetric velocity is illustrated in Figure 5. The
motion is centrally symmetric, with the bending and rotation of the cable being the primary
movements due to elasticity over 1.8 s. The conservation of the middle point position of the
cable and total energy is shown in Figure 5a. Without any restrictions, the middle point of
the cable remains at the original position. The variation of potential energy, kinetic energy,
and the summary of potential and kinetic energy over time are presented in Figure 5b. The
kinetic and potential energy exhibit periodicity, but their summary remains nearly constant
over time. These two results illustrate the conservation of the space-time ANCF method.
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Figure 5. The dynamic simulation of example-2. (a) The spatial state of motion of the left end rope at
the center point. (b) The energy conservation in double-ended shock issues.

4.3. The Efficiency of Space-Time ANCF Method

The studies above focus on factors that influence the accuracy of space-time element.
Moreover, the order of interpolation, the size of element in space and time direction, the
assembly method and different solve method will also influence the solution efficiency. The
convergence and efficiency are discussed as follows.

The total time cost of a specific space-time ANCF method can be calculated with

tTotal =

(nE × tE)︸ ︷︷ ︸
PartA

+ (tA + tS)︸ ︷︷ ︸
PartB

× nI × ns. (32)

nE is the number of element. tE is the establishment time of one element. tA is the
assembly time in each iteration. tS is the solution time in each iteration. nI is the iteration
times. nS is the number of calculation steps.

Examples based on example-1 in Section 4.2 are shown in Table 5. The purpose of
these examples is to study the efficiency of the different parameters in Equation (32). The
maximum deviation is used as the termination condition. The spending time, residual
error, and iteration times of these examples are shown in Figure 6.

In the case where SAC-2 elements were used uniformly, refinement was carried out in
both the temporal and spatial directions. The refinement interval in the temporal direction
was 20 ms, and in the spatial direction it was 3 m. The Newton–Raphson method and
Broyden Rank 1 method were used to calculate different grids. The system is conservative,
so the energy conservation property can be used as the method to measure computational
errors. The total energy of the flexible cable, including kinetic energy and elastic potential
energy, is calculated at each solution step. The 1-norm of the difference between the energy
at each step and the initial energy was used as the evaluation criterion to measure the error.
The result is shown in Table 6.
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Table 5. Examples to study the influence on efficiency.

Example No. Element Type Mesh Method 1 Steps Solver Integral Points 1

No.1 SAC-2 8 × 1 400 N-R 3 × 3
No.2 SAC-2 8 × 1 400 BR1 3 × 3
No.3 SAC-2 8 × 1 400 N-R 6 × 3
No.4 SAC-2 4 × 1 200 N-R 3 × 3
No.5 SAC-2 4 × 2 100 N-R 3 × 3
No.6 SAC-2 2 × 1 100 N-R 3 × 3
No.7 SAC-3 4 × 1 200 N-R 5 × 3
No.8 SAC-3 4 × 1 200 BR1 5 × 3
No.9 SAC-3 4 × 1 200 N-R 5 × 6

1 The element distribution in Space × Time direction.
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Figure 6. (a) The spending time by calculation in part A and part B of Equation (32). (b) Total
spending times in different examples. (c) The average iteration times during calculation in different
examples. (d) The residual error in different examples.

Table 6. Grid refinement test for the double-end impact on different grid types.

Scheme Grid L1 Order

Newton-Raphson 4TEs × 2SEs 0.0040 -
4TEs × 4SEs 0.0032 0.3254
8TEs × 2SEs 2.66× 10−4 3.9099
8TEs × 4SEs 2.00× 10−4 4.2576

Broyden rank 1 4TEs×2SEs 0.0040 -
4TEs × 4SEs 0.0032 0.3254
8TEs × 2SEs 2.66× 10−4 3.9099
8TEs × 4SEs 2.00× 10−4 4.2576

The impact of different refinement methods on accuracy is displayed. It can be seen
from the table that spatial refinement has a smaller impact on the improvement of the
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order of accuracy compared to temporal refinement, and the effect of mixed refinement is
the best. Under this refinement method, N-R iteration method and BR1 iteration method
have the same convergence accuracy when obtaining a convergent solution. This indicates
that the choice of iteration method has little influence on the solution accuracy in this
discrete format, and the difference between the two mainly lies in the convergence rate and
convergence domain.

There are four major parameters that can affect calculation efficiency: the time step of
the element, the interpolation order in space and time directions, the assembly in the time
direction, and the solution method. The time step is studied first.

A longer time step results in fewer calculation steps. However, the time step is
restricted by the CFL condition, which corresponds to the size in the space and time
directions. One of the advantages of ANCF is that it can use fewer elements to simulate
complex movements [18]. It can also use a larger time step by meshing with a coarse grid
in space without sacrificing much accuracy. This advantage is also evident in the SAC-3
element, which uses 1.5 times the degrees of freedom (DOFs) compared to SAC-2 to achieve
twice the accuracy. This is beneficial in reducing the number of elements to achieve high
efficiency in certain situations. Examples No. 1, 4, and 6 of Table 5 show a decrease in
time cost by using a coarse grid, but the residual error increases, which may require more
iteration times for convergence.

The interpolation order affects the calculation time by changing the number of Gauss
integral points. The exact integral order is usually the minimum order required to guarantee
energy convergence. More Gauss points can be used to increase accuracy under strong
nonlinearity. In the space-time ANCF method, the Gauss nodes are included in the space
and time directions. The comparison of Examples No. 1 and 3 in Table 5 shows the influence
of increasing the spatial Gauss nodes. Example No. 3 has the minimum residual error,
but also the longest calculation time. In contrast, the increase in temporal Gauss nodes
in Examples No. 7 and 9 did not show any advantage in efficiency. This implies that the
spatial Gauss nodes can simultaneously increase convergence and decrease efficiency.

Assembly in the time direction is another way to reduce the number of calculation
steps, and it is not restricted by the CFL condition. Example No.5, a double-layer model,
is compared with Example No. 4, a one-layer model, in Table 5. Although the number of
calculation steps in Example No. 5 is smaller than that in Example No. 4, the total element
number remains the same, and the convergence becomes worse with a high maximum
residual error and more average iteration times. The total calculation time is the same
because the major time cost is in Part A, where the calculation complexity is much higher
than in Part B.

The choice of different nonlinear dynamic equation solvers also affects the solution
time of Part B. The Newton–Raphson iteration has a second-order convergence rate, and
the total iteration loops around 3 times, but it needs to calculate the inverse of the Jacobian
matrix each time. The inverse of a matrix has a calculation complexity of O

(
n2), so its

Jacobian matrix is directly proportional to the square of the calculation time. The quasi-
Newton method can only calculate the inverse once, but the convergence rate is only
linear or superlinear. Examples No. 2 and 8 in Table 5 use the BR1 method to reduce the
solution time of Part B, but the iteration loops increase due to the low convergence rate.
The total calculation time is slightly higher than that of the Newton–Raphson method in
this example.

The convergence history of the Newton iteration is shown in Figure 7. The calculation
results of the convergence rate (CR) in Table 7 show that in seven of the nine examples
where Newton–Raphson was used, super-linear convergence was observed. However, the
two Broyden rank-1 methods showed less than super-linear convergence. This is consistent
with the situation where Newton–Raphson has fewer iterations.
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Figure 7. The convergence history of 9 examples.

Table 7. The convergence rate (CR) of 9 examples.

No. 1 2 3 4 5 6 7 8 9

CR 1.089 0.3040 1.592 1.125 1.171 1.219 1.538 0.524 1.526

The summary of these relationships is presented in Table 8. “+” indicates an increase,
“−” indicates a decrease, and “/” represents no clear relationship between these two
methods. Both longer time steps and time direction assembly can significantly improve
efficiency without sacrificing much accuracy.

Table 8. Four efficiency increase methods and their effect on efficiency relevant parameters.

Methods Element No. ECT 1 Solution Time Steps ITC 2 Accuracy

Longer steps −− / −− − / −
Higher order − ++ − / / +

Time direction
assembly / / + −− / /

Quasi-Newton method / / − / + /
1 Spending time in element calculation. 2 The iteration loops until convergence.

In this chapter, three different simulation models are proposed for verifacation. The
static simulation shows the static solution ability of P2 solver, and the validity of the
constraint conversion is also been verified. The double-ended velocity impact simulation
shows that SAC-3 has a smoother stress distribution than SAC-2. Both elements can be
used to solve dynamic problems, which shows the correctness of the element establishment.
Longer steps and time direction assembly can improve efficiency better in four major
parameters in the efficiency study. The assembly method and the element with better
convergence would be the next research direction.

5. The Simulation and Experimental Verification of the Free Flexible Pendulum

The free flexible pendulum serves as a common illustration of ANCF cable for precise
validation. This chapter employs a simulation and an experiment to authenticate the two
categories of SAC element with consideration to air resistance. For the simulation and
experiment, a 0.5-meter gutta-percha cable is utilized in the free-pendulum setup. The
characteristics of this cable are presented in Table 9.
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Table 9. Material properties of rubber (gutta-percha).

Material Properties Value

Elastic modulus (MPa) 0.91
Density (kg/m3) 1202

Moment inertia (m4) 9.15× 10−12

Area (m2) 1.075× 10−5

Previous research has often disregarded air resistance in free pendulum simulations to
demonstrate energy convergence. However, in reality, air resistance significantly impacts
free pendulum behavior. To illustrate this effect, a free pendulum is considered with air
resistance at 0.68 s, using the same initial conditions as described above. At this point, the
flexible pendulum has nearly completed half a period, and it is a defining moment due to
its proximity to the minimum kinetic energy. The impact of air resistance on the flexible
pendulum during the first half-period is primarily complete.

Figure 8 displays the flexible pendulum at 0.68 s with varying air densities. As the
drag coefficient increases, the height of the pendulum globally decreases. This indicates
the influence of air resistance discussed earlier. To compare with experimental results, air
resistance must be taken into account. In this simulation, the drag coefficient is established
as 1.5 based on the section’s shape and the Reynolds number.

� � � � � � � � � � � � � � � � � � � � 0 . 0
� � � �

� � � �

� � � �

� � � �

0 . 0

Y (
m)

X  ( m )

C = 0C = 0 . 2 5
C = 0 . 7 5

C = 1 . 5
C = 3

C = 5

Figure 8. The simulation under different air resistances at t = 0.68 s.

The experimental setup is depicted in Figure 9, consisting of a frame structure, axis,
shaft, flexible cable, and image acquisition equipment. The axis is made of Teflon due to its
low density and self-lubrication properties. A green screen is positioned behind the frame
structure to facilitate image processing. The Olympus Stylus 1 s camera and its components
are used for image acquisition. The cross-section size is measured using a sliding gauge,
and the cable’s mass is determined using the YP202A electronic balance. The cable’s density
and Young’s modulus are then calculated with successive minus method.
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Figure 9. The structure of experimental facilities.

In this scenario, the cable is pinned at one end, referred to as End A, and left uncon-
strained at the other end, known as End B. The cable is placed horizontally and released at
the start of the experiment. The camera takes pictures with a 1/800 s shutter duration until
the cable comes to a halt. Seven images were obtained within 0.79 s, with Image 1 showing
the state of the cable before it was released, which can be considered as the initial moment
when the cable began to fall. The other six images were taken at different times between
0.19 and 0.79 s. By analyzing Image 1, the initial motion state of the cable was determined.
The cable was divided into four SAC-2 elements, and dynamic simulations were carried
out by applying gravitational and air resistance loads within each element. The simulation
results were then compared with the experimental results in Figure 10.

The gray line in Figure 10 represents the experimental curve, while the blue and red
lines represent the simulation curves before and after 0.5 s, respectively. The pink line
shows the motion curve at 0.67 s without air resistance (AR). It can be seen from Figure 10
that considering air damping, a small number of SAC-2 elements can accurately describe
the motion state of the flexible free pendulum. Table 10 shows that the maximum root
mean square error (RMSE) during the simulation process occurred with the maximum
value of 1.5 mm, which is acceptable. By comparing experiments and simulations at 0.67 s,
it can be seen that if air resistance is not considered, the resulting RSME is 81.7 mm, which
is 54.5 times larger than that of considering air resistance. This demonstrates the necessity
of considering air resistance in free pendulum problems.

In this chapter, simulation of the free pendulum with air resistance is conducted, where
the height and flexibility of the pendulum are affected by the air resistance. An experiment
is performed to validate the simulation results of the free pendulum. The experimental
and simulation results indicate that the entire process under air resistance can be described
with relatively high accuracy by the space-time ANCF elements, and it is recommended to
set the drag coefficient to 1.5 for optimal results.
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Table 10. The root mean square error in different time.

Time (s) 0.01 0.19 0.30 0.42 0.53 0.67 0.79

RMSE (mm) 0.4145 0.3821 0.5058 0.6869 0.6761 1.5226 0.7383

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

 S i m u l a t i o n  t < 0 . 5 s
 S i m u l a t i o n  t > 0 . 5 s
 E x p e r i m e n t
 N o  A R

Y (
m)

X  ( m )

t = 0 s

t = 0 . 1 9 s

t = 0 . 3 0 s

t = 0 . 4 2 s

t = 0 . 5 3 s
t = 0 . 6 7 s

t = 0 . 7 9 s

t = 0 . 6 7 s

Figure 10. The comparison between the fitting curve of experiment and the simulation curve in
different times.

6. Conclusions

The space-time element based on the absolute nodal coordinate formulation is es-
tablished in this paper by separately constructing the shape function of time and space
directions and taking their product. The resulting element has good conservation proper-
ties, as demonstrated by utilizing the Hamiltonian varying action. Two non-conservative
forces, bending moment and air resistance, are introduced in this element. To address
constraints, a constraint conversion method is proposed by introducing the concepts of
replaceable constraint and supplementary constraint to solve the special constraints at
the import and export time. Two solvers, utilizing the Newton–Raphson and Broyden
rank 1 methods, respectively, are proposed in this paper. In static circle-bending examples,
the SAC-3 element is demonstrated to be more accurate than the SAC-2 element while
utilizing fewer elements. The stress wave distribution and energy convergence are verified
through simulating double-ended velocity impact examples using different discretization
elements. Nine combinations are used to analyze the four possible factors of space-time
finite element computation efficiency, and their influence on both the total calculation time
and part of the calculation time is presented. In non-conservative forces, the accuracy of
the SAC element with air resistance is verified through simulation and experiment of a
free pendulum example. It is demonstrated that air resistance must be considered in this
example, as evidenced by the maximum root mean square error of 1.5 mm with a drag
coefficient of 1.5, which represents a good fit between the experiment and simulation.
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