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Abstract: This paper presents a servo control method for the multiple launch rocket system (MLRS) 
launcher during marching fire operations. The MLRS, being a complex nonlinear system, presents 
challenges in designing its servo controller. To address this, we introduce the fuzzy adaptive sliding 
mode control (FASMC) approach. The permanent magnet synchronous motor (PMSM) and 
controller of the MLRS were simulated in the MATLAB/Simulink environment. The dynamic model 
of the MLRS during marching fire was established using multi-body system theory, vehicle 
mechanics, and launch dynamics. The dynamic model was then integrated with the FASMC-based 
controller using the Adams/View module. Numerical calculations were performed to demonstrate 
the control performance and the effectiveness and applicability of the proposed approach were 
validated through a comparison experiment between FASMC and other common control methods. 

Keywords: multiple launch rocket system; dynamic modeling; servo control; fuzzy adaptive sliding 
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1. Introduction 
The multiple launch rocket system (MLRS) is a highly effective tactical weapon 

system that provides quick firepower across a wide area. As a motor-mechanical system, 
it can be used for various types of fire strikes, including ground-to-ground, ground-to-air, 
ship-to-shore, or ship-to-ship. With advancements in rocket guidance technology, there is 
a growing trend towards improving the maneuverability and response to marching fire 
from unmanned targets. However, the application of guidance technology alone is not 
enough to guarantee accuracy. Minimizing launch vibrations can also help reduce rocket 
dispersion [1], and this has become an important direction for MLRS development. In 
order to improve firing accuracy, reducing firing deviation during tuning and firing 
through dynamic control is essential. This technique has been widely used in MLRS 
research in recent years [2–4]. The MLRS marching fire process is complex and 
challenging due to random road incentives, variations in mass, nonlinear suspension and 
tire characteristics, and the instant impact during launching [5,6]. As a result, the MLRS 
dynamic model is nonlinear and time-varying, making it difficult to establish a reliable 
and accurate dynamics model and control strategy [7,8]. The main challenge is to ensure 
the stability and robustness of the system despite nonlinearities and uncertainties in such 
a complex motor-mechanical coupling system as the MLRS. 

Considerable effort has been put into enhancing the stability and robustness of the 
control system for the MLRS, following the introduction of passive control methods [9–
11]. Despite the benefits of passive methods in terms of control response, they have a 
limited ability to handle larger responses due to the lack of energy required. This can 
make it challenging to guarantee high-precision tracking characteristics during marching 
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fire. proportional-integral-derivative (PID) control has become a popular choice due to its 
simplicity, clarity, and effectiveness, and it is currently used in fixed or semi-fixed MLRS 
launches [12–14]. However, classical PID control may not provide adequate control 
performance when the nonlinearity of the MLRS increases during marching fire. As a 
result, many researchers have attempted to design servo control systems using modern 
control theory. One promising approach is sliding mode control (SMC), which has been 
shown to be effective in controlling nonlinear systems [15–18]. SMC has the advantage of 
being robust to uncertainties and disturbances in the system, making it a popular choice 
in robot control. Despite its fast response time and resistance to external noise 
disturbances and parameter changes, SMC also has the drawback of “chattering,” a 
phenomenon caused by switching terms. Excessive chattering is not acceptable in high-
precision MLRS systems [19,20]. 

Many intelligent algorithms are used to address uncertainties [21,22]. One such 
technique is a fuzzy system, which is widely utilized due to its universal approximation 
property [23–25]. In the field of robotics, J. Baek, et al. [26] proposed an adaptive sliding 
mode control scheme for a robot manipulator, which demonstrated considerable results 
through online adaptive parameter adjustments. M. O. Efe [27] applied this same control 
scheme to a 2 degrees of freedom robotic arm, resulting in improved tracking performance 
with enhanced robustness and insensitivity. S. Moussaoui, et al. [28]. proposed a fuzzy 
approximation-based adaptive sliding mode control for uncertain nonlinear systems with 
perturbations. The effectiveness and robustness of the proposed adaptive fuzzy controller 
were demonstrated through two simulation case studies from the underactuated system 
control literature. However, these studies often simplified dynamic models to linear 
transfer functions, leading to inaccuracies in the developed models. Additionally, the 
excitation generated from sources such as road, suspension, and tires was neglected or 
simplified, resulting in discrepancies between calculated results and actual outcomes. 
With the increased emphasis on the MLRS marching fire requirement, these discrepancies 
cannot be ignored and must be addressed in future research. 

On the other hand, the control system is often overlooked in the dynamic simulation 
of marching fire, particularly in the context of MLRS. This lack of attention results in 
difficulties in accurately reflecting the control effect of rocket launchers in real-world 
scenarios. Some researchers have studied the controlled performance of tank marching 
shooting, such as Liu et al. [29], who modeled the firing dynamics of tank marching fire 
to understand initial disturbances but did not delve into the control system in depth. Jin 
et al. [30] established a multi-rigid body dynamics model and controlled the motion of the 
gun barrel through PID control, demonstrating its effectiveness at high speeds. Purdy et 
al. [31] conducted research on the impact of nonlinear friction on control performance and 
obtained quantitative analysis results through a nonlinear model of the electromechanical 
dynamic control system of a main battle tank, using PI control. Currently, intelligent 
algorithms in linear systems are well-studied, but simulation studies on the dynamic 
control of MLRS marching fire based on intelligent control methods are insufficient due 
to the complexity of the system and the demanding computational requirements of 
intelligent algorithms. 

This study investigates the dynamic control of MLRS marching fire actuated by a 
PMSM drive using a fuzzy adaptive sliding mode control (FASMC) to enhance stability 
and robustness. A nonlinear model of the motor-mechanism coupling in MLRS marching 
fire was established. The implementation of PID or SMC controllers can result in poor 
control performance due to uncertainties including parametric variations and unmodeled 
dynamics. To address this issue, a FASMC was introduced to compensate for these 
uncertainties. The sliding and switching parameters of the FASMC were updated 
adaptively based on the Lyapunov stability theory, ensuring the asymptotic stability of 
the closed-loop system. The main contributions of this paper are summarized as follows. 
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a. The co-simulation dynamic control model of the motor-mechanism coupling MLRS 
was established. 

b. The FASMC controller was developed considering the systematic nonlinearity, in 
which the FASMC was built to adapt to the uncertainties of the system. 

c. The proposed controller is first introduced and successfully applied to the field of the 
dynamic control for MLRS marching fire considering the occurrence of uncertainties. 
The paper was structured as follows. Section 2 presents the formulation of the motor-

mechanism coupling dynamic model of MLRS marching fire through co-simulation. The 
FASMC controller, designed to adapt to lumped uncertainty online, was formulated 
based on the Lyapunov stability theory in Section 3. In Section 4, simulation results and 
discussions were presented to validate the proposed controller. The conclusion was 
provided in Section 5. 

2. Nonlinear Dynamic Model of MLRS Marching Fire 
2.1. Mechanical System Dynamic Modeling 

The dynamic model of the MLRS marching fire was established in this study, taking 
into account the complex multi-body mechanical system of the MLRS. The model 
abstracts the MLRS into two parts: (1) the vehicle body part, which consists of tires, 
suspension, vehicle beam and body, etc.; (2) the firing part, which includes the base, rotary 
part, pitch part, storage and transport of launch box, directional tube and rocket, etc. The 
suspension used in the study was a double-wishbone independent suspension, which 
comprises two unequal V-shaped or A-shaped control arms and a strut-type hydraulic 
damper. The upper control arm was connected to the damper at one end and the body at 
the other end; the lower control arm was connected to the wheel at one end and the body 
at the other end; the upper and lower control arms were connected by connecting rods. 
The influence of random road excitation was simulated by establishing a plate-road 
contact model. The schematic diagram of the dynamic model was shown in Figure 1. 
Moreover, the unevenness of the road surface is an important disturbance factor that has 
a significant effect on the accuracy of the MLRS Marching Fire, and its impact on the 
overall system can be estimated by analyzing the power spectrum of the road surface and 
the system frequency response. Additionally, the dynamic model can be used to study the 
dynamic characteristics of the MLRS Marching Fire under different road conditions. 

It is worth noting that the MLRS multi-body dynamics model was built based on the 
Adams platform, including the tire model, and the suspension model. The UA model was 
used for the tire modeling, and its nonlinearity has been considered. 

 
Figure 1. Dynamics model of multiple launch rocket system. 
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2.2. 3-D Road Roughness Model 
The unevenness of the road surface is an important disturbance that has a significant 

impact on the accuracy of the MLRS marching fire. This disturbance affects the accuracy 
of the firing system when adjusting the gun control through the tires, suspension system, 
and vehicle body up to the firing part of the rocket launcher, and then affects the firing 
accuracy of the weapon system when marching fire. In order to accurately simulate the 
dynamic response of the overall system, the power spectrum of the road surface and the 
system frequency response must be calculated. In this paper, the MLRS system is 
considered a nonlinear system due to the existence of nonlinear components such as 
suspensions and springs, and thus the superposition principle applicable to linear systems 
is not applicable. Therefore, the unevenness reconstruction of the road surface in the time 
or space domain must be performed. 

The power spectrum density function can be represented as [32], 

( ) ( )0
0

  
W

q q
nG n G n
n

−
 

=  
 

 (1) 

where, n  is the spatial frequency; 0n  is the reference spatial frequency; ( )0qG n  is the 

pavement unevenness coefficient; W  is the frequency index—the slope of the slope line 
on the double logarithmic coordinates, it determines the frequency structure of the 
pavement power spectral density, generally taken as 2. 

The random process of the three-dimensional road can be represented as, 

( )
1

2
2 sin

N
i

i i i
i

f x
q x A

v
π

θ
=

 = + 
 ∑  (2) 

where x  is the length in the road direction, iA is the amplitude of the harmonic 
fluctuation corresponding to the center frequency, if  is the inherent frequency of the 
vehicle vibration system, v  is the driving speed, iθ  is the random number in the 
interval of [ ]0,2π . Since the inherent frequency of the vehicle vibration system is 0.7~15 
Hz and the common vehicle speed is 36~180 km/h (10 ~ 50m / s ), the lower and upper 
limits of the excitation time-frequency of the ground acting on the tires are taken to be

0.5Hzlf = , 30Hzuf = , the upper and lower limits of the spatial frequency needed to 
study the vehicle vibration can be represented as, 

13mu
u

f
n

v
−= =  (3) 

10.01ml
l

f
n

v
−= =  (4) 

In order to analyze the robustness of the adopted control method for the MLRS 
marching fire under actual driving road conditions, this paper adopts the harmonic 
superposition method and writes a Matlab algorithm based on the harmonic 
superposition method to generate three kinds of pavement unevenness pavement of class 
A, D, and F. The three-dimensional road excitation is shown in Figure 2. Moreover, the 
power spectrum of the road surface can be used to estimate the impact of the road 
unevenness on the overall system, and the system frequency response can be calculated 
to further analyze the dynamic characteristics of the MLRS Marching Fire under different 
road conditions. Grading standard of road roughness was shown as Table 1. 
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Table 1. Grading standard of road roughness. 

Road Grade 
( ) 6 3 0 10 mqG −  

Upper Limit Mean Value Lower Limit 
A 8 16 32 
D 512 1024 2048 
F 8192 16,384 32,768 

 

 
 

(a) (b) 

 

 

(c)  

Figure 2. Three dimensional road excitation. (a–c) The magnitude of the roads in classes A, D, and F. 

2.3. Permanent Synchronous Motor Modeling 
The 3-phase AC permanent magnet synchronous motor (PMSM) is widely utilized 

in various industrial applications due to its compact size, high efficiency, and lightweight 
characteristics. In this study, PMSM is selected as an actuator for dynamic control as a 
result of its adjustable rotor parameters and excellent control performance. However, the 
PMSM is time-varying, coupled, and nonlinear, making its parameters difficult to describe 
in a 3-phase fixed reference frame. To simplify the computational process of deriving the 
mathematical model of the PMSM, the dqO  coordinate system and abcO  stationary 
coordinate system of the PMSM are established based on the Clark and Parker transforms 
[33]. The surface-mounted PMSM and the field-oriented control strategy were chosen. The 
model of the control strategy is referred to the method of Liu. et al. [34,35]. The magnetic 
field axis of the permanent magnet base is designated as the -axis and 90° ahead is 
designated as the -axis. The three-phase parameters in the fixed reference frame are 
transformed into two-phase parameters in the synchronous reference frame as shown in 
Figure 3, where ω is the speed of rotation and θ is the angular displacement of rotation. 

According to Clarke and Park transform, one can obtain 

dq abc dq abc−=P T P  (5) 

where P  can be the arbitrary parameters of PMSM. 

 , b
TT

dq d q abc a cP P P P P=    =  P P  (6) 
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3 32     

3 2 2sin sin sin
3 3

r r r
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r r r

π πα α α

π πα α α
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    − +    
    =

    − +    
    

T  (7) 

where rα  is the angular displacement of rotor. 
With the transformation (7), the voltage equation of PMSM in the reference frame 

dqO  can be expressed as, 

 q s q q r q

d s d d r d

u R i p w

u R i p w

ψ ψ

ψ ψ

= + +

= + −
  (8) 

where, 
du , qu  are the component of stator voltage in the d axis, and q axis, respectively; 

di , qi  are the component of stator current in the d axis, and q axis, respectively; 

dψ , qψ  are the component of stator flux in the d axis, and q axis, respectively; 

sR  is the stator resistance; 
p  is the differential operator; 

rw  is the angular speed of rotor 

 
Figure 3. 3-phase conversion to 2-phase synchronous. 

The stator flux equation can be written as, 

           
 q q q

d d d f

L i

L i

ψ

ψ ψ

=

= +
 (9) 

where dL  and qL  are the components of stator inductance in the d axis and q axis, 
respectively; fψ  is the permanent magnet flux. 

The torque equation of PMSM is 

( )2  
3e p d q q dT n i iψ ψ= −  (10) 

where eT  is the electromagnetic torque; pn  is the number of pole pairs. 
The field-oriented control technique decouples the d-axis current and the q-axis 

current, allowing the stator current component 0di = and the electromagnetic torque to 
be controlled solely through the manipulation of current qi  magnitude. Consequently, 
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the implementation of field-oriented control simplifies the PMSM driving system into a 
DC motor model. Equations (8) and (10) can be reformulated as follows: 

   d r du wψ= −  (11) 

 q s q q q r fu R i L i p wψ= + +  (12) 

( )2   
3e p f q t qT n i K iψ= =  (13) 

where 2
3t p fK n ψ=  is the torque coefficient. 

Equation of motion of the rotor is 

 r
e m m r L

dwT J B w T
dt

= + +  (14) 

where LT , mB and mJ  are the load torque, the damping coefficient, and the inertia of 
rotor, respectively. 

2.4. The Co-Simulation Model of the MLRS 
The objective of the modeling process is to construct a motor-driven servo system for 

the MLRS. This paper presents a co-simulation model, which is established through the 
integration of Adams and MATLAB/Simulink. The driving torque of the MLRS is 
generated by the PMSM motor. Table 2 displays the primary PMSM parameters utilized 
in this study. 

Table 2. Pitch/Azimuth servo motor parameters. 

Parameter of PMSM Value of Pitch/Azimuth 
Inertia(converted to motor output shaft) (kg∙m2) J = 3.569 × 10−3/4.369 × 10−2 
Electromagnetic torque coefficient (N∙m/A) Kt = 1.11/1.34 
Damping coefficient (N∙m/s) B = 3.34 × 10−3 
Stator resistor ( )Ω  RS = 2.875 
Winding inductance (H) Ld = Lq = 8.5 × 10−3 
Rated current (A) Ie = 6.4/9.9 
Rated rotation speed (RPM) n = 3000/2500 
Maximum allowable current (A) Imax = 12.8/19.8 
Polar logarithm Pn = 4 

The 3-D model of the MLRS was initially imported into Adams, where the redundant 
degrees of freedom were constrained using the standard hinge during modeling. The 
simulation of the motor force was carried out by applying torque at the motor output gear. 
An input state was created, which was the output control force of the power motor 
calculated by the motor servo system calculation model. The state variable (the output 
control force) was associated with the motor force and was set as the input variable of the 
dynamical systems. The angular displacement (obtained with velocity integral), velocity, 
and acceleration of the MLRS were designated as the output variables. The co-simulation 
interface file was then exported from the Adams/Control module. The designed controller 
with the control method was compiled into the S function form using the C language. The 
control system model was established in Simulink. The co-simulation interface file was 
used to integrate the multibody dynamics model as a controlled object into the control 
model. The established motor-mechanism co-simulation model of the MLRS marching fire 
is depicted in Figure 4. 
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Figure 4. Motor-mechanism co-simulation model of MLRS marching fire. 

3. Control System Design and Stability Analysis 
3.1. Fuzzy Logic System 

Fuzzy logic system is a system in which the input, output, and state variables are 
defined on a fuzzy set, which will be used for controller design in this paper. A fuzzy logic 
system can be expressed by IF-THEN rules as [36], 

1    :            j j j
mis and and is THEN is

j
m1R x yF A xI A B  (15) 

where 1,2, , ,j N= …  N  is the number of fuzzy rules for each fuzzy model, and 
( )1 2 mx x x= ， ， ，x  and y are the input and output of the fuzzy systems, respectively, 

j
iA  and jB  are fuzzy sets, respectively. 

The fuzzy system with singleton fuzzification, product inference and center average 
defuzzification is expressed as [37], 

( )
( )

( )
1 1

1 1

  
j

i

j
i

M mj
c iAj i

M m
iAj i

y x

x

µ

µ

= =

= =

 
 
 =

 
 
 

∑ ∏
∑ ∏

y x  (16) 

where ( )j
i

iA xµ  is the membership function of the linguistic variable ix , j
cy  is the 

center point of the fuzzy set output by the jth rule. 
Then, the function (16) can be rewritten as follow 

( ) ( )y x xϑ= φ  (17) 

where 
1 2 m

c c cy y yϑ  =   
， ， ， , ( ) ( ) ( ) ( )1 2 Tmx x x xϕ ϕ ϕ =  ， ， ，φ ,

( ) ( ) ( )
1 1 1

 /j j
i i

m M m
j

i iA A
i j i

x x xϕ µ µ
= = =

 
 =
 
 

∏ ∑ ∏ . 

From the nonlinear mapping ability of fuzzy logic system, there are optimal values 
of ϑ , such that 

( ) ( )  y x xϑ ε= +φ  (18) 

where x  is the input of fuzzy logic system, and y  is the function to be identified. ε  is 
the estimation error of the optimal fuzzy logic system. ( )xφ  is the fuzzy basis function, 

and ( ) 1x ≤ φ . 
Using the fuzzy logic system to identify the unknown nonlinear function, the 

estimated value can be written as follows, 
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( )ˆŷ xϑ= φ    (19) 

where ϑ̂  is the estimated value of ϑ . 
According to (18) and (19), the estimated error of fuzzy logic system can be obtained 

as follows, 

( )ˆ  y y y xϑ ε= − = +

 φ  (20) 

where ϑ  is the estimated error of ϑ . 

3.2. Design of Fuzzy Adaptive Sliding Mode Controller 
The controlled object of the MLRS servo system is the PMSM, and the PMSM state 

equation can be described as [38], 

( )1 1

2 2

0 1 0
0

0 1m t

m m

x x
u d tB k

x x
J J

   
        = + +        − −           





 (21) 

where 1 2 or ,  or x xθ φ θ φ= =   , θ is the pitch angular displacement; ϕ is the rotation 
angular displacement mB  is the coefficient of viscous friction; mJ  is the rotational 
inertia; tk  is the electromagnetic torque coefficient; u  is the input of the motor; ( ) d t  is 
the uncertain disturbances, including the effect from the road, tires and suspension. 

Expressed in angular quantities as, 

( )
¨

  m mA Bu d tθ θ= + +  (22) 

where m

m

B
A

J
= − , t

m

k
B

J
= − ; and ( )d t D≤ , D  is a positive real number. θ  = mθ . mθ is 

the actual value of MLRS, and rθ is the expected value. 
By choosing the deviation between the target command and the actual feedback 

value as the control quantity, the error can be described as, 

     r m

r m

e
e

θ θ
θ θ

= −
 = −  



 (23) 

Define the integral sliding surface as, 
¨

1 2
0
( )

t
rms c e c e dtθ θ= − − −∫

  (24) 

Sliding motion existence condition, 

0s s= =  (25) 

Then, 
¨

1 2 0s e c e c e= + + =   (26) 

By determining 1 2,c c , the tracking error will converge to zero. 
Substituting Equation (22) into Equation (26) yields the system control law as 

( )
¨

*
1 2

1    rmu A c e c e d t
B

θ θ
 

= − + − − − 
 



  (27) 

Equation (27) is the ideal control law, where A and B are deterministic parameters 
and ( )d t  is a deterministic disturbance. However, A, B, and ( )d t  are uncertain in the 
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real servo system, because the rotational inertia changes in the process of the MLRS 
marching fire, and there are errors in the parameters related to the motor in practical 
applications, road excitation, and gas jet impact are random. Therefore, the system cannot 
achieve the ideal control law. In this paper, FASMC control is used to achieve the 
approximation of the ideal control law. 

The fuzzy system is described as, 

( ) ( ), T
fzu s xϑ ϑ= φ  (28) 

where, , T
NM NS Z PS PM=   φ φ φ ,φ ,φ ,φ .The PMSM parameters in the simulation model are 

the same as Section 2.4., and the affiliation function of the system output is chosen as, 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

2

2

2

2

2

exp 2 / 0.5 )

exp 1 / 0.5 )

exp / 0.5 )

exp 1 / 0.5 )

exp 2 / 0.5 )

NM

NS

Z

PS

PM

x x

x x

x x

x x

x x

ϕ

ϕ

ϕ

ϕ

ϕ

 = − +  
 = − +  
 = −  
 = − −  
 = − −  

 (29) 

According to the fuzzy approximation principle, there exists an optimal fuzzy system 
to approximate *u . 

( ) ( )* , T
fzu u s xϑ ε ϑ ε= + = +* * φ      (30) 

where ε  is the approximation error and satisfies Eε < . 

The estimate of ϑ*  is taken to be ϑ̂ , due to the unknown parameters of the fuzzy 
system, 

( ) ( )ˆ, ˆ T
fzu s xϑ ϑ= φ  (31) 

then, 

( )* , ˆ
fzu u s ϑ ε= +  (32) 

The error ε  existing between the ideal control law *u  and the optimal fuzzy 
system output control quantity fzu  can be compensated by the switching control swu . 
The total control law is expressed as, 

  fz swu u u= +  (33) 

According to Equation (32), define 
* *û ˆfz fz fz fzu u u u ε= − = − −   (34) 

ˆ  ϑ ϑ ϑ= −

*   (35) 

Then, 

( )   T
fzu xϑ ε= −

 φ  (36) 
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( )

( )

( )

* 1    

1

1                  

rm

mm

u A e s d t
B

A s d t
B

Bu s
B

θ θ

θ θ

 
= − + + − −  

 
 

= − + − −  
 

= −

















 (37) 

Transforming the above equation yields, 

( )*   s B u u= −  (38) 

Substituting Equation (33) into Equation (38) yields, 

( )*   fz sws B u u u= + −  (39) 

According to stability theory, the Lyapunov function is defined as [39], 

2
1

1

1
2 2

TBV s ϑ ϑ
η

= +     (40) 

where 1η  is a positive constant. 
Then, 

( )

( )

( )( )

( ) ( )

1
1

*

1

1

1

1

 

1       

T

T
fz sw

T
fz sw

T T
sw

T
sw

BV ss

BsB u u u

BsB u u

BsB x u

B s x sB u

ϑ ϑ
η

ϑ ϑ
η

ϑ ϑ
η

ϑ ε ϑ ϑ
η

ϑ ϑ ε
η

= +

= + − +

= + +

= − + +

 
 = + + −
 
 



 





 



 





  



 

 

φ

φ

 (41) 

According to the stability condition, 1 0V < . The adaptive law is designed as, 

( )1
ˆ s xϑ ϑ η= = −


 φ     (42) 

( )  swu Esgn s= −  (43) 

( )

1

 

0                            

V E s B sB

E s B s B

E s B

ε

ε

ε

= − −

≤ − +

= − −

<



 (44) 

The value of switching gain will directly affect the system chatter, in practice, often 
take the value empirically, if the gain value is too large, it will produce large chatter, on 
the contrary, the control system is unstable, so the switching gain also has uncertainty, 
this paper to adaptive way to select the gain. 

Using Ê  instead of E , Equation (43) transforms to, 
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( )ˆ   swu Esgn s= −  (45) 

where is the estimated switching gain. 
Define the estimation error as ˆE E E= −  and define the closed-loop system 

Lyapunov function as, 

2 2 2
1

2 1 2

1
2 2 2 2

   TB B BV V s ϑ ϑ
η η η

= + = + +  E E  (46) 

where 1η , 2η  are positive real numbers to ensure system stability. And the values of E
, 1η , 2η , 1c , 2c  comply with the Hurwitz criterion. 

Derivation of Equation (46), 
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To make V  < 0, the adaptive law is designed such as, 

2  ˆ   E sη=  (48) 

Then, 
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 (49) 

The MLRS is a complex nonlinear system that is also affected by random excitation 
from tires, suspensions, and road surfaces, especially during the marching firing process. 
The closed-loop control approach of the deterministic system has been difficult to be 
applied on this system. The objective of the proposed fuzzy adaptive sliding mode control 
is to adjust the control parameters online to adapt to the variation of excitation. Figure 5 
shows the closed-loop control process of the electro-mechanical coupled system with 
FASMC. The command signal is input, the parameters are adaptively adjusted after the 
error calculation, and the FASMC controller solves the output theoretical speed and is 
executed by the PMSM to achieve the angle adjustment. 
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Figure 5. Block diagram of motor-mechanism coupling system with FASMC. 

4. Simulation and Analysis 
In the simulations conducted, similar initial conditions were utilized. The initial static 

equilibrium speed of the MLRS was set to 0 and the vehicle was driven at a speed of 30 
km/h under three-stage road driving conditions (A, D, and F). A command signal was 
added after the vehicle was driven at a uniform speed for 0.5 s and the driving disturbance 
was addressed in real-time through the road excitation dynamics model. The rocket 
launch was triggered at t = 3 s, with the gas jet impact force added as an impact load. 

To meet actual combat requirements, the command signal for the MLRS position 
servo action was divided into a step signal and a sine tracking signal. The proposed 
FASMC was compared with two widely used control methods, PID control and SMC, to 
evaluate its accuracy and robustness. The expressions of PID and SMC are, respectively, 

0

( )( ) ( ) ( )
t

p i d
de tu t K e t K e t dt K

dt
= + +∫   

where, , ,p i dK K K  is the proportional, integral, and differential gain, respectively. 

( ) ( ) ( )1 sgn sgnr m r mu c A ks s D s
B

θ θ θ θ ε = − + − + + + 
      

The parameters were adjusted by parameter testing to ensure that the PID and SMC 
parameters were optimal. The control system parameters were obtained as shown in Table 
3. 

Table 3. The control system parameters. 

PID SMC FASMC 
Kp Ki Kd c k ε D C1 C2 1η  2η  
520 0.05 13 30 15 0.05 15 0.01 15 200 0.5 

Figures 6 and 7 and Table 4 indicate that in terms of adjustment time, both SMC and 
FASMC have similar results at 0.7 s on Class A pavement, which is a 30% improvement 
compared to PID control’s regulation time of 1.03 s. The FASMC demonstrates higher 
robustness to various degrees of road unevenness, with its adjustment time staying 
around 0.75 for Class D and Class F pavements, while SMC’s adjustment time increases 
to 0.8 s as the pavement condition worsens. This trend is also observed for steady-state 
error and impact disturbance. Despite the worst working condition in Class F pavement, 
FASMC still demonstrates good accuracy and robustness, with a maximum steady-state 
error reduction of 49% and 34% for PID and SMC respectively, and a 67% and 39% 
reduction in impact disturbance for PID and SMC respectively. 
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(a) (b) (c) 

Figure 6. Simulated results of different controllers in step signal. (a–c) Angular displacements of 
azimuth for class A, D, and F roads. 

   
(a) (b) (c) 

Figure 7. Simulated results of different controllers in step signal. (a–c) Angular displacements of 
pitch for class A, D, and F roads. 

Table 4. Comparison of key indicators under different control methods. 

Class of Road Direction 
Adjustment Time (s) Maximum Steady State 

Error (mil) 
Impact Disturbance (mil) 

A D F A D F A D F 

PID Pitch 1.03 1.10 1.15 0.67 4.78 9.55 4.78 4.82 14.30 
Azimuth 1.01 1.03 1.08 0.47 2.87 7.64 5.73 5.84 8.62 

SMC 
Pitch 0.73 0.78 0.82 0.12 4.05 7.35 2.35 2.30 7.64 

Azimuth 0.72 0.75 0.80 0.08 1.53 2.05 1.85 2.03 2.32 

FASMC Pitch 0.71 0.75 0.77 0.10 3.65 4.86 2.05 2.20 4.65 
Azimuth 0.71 0.74 0.75 0.07 1.35 2.02 1.73 2.01 1.05 

The SMC has inherent chattering characteristics. As shown in Figure 8, the FASMC 
effectively reduces the chattering phenomenon of sliding mode control. The chattering 
amplitude has been reduced from 2 to 0.5, and the chattering frequency has been 
significantly reduced, resulting in lower demands on motor performance. 
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(a) (b) 

Figure 8. Comparison of SMC and FASMC chattering amplitude values. (a) Chattering amplitude 
value of SMC, (b) Chattering amplitude value of FASMC. 

As depicted in Figures 9–12, the tracking error of FASMC in sine signal was 
significantly lower compared to that of PID and SMC. During A-class road conditions, 
FASMC has a small road excitation, but it requires an initial self-adaptive process. The 
tracking error starts at around 20 mils, but once stabilization, the sine tracking error can 
be effectively reduced to within 4 mils. The random excitation amplitude and uncertainty 
in road conditions of classes D and F present a challenge to the tracking error, but the 
tracking accuracy remains acceptable with an error controlled within 10 mils. These 
results demonstrate the feasibility of using FASMC. 

   
(a) (b) (c) 

Figure 9. Simulated results of different controllers in sine signal. (a–c) Angular displacements of 
azimuth for class A, D, and F roads. 

   
(a) (b) (c) 

Figure 10. Simulated results of different controllers in sine signal. (a–c) Angular error of azimuth 
for class A, D, and F roads. 



Machines 2023, 11, 427 16 of 18 
 

 

   
(a) (b) (c) 

Figure 11. Simulated results of different controllers in sine signal. (a–c) Angular displacements of 
pitch for class A, D, and F roads. 

   
(a) (b) (c) 

Figure 12. Simulated results of different controllers in sine signal. (a–c) Angular error of pitch for 
class A, D, and F roads. 

5. Conclusions 
This paper addresses the problems of poor precision and weak robustness of MLRS 

marching fire, and fully considers the characteristics of uncertain parameters and strong 
randomness. A motor-mechanism coupling dynamic model of MLRS marching fire was 
established and a FASMC controller was designed using the co-simulation method. The 
multiple parameter uncertainties of the system were fully considered and the fuzzy logic 
system was used to improve the stability and robustness of the system. The dynamic 
characteristic of MLRS marching fire under the control of the servo system was studied 
by the co-simulation method based on the Adams/View module and MATLAB/Simulink. 
The following conclusions were obtained, 
(1) FASM demonstrates superior robustness and accuracy in commanding signals. In 

comparison to PID control, the adjustment time was reduced by 30% and compared 
to SMC, it was reduced by 6.2%. Additionally, the steady-state error and shock 
disturbance were decreased by 49% and 67%, respectively, in comparison to PID 
control and by 34% and 39%, respectively, in comparison to SMC. 

(2) FASMC significantly improved the chatter characteristics of SMC, reducing the 
frequency of chatter and decreasing the amplitude by 75% compared to SMC. 

(3) FASMC also significantly improved the tracking accuracy of MRLS, controlling the 
tracking error under F-level pavement excitation within 10 mil, resulting in a 
performance improvement of 74% over PID control and 50% over SMC control. The 
study found that under Class D and F pavements, pavement excitation exceeded 
impact disturbance as the main factor affecting accuracy. 
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