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Abstract: As companies are trying to build more resilient supply chains using digital twins created by
smart manufacturing technologies, it is imperative that senior executives and technology providers
understand the crucial role of process simulation and AI in quantifying the uncertainties of these
complex systems. The resulting digital twins enable users to replay history, gain predictive visibility
into the future, and identify corrective actions to optimize future performance. In this article, we
define process digital twins and their four foundational elements. We discuss how key digital twin
functions and enabling AI and simulation technologies integrate to describe, predict, and optimize
supply chains for Industry 4.0 implementations.
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1. Introduction

IoT and digital twin adoption are expected to unlock USD 5.5 trillion–USD 12.6 trillion
across the globe by 2030 [1]. Thus, it is critical to understand what a digital twin is and how
digital twin technology could enable an organization’s digital transformation. A digital
twin is a virtual representation of a physical entity or a process. Driven by real-time IoT
data, digital twins change throughout the life cycles of entities and processes. An example
of a physical entity may be an individual asset such as an industrial machine. It may also
represent a sub-system of a machine as well as a collection of sub-systems depending on
the complexity of the machine. In each of these cases, the digital twin is called an “asset
twin” (or “product twin”). A digital twin can also represent a process flow in a system
of individual assets. An example is a manufacturing process flow an entity follows in a
factory as it travels from one machine to another and is gradually transformed from raw
material into a finished good. In this case, the digital twin is called a “process twin”. The
focus of this article is on process twins built for factories and supply chains. Thus, we refer
to it as “factory twin” and “supply chain twin” in the remainder of the article.

We assume factory twin to consist of virtual representations of physical manufacturing
resources and processes that would exist in a supply chain’s factory. A factory twin can be
developed for an existing manufacturing facility and used for enhancing the resilience of
its supply chain. Alternatively, it can be developed for a factory that has not been built yet
but is under design. In this case, the factory twin is used for the management of the risk
involved in making strategic investment decisions for the entire supply chain. The twin
enables profit-optimal decisions despite the complexity of the manufacturing process flow
and the high operational risk affecting cost and service. However, the role of the factory
twin does not cease with strategic planning. A digital twin evolves, learns, and improves
over time throughout the life cycle. Thus, any strategic long-term planning is followed
by efforts of operationalization. A semiconductor manufacturing use case introduced
in [2] demonstrates this aspect of factory digital twins. The decision timelines span from
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strategic to operational phases of planning and optimizing equipment, process, and people
management to achieve an optimal unit cost of production and a level of product quality
to successfully compete in the market. The key takeaway from this use case is that a
digital twin built for a manufacturing system does not remain static; instead, it changes
as a direct result of operating in an evolving, learning, and improving environment. The
objective of using digital twin technology in manufacturing and supply chain settings is to
utilize the data collected from machines and processes for bridging the gap between factory
and supply chain operations and their virtual models. Furthermore, insights are derived
about the optimal factory and supply chain management using those virtual models, and
tangible actions are determined to enhance the key performance indicators (KPIs), including
throughput, quality, cost, on-time delivery, sustainability, and resiliency [3].

We complement our digital twin definitions with the characterization provided by
the Digital Twin Consortium [4]. Founded in 2020, the consortium brings corporations,
innovators, academia, and governments together to accelerate the development, adoption,
and widespread use of twin technology for digital transformation. With a steering com-
mittee composed of Dell Technologies, GE Digital, Microsoft, Northrop Grumman, and
Johnson Controls, the consortium hosts working groups on topics ranging from aerospace
and defense and healthcare and life sciences to manufacturing, mobility and transportation,
and financial technology. The consortium defines a digital twin as a virtual representation
of real-world entities and processes, synchronized at a specified frequency and fidelity.
Thus, a factory digital twin is required to have four main characteristics: (1) a physical
(factory) representation; (2) a virtual representation of assets and manufacturing processes
in the factory; (3) synchronization between these physical and digital representations at
a pre-specified frequency and fidelity; and (4) the ability to learn and adapt, leading to
improved virtual models and enhancements in the physical representation of the factory.

In this article, we discuss the importance of a closed feedback loop between physical
and digital representations explicitly modeling the process flow of the factory (“process
twin”). However, if the objective were to identify the optimal operating settings of specific
machinery by directly modeling the relation between the facility inputs and outputs via
machine learning (ML) without the explicit modeling of the process flow, we would call
the virtual representation of the entire manufacturing facility an asset twin. This is beyond
the scope of this article; we refer the reader to [5] for a use case where prediction models
are used to estimate product quality for line operators in real time, while optimization
models are deployed to ensure the optimal operation of production lines. Another topic
that is beyond the scope of this article is the use of digital twin technology to support
product design. We refer the reader to [6] for a study discussing how to utilize computer-
aided design (CAD) models and manufacturing simulations to optimize product design.
In the remainder of the article, we focus on the role of discrete-event factory simulation,
machine learning, and reinforcement learning to optimize manufacturing process design
and operations.

The reader may wonder whether every factory simulation is a digital twin since factory
simulations are built and validated by using historical data sets, and the validated models
can be used to replay history and provide insights about how to optimize the factory KPIs.
We do not consider all simulations a digital twin because synchronization and learning
are required for the simulations to serve as true digital twins. The digital twins build on a
combination of real-time and historical data to represent the past and present and predict
the future. They are further adapted to use cases, powered by integration, and guided by
domain knowledge.

A good resource for a discussion of digital twins and enterprise adaptation is the
tutorial by Kulkarni et al. [7]. More recently, Grieves discussed the development and
management of complex systems using intelligent digital twins [8]; Biller et al. presented
an introductory digital twin tutorial with a focus on the role of simulation in supply
chain digital twin development [9]. Applications of digital twins have also been widely
discussed in connection with Industry 4.0 [10]. We further refer the reader to [11,12] for
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digital twin technology in smart manufacturing [13], in production logistics; and [14], in
material handling. In this article, we focus on factory twin development and discuss how
key digital twin functions and enabling technologies make it possible to describe, predict,
and optimize a factory’s KPIs. Focusing on the role of simulation augmented by machine
learning (ML) and reinforcement learning (RL), we touch on several challenges that arise
in industrial twin use cases and how they can be overcome. The common theme across
all these studies is that the adoption of emerging technologies such as IoT and edge and
cloud has accelerated digital twin development and that digital twins be a critical enabler
of digital transformation in the foreseeable future.

The remainder of the article is organized as follows: Section 2 introduces the foun-
dational elements of factory and supply chain twins. Section 3 presents two examples of
digital twin development frameworks, one of which is built on the foundational elements.
Section 4 discusses building and operationalizing digital twins. Section 5 focuses on the
role of simulation, ML, and RL in the twin development while Section 6 presents evalu-
ation criteria to support factory simulation software design and/or selection. Section 7
discusses several different challenges that may arise in industrial process twin use cases
where simulation plays a key role in execution, followed by the conclusion in Section 8.

2. Factory and Supply Chain Twin Foundational Elements

In this section, we discuss the foundational elements of factory and supply chain digital
twins. This is important because the foundational elements may aid the reader when trying
to differentiate between different digital twin approaches and various vendor offerings. We
recommend identifying the differentiators with respect to the four foundational elements
of digital twin development: Data, Domain, Analytics, and Outcome.

The Data element includes all categories of data such as (i) engineering and design
(product life cycle management (PLM) data); (ii) experts’ opinions; (iii) historical data
from enterprise asset management (EAM), manufacturing execution system (MES) and
enterprise resource planning (ERP); (iv) sensor IoT data; and (v) texts, images, videos, and
audio. It is critical that this list also encapsulates market coupling and includes outcomes
that are associated with the decisions implemented in previous periods. As illustrated
in Figure 1, these data sets flow into the factory twin solution periodically and drive the
learning process. Augmentation of the data sets may be needed, based on the content of the
data collected. An artificial intelligence (AI) technique known as “synthetic data generation”
may be the method of choice in that case [9]. Combinations of different categories of data
are used to describe the factory configuration and state and to capture the uncertainty in
the input processes such as part interarrival times, machining times, and times to transport
work-in-process inventory. The granularity of the input data and the unit of time assumed
by the factory digital twin may range from seconds, minutes, and hours to months, quarters,
and years. Ultimately, the value chosen for the unit of time depends on the frequency of
decision making.

The Domain element combines physics-based modeling of the processes with do-
main expertise. The areas of expertise may include thermodynamics, computational fluid
dynamics (CFD), failure mode and effects analysis (FMEA), plant maintenance, material
analysis, mechanical design, and operational management. It is also important to consider
the current life cycle phase (designing, planning, operating, or retiring).

The Analytics element includes key digital twin functions, enabling technologies,
learning, and control. Technologies, such as advanced analytics supporting digital twin
development, often include IoT and event stream processing, big data analytics, statistical
modeling and time series forecasting, visual analytics, AI, ML, RL, natural language
processing, computer vision, simulation, and optimization. Factory twin development
requires integration of these analytics to achieve target factory KPIs through replaying
history, conducting bottleneck and what-if analyses, and performing resilience testing. For
example, SAS Institute develops AI solutions for real-time queue monitoring and resource
control by integrating simulation with IoT, event stream processing, computer vision, and
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reinforcement learning [15–17]. Siemens builds factory twins using a combination of plant
simulation and IoT capabilities to improve production efficiency and quality [18].

Figure 1. Illustration of an evolving, learning, and improving digital twin environment.

It is important to note that any factory is part of a supply chain. Thus, the use
cases of the Analytics element may include promotion optimization, demand forecasting,
production scheduling, and optimization of inventory, supply, and logistics. Furthermore,
the expected impact associated with the Outcome element may range from performance
monitoring and data accuracy enhancements to increased financial outcomes, service
improvements, and increased resilience. The focus of this article is on the development
of factory twins. Bringing the resulting factory twins together in a supply chain network
model would enable end-to-end system analysis. Consequently, we would gain enhanced
visibility not only into factory performance but also into the effectiveness of production,
inventory, and delivery plans across the entire network of suppliers, plants, distribution
centers, and customers. We refer the reader to [2,9] for a high-level description of how
the digital twin enabling technologies could further support the supply chain digital
twin development.

3. Digital Twin Development Frameworks

Factory and supply chain twins are expected to accelerate the holistic understanding
of factory and supply chain operations and challenges, identify optimal solutions, and
provide effective shop floor and supply chain network control. The scope of the digital twin
development is motivated by the target KPIs and tailored to the use case. However, on the
journey to digital transformation, the use case evolves over time. Therefore, it is important
to modularize the digital twin development to allow new solutions to build on and learn
from previous solutions. Such a modular approach can be enabled by a digital twin
framework composed of modular development steps. This framework enables clarity of
thought and communication, transparency of actions, and reduction of development time.

In this section, we present two digital twin development frameworks. The first frame-
work builds on the four foundational elements (Data, Domain, Analytics, and Outcome) [9].
It is designed to distinguish among the scopes of different digital twin developments. The
second framework is the digital twin capabilities periodic table [19] designed to highlight
capability requirements and solution features.
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3.1. Framework I

Figure 2 illustrates a digital twin development framework based on the Data, Do-
main, Analytics, and Outcome elements introduced in Section 2. The association with each
foundational element is color-coded for clarity. In the leftmost column of the illustration,
the framework assigns “Description” and “Frequency” categories to the Data element;
“Physical”, “Domain Expertise”, and “Life Cycle” categories to the Domain element; “Func-
tion Details”, “Learning Details”, “Control”, “Advanced Analytics”, and “Emerging R&D
Technologies” categories to the Analytics element; and “Customized Use Cases” and “Im-
pact” categories to the Outcome element. Digital twin functions, which will be discussed
in Section 4, is covered under the categories of function and learning details in Figure 2.
Similarly, the digital twin enabling technologies, which will be introduced in Section 4,
are included in the rows of advanced analytics and emerging R&D technologies. Finally,
high-level descriptions of the factory and supply chain use cases are captured by the
Outcome element.

Figure 2. A digital twin development framework built on the four foundational elements [9].

It is important to note that a use case may not necessarily utilize every component
illustrated in Figure 2. Two different use cases may utilize some of the same components
of the framework but still choose different analytical tools and aim to reach different KPI
targets. We illustrate this point in Figure 3 by highlighting the development components
with the black color for two different use cases: a factory twin supporting real-time queue
monitoring and resource control (on the left-hand side) and a supply chain digital twin
(on the right-hand side). Featuring the components relevant to each use case enhances
communication among the stakeholders and brings transparency to how the target KPIs
can be achieved. In addition, we see which development tasks of the two digital twin
solutions overlap and carry over from one twin development to another. The extraction of
this information from Figure 3 is important because transferring learning from one twin de-
velopment to another reduces the development time, identifies collaboration opportunities
between the development teams, and improves staff utilization.
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Figure 3. A factory digital twin (on the left-hand side) and a supply chain digital twin (on the
right-hand side).

3.2. Framework II

Another excellent framework is the digital twin capabilities periodic table proposed
in [19] and illustrated in Figure 4. In this framework, the digital twin capabilities periodic
table represents the features of digital twin technology solutions and identifies the necessary
capabilities to meet the digital twin required characteristics.

Figure 4. The digital twin capabilities periodic table [19].

The digital twin capabilities periodic table builds on six different categories, each
with a role in digital twin development: (1) data services, (2) integration, (3) intelligence,
(4) user experience (UX), (5) management, and (6) trustworthiness. In Figure 4, we highlight
the simulation and AI/ML technologies of the data services and intelligence categories.
Data services connect the factory (physical) representation with its simulation (virtual
representation) by using the data collected from equipment sensors and control systems;
integration enables factory twin communication; intelligence represents the services associ-
ated with developing and deploying factory twin solutions; user experience interacts with
factory twins and visualizes their data; management represents ecosystem control; and
trustworthiness handles security, privacy, safety, reliability, and resilience. Furthermore,
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Schalkwyk defines security as the ability to protect digital twins from unintended and
unauthorized access, ensuring the availability, integrity, and confidentiality of equipment
and system information. Reliability is, on the other hand, described as the ability of the
digital twin (or any component of the digital twin) to perform its required functions—such
as delivering a quality of service and/or a level of accuracy—under pre-specified conditions
for a predetermined period. We refer the reader to [20] and [21] for further discussion on
the topics of digital twin security and reliability.

We conclude this section by noting that every digital twin solution does not require
the use of every capability in Figure 4. However, it is still critical for a company on a
journey of digital transformation to hit a high percentage of the components in the digital
twin capabilities periodic table. This can be done by offering either core functionality or a
solution with partners. The percentage of capabilities covered may vary from one use case
to another based on complexity and resource availability.

4. Building and Operationalizing Digital Twins

Having developed the digital twin framework with all stakeholders, we next outline
the three primary functions of building process digital twins: (1) Offline Model Develop-
ment, (2) Real-Time Synchronization, and (3) Online Learning.

The Offline Model Development function involves building a virtual representation
of the factory and validating it with static data representing the history of the factory
operations (process simulation). The validated model can be used for two main purposes:
(i) to replay history; (ii) to provide insights about how to optimize factory performance.
The Real-Time Synchronization function updates the model parameters and calibrates the
factory simulation with the most recent data at a suitable frequency; consequently, the
factory and its digital representation are synchronized. The synchronization frequency is
based on the timeline of decision making and the requirements of learning and adaptation.
The next function is Online Learning, which involves factory monitoring and tracking
the past, prediction of the factory performance, and identification of the best course of
action using optimization. At this phase of the development, the factory twin is expected
to provide enhanced visibility into the future, enable playing operational what-if games,
and offer decision support for optimal performance.

Figure 5 provides an illustration of the key factory twin functions with AI/ML, simu-
lation, forecasting, optimization, econometrics, visual analytics, and streaming analytics as
selected enabling technologies. We note that learnings obtained from the online-learning
phase of the development are not just insights. They are the actions that are recommended
to control the factory floor and establish a closed feedback loop between physical and
digital representations. The outcomes realized in response to these controls on the shop
floor and in the supply chain are fed back into the digital model as inputs to learn and
adapt to the changing factory and supply chain environment.

Next, we notice that both Offline Model Development and Online Learning have
their “prediction” components. Simulation plays a key role in equipping a digital twin
with prediction capability. However, there is one major difference between simulations
developed during Offline Model Development and Online Learning. In the former case,
the input models characterizing the uncertainty in the stochastic processes on the factory
floor (for example, processing times of various parts on different machines) are built
from domain expertise, assumptions, and static historical data sets. Factory simulations
that combine the manufacturing process-flow logic with these stochastic input-model
characterizations typically start in an idle state, and the steady-state simulation design
and analysis methodology [22] is utilized for making long-term KPI predictions. In the
latter case, the data collected from sensors, real-time location system (RTLS) tags, and other
streaming sources present a snapshot reflecting the system state at that point in time. The
use of these data sets to hot start the simulation is what primarily distinguishes a simulation
developed during Online Learning from that created during Offline Model Development.
Snapshots of the system are taken several times each day and fed into the model to hot
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start the supporting simulation with the current state of the factory (see, for example, a
General Electric use case in a healthcare setting [23]).

Figure 5. Key factory digital twin functions and enabling technologies.

There are several obstacles to the successful operationalization of the factory twins.
One of these obstacles relates to the use of big data analytics for the simultaneous man-
agement of multiple factory twins in the supply chain network as well as the twins of the
assets involved in the system’s manufacturing process flows. Because the value chosen for
the unit of time in a digital twin depends on the frequency of decision making and every
digital twin operates in an evolving environment, the scale of time would likely not be the
same in different digital twins, despite them being parts of the same supply chain network.
For example, emergency maintenance decisions are typically made within minutes, while
inventory adjustments might be considered every week or month. Furthermore, some data
sets may be highly sparse, while others may require the collection of high-frequency data.
Coordination of the data-collection activities and implementation of suitable data analytics
approaches are among the key challenges of operationalizing digital twins. We discuss
the former case in Section 7.2 and describe industrial solutions for the manufacturing
domain. For a more general discussion of developing input models for factory twins, we
refer the reader to [22]. Another obstacle to operationalizing digital twins relates to internet
connectivity and data security. This topic is covered in the digital twin capabilities periodic
table, illustrated in Figure 4, under the category of trustworthiness. This discussion is
beyond the scope of this article; we refer the interested reader to [19–21] to learn about this
important topic.

5. Role of Simulation in Factory Twin Development

Simulation is one of the key enabling technologies that lie at the heart of factory digital
twin development. Figure 6 presents the primary modules of factory twin simulations: (i) data;
(ii) market coupling; (iii) factory analytics; (iv) financial; and (v) valuation. Specifically,
the data module collects all relevant data sets associated with the Data element covered in
Section 2. It then prepares the corresponding data sets to be utilized by the market coupling,
factory analytics, and financial modules.
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Figure 6. Primary modules of factory twin simulations.

Market coupling includes the consideration of exogenous drivers such as market de-
mand, price, competition and substitution, and raw material cost. This module may further
utilize previously conducted market analyses that present future demand and competition
projections [24]. The financial module considers the demand, price, and raw material cost
fluctuations quantified by the market coupling module and the production capacity risk
profile obtained from the factory analytics module and uses Monte Carlo simulation to
generate the output data for economic and risk-and-return valuations. In the remainder of
the section, we first elaborate on factory analytics, financial, and valuation modules. Then,
we describe challenges that may arise as the focus of digital twin development changes
from a factory to a supply chain network. Finally, we discuss why we should consider
developing factory twin simulations as outlined in Figure 6 instead of just using an ML
model to predict the factory KPIs.

5.1. Factory Analytics Module

The domain expertise, combined with shop floor and supply chain data on system
configuration, process flow, and operating policies, drives the factory simulation. Generally,
the inputs of this simulation include equipment portfolio, operators, inventory, factory
layout, product portfolio, manufacturing process flow, raw-material release policy, rules
of lead-time, inventory, and bottleneck management, production plans, and shift-based
schedules of the factory staff (see the Factory Analytics Module in Figure 6). It is important
to note that operating policies, for example, production plans and operator schedules, are
often obtained by solving production scheduling and operator staffing problems prior to
simulating the factory operations. Although factory inputs such as set-up times, loading
and unloading times, machining times, equipment time-to-failure and repair times, dura-
tion of transportation within the facility, and production yield are uncertain (i.e., they have
variability), the scheduling and staffing problems are solved deterministically by replacing
these random variables with their average values. Then, the factory simulation captures
the uncertainty in each of these stochastic input processes, determines the performance
of production and staffing plans under uncertainty, and quantifies the risk in the factory
KPI predictions. The statistical analysis of these findings often provides guidance toward
building improved production plans and operator schedules.
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Figure 7 shows a flowchart for a more detailed view of the steps necessary to con-
duct factory simulations. It identifies the key steps as (i) input modeling; (ii) stochastic
simulation; (iii) verification and experimental design; (iv) output analysis, validation,
and calibration; (v) prediction involving statistical factory KPI estimation, bottleneck
identification, scenario analysis, stress testing, and disruption impact assessment; and
(vi) prescription including dashboard visualization and determination of the best course
of action. The successful completion of this sequential series of tasks results in optimal
factory control. It is evident from Figure 7 that simulation digital twin development goes
beyond building a simulation code that captures the logic of the manufacturing process
flow. It requires integration with the digital twin enabling technologies such as AI/ML,
forecasting, optimization, and visual analytics to support the key steps in (i)–(vi). Figure 7
also indicates the necessity of a closed feedback loop between the decisions made and the
shop floor and supply chain data collected after the implementation of those decisions.

Figure 7. Factory analytics module.

The factory twin simulation and the output data set it generates can be used to identify
the key drivers of risk for the successful management of the factory operations. Example
questions in this context are: (1) If the mean processing time spent at a station decreased by
one hour, what would be the impact on the mean flow time? (2) What would be the impact
if the standard deviation of the processing time decreased by one hour? These questions
can be answered using a specific type of sensitivity analysis technique known as the local
sensitivity analysis, quantifying the sensitivity of the KPIs to mean and standard deviations
of the random inputs. It helps to identify the key risk drivers and allows the plant manager
to focus on the most critical inputs enabling effective factory control. We refer the reader
to [25] for a high-level discussion of this technique to determine the key drivers of risk in a
semiconductor manufacturing setting.

Other important benefits of a factory digital twin are to stress-test the factory manage-
ment plans and identify the best courses of action when faced with disruptions. Examples
of disruptions may include loss of inventory or capacity due to natural disasters or dis-
turbances such as fires, site contaminations, and equipment shutdowns. However, the
objective of the stress-testing activity would not be to predict when and what type of
disruptions may occur. Instead, we would enforce them in the factory simulation and
search for an optimal way of mitigating their impact on the system.
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5.2. Financial Module

The financial model uses the output data generated by the factory simulation to
quantify the cost of uncertainty and the financial impact of operational decisions. It tracks
the cost of factory operations considering four primary categories: (1) direct labor cost;
(2) direct material cost; (3) production overhead; and (4) non-production overhead. We
refer the reader to [2] for an example financial pro forma that supports manufacturing
investment projects.

The total cost of production in a factory can be calculated by adding the costs associated
with direct labor, direct material, and production overhead. The division of the total
production cost by the total number of finished goods departing the production line (after
the removal of the scrap) presents the unit cost of production, as one of the key KPIs
assessing the profitability of the factory operations. However, it is also important to
decompose the total cost for each step of the manufacturing process flow to understand
how to reduce the unit cost of production to meet the cost target. This practice is known as
activity-based costing; we refer the reader to [26] for a description of how General Electric
implemented this practice for a battery manufacturing plant. Thus, a factory digital twin
must integrate factory operations modeling with a financial module.

5.3. Valuation Module

The factory simulation, which integrates factory configuration, process flow, and
operating policies with randomness in various input processes, generates many future
sample paths for raw materials, work in process, finished goods, location in the factory, and
time. Thus, simulation outputs contain time-stamped data that may be observed across
many different realizations of the future. Hence, simulation can be considered as a large
data generation program capturing many possibilities about how the future may unfold.
The resulting granular and rich data sets are post-processed to obtain both operational and
financial performance risk profiles. Examples of operational KPIs are throughput, quality,
inventory, fulfillment, and utilization of equipment, operators, and space. Examples of
financial KPIs are cost, break-even probabilities, and minimum and maximum losses. The
ultimate goal is to find an optimal balance among all operational and financial KPIs to
create a sustainable and resilient factory and supply chain network.

5.4. From Factory Digital Twins to Supply Chain Digital Twins

The focus of this article is largely on the development of factory digital twins. However,
the right-hand side of Figure 3 illustrates a framework for developing a digital twin of a
supply chain network. Extending the modular framework of Figure 6 to the supply chain
increases complexities. The configuration would become significantly more complex; the
scale of the problem would become much higher; performing the validation and calibration
steps of Figure 7 would be more challenging. For a more detailed discussion, we refer the
reader to the tutorial in [9] on supply chain digital twins and the critical role simulation
and AI play in their development.

5.5. Building Simulations and Using Machine Learning for KPI Prediction

Simulation and machine learning are two complementary tools to create digital twins
of complex production systems. The reader may wonder whether we really need to develop
stochastic factory simulations whose development requires time and effort. Two key
capabilities make factory simulations critical for digital twin development: (1) uncertainty
modeling and (2) explainable analytics. These two capabilities clarify when and why we
need to develop factory simulations.

Because simulation propagates the randomness characterized by the input models
throughout the entire manufacturing process flow and supply chain network, it enables the
prediction of the mean values of KPIs together with the risk surrounding the predictions.
Thus, simulation can be viewed as both a KPI generation and a risk quantification tool.
Because simulation also generates the sample path of each entity flowing through the
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manufacturing facility, statistical analysis of the simulation output data can determine the
reason for poor performance and/or high variability. We can then design experiments
to simulate the manufacturing and supply chain process flows under the assumption of
different operational policies. This allows us to determine how to mitigate the impact
of variability and improve the system performance. Hence, simulation is also a risk
management tool.

As a use case, consider a manufacturing plant where jobs arrive every 1.25 days on
average. The jobs are processed one at a time on a first-come, first-served basis. If a job is
already being processed, then the job that has just arrived joins a queue. The processing of
any job lasts an average of 1 day. Upon completion, jobs are shipped to the distribution
center. The objective is two-fold: (i) to predict annual throughput and manufacturing lead-
time; (ii) to control the plant’s production rate to meet a target manufacturing lead-time
of 4 days. A discrete-event simulation of this manufacturing facility would be a suitable
choice for achieving the case objectives.

Figure 8 connects the case objectives to the following three digital twin simulation
characteristics: (1) annual throughput and lead-time prediction (i.e., KPI generation);
(2) quantification of risk in the KPI predictions (i.e., risk modeling); (3) control of production
rate to attain target lead-time (i.e., risk management). We design a simulation with a 365-day
length and 100 replications. The analysis of the output data generated from this simulation
predicts average annual throughput and average manufacturing lead-time to fall between
286 jobs and 293 jobs and between 4.26 days and 5.02 days, respectively, each with a
probability of 95%. The simulation output analysis also identifies a 59% chance that the
manufacturing lead-time exceeds the target lead-time. Integrated use of simulation with
statistics and optimization further finds that a 95% guarantee of a manufacturing lead-time
less than or equal to four days requires a 15% increase in the plant’s production rate. Thus,
simulation can also be viewed as a risk management tool. These characteristics together
with the benefits of uncertainty quantification and explainable analytics separate simulation
from other prediction tools and make it a critical component of digital twin development.

Figure 8. Connecting case objectives to digital twin simulation characteristics.

6. Criteria to Evaluate Factory Simulation Software Design and Selection

Different simulation modeling methods can be used to meet the needs of manufac-
turing system complexity: Monte Carlo (MC) simulation, discrete-event simulation (DES),
agent-based simulation (ABS), continuous simulation, and system dynamics (SD). Random
variate sampling is the building block of all these modeling methods. Today, there exists
well-established literature on random variate sampling [22], and it offers the freedom to
build flexible multivariate input models to drive digital twin simulations.



Machines 2023, 11, 425 13 of 18

DES represents operations as a discrete sequence of events; it is the most suitable and
intuitive modeling method to use when there is a clearly defined process flow, where the
lack of infinite resources leads to the forming of queues. In our industrial projects, the
discrete-event modeling method has delivered scalable, data-driven, and flexible system
simulations with automated KPI collection capability in a wide variety of industries ranging
from healthcare and life sciences and consumer goods to aerospace and defense. We also
assume the use of DES for developing factory simulations in this article; however, there may
be a need to use combinations of the simulation modeling methods to equip the user with
the flexibility needed. This is known as the hybrid approach, which is frequently utilized
in industrial projects. For example, the end-to-end execution of the modules illustrated in
Figure 6 requires the joint use of MC simulation and DES.

Next, we switch our focus to the criteria that can be used to evaluate different software
packages offering similar simulation modeling methods to develop factory simulations.
Our simulation software design and selection criteria can be divided into the following
categories: (1) simulation in the cloud; (2) modeling method; (3) model design and flow vi-
sualization; (4) modeling functionalities; (5) system configuration scale; (6) input modeling
and output analysis; (7) simulation hot start (using IoT data); (8) experimental design and
scenario analysis; (9) machine learning and optimization in simulation; and (10) business
user experience. Concerning the last category, it is natural to expect plant managers to want
solutions to be accessible through an easy-to-interpret user interface (UI), available via an
application or a web browser. Figure 9 provides snapshots of an application developed
in Microsoft Power Apps for a production shop to solve equipment portfolio selection
problems. As the quality of software architecture improves, the future trend in simulation
is expected to lean towards more frequent use of mobile and touch-based devices [27].

Figure 9. An application of production shop simulation in Microsoft Power Apps.

7. Industrial Digital Twin Use Cases: Challenges and Solutions

In this section, we discuss five major challenges of digital twin development:

• Building data-driven simulations from video, MES, and EAM data;
• Identifying factory bottlenecks under input parameter uncertainty;
• Accelerating what-if analysis to perform risk-and-return trade-off;
• Providing an environment to train reinforcement learning agents;
• Addressing standardization and globalization in digital twin integration.

For further discussion on the challenges of developing digital twin simulations for in-
dustrial use cases, we refer the reader to [9] where the focus is on synthetic data generation,
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zone of confidence, fast sensitivity analysis, and simulation and optimization. Biller et al.
discuss research streams that are relevant to overcoming those four specific development
and implementation challenges.

7.1. Building Data-Driven Simulations from Video, MES, and EAM Data

A non-traditional type of input data that is increasingly utilized for building digital
twin simulations is video. The first step is to process the video data using computer vision
(CV) AI techniques so that they can be transformed into a time-stamped data set. The
resulting data set is then processed to characterize the random input processes. Thus,
CV AI plays the role of an input data generator to enable simulation development [15,16].
Depending on the nature of the time-stamped data, it may be challenging to directly
apply simulation input modeling techniques to characterize the randomness in the input
processes. As an example, consider a camera collecting data to support real-time queue
monitoring and resource control to minimize wait time and operating costs. Assume
that the CV AI collects data via both person tracking and queue tracking and provides
information on the length of the queues as well as queue entry and queue exit times.
Building a simulation requires characterizing the interarrival and service times. Identifying
the service time distribution may pose a challenge because the time-stamped data may not
explicitly represent the queueing times. Hence, algorithms customized to the use case must
be able to accurately characterize both arrival and service input processes.

Similarly, manufacturing execution systems (MESs) and enterprise asset management
(EAM) systems support factory twin development by providing time-stamped process
data. However, it must be deduced from this data set which entity flows through the
factory at what times and what the realizations of setup times, maintenance intervals, and
downtimes are. This is very similar to the data that will be generated from the factory
simulation; however, this is not the type of data that would be driving a discrete-event
stochastic simulation. This laborious deduction of flows, location, downtimes, and process
times is often overlooked and is a very crucial step of digital twin simulation development.
A well-executed transformation from MES and EAM data to simulation input processes
increases the likelihood of validation and the success of the project.

7.2. Identifying Factory Bottlenecks under Input Parameter Uncertainty

A major issue that affects the decisions driven by factory twins is the impact of the
simulation input risk on the factory KPI predictions. This situation arises when the input
distributions and their parameters are unknown and the historical input data available
for their estimation are limited. Biller et al. investigated whether an equipment portfolio
identified as optimal would still be recommended if there were deviations from the process-
step assumptions that had to be made [24]. They accounted for the impact of the parameter
uncertainty (i.e., the uncertainty that is due to the estimation of the input-model parameters
from limited data) in the probability distribution characterizations of processing times,
loading and unloading times, traveling times, repair times, and times between failures
on the factory KPI predictions. It was found that up to a 50% change in the distribution
parameters of the process-step details would underestimate the mean annual throughput
by no more than 10% with a probability of 95%.

Accounting for the impact of input uncertainty in factory simulations is important not
only to support equipment portfolio decisions but also to accurately identify the bottlenecks
along the production line. Considering a multi-stage production system, Biller and Gupta
investigated the impact of the uncertainty in interarrival-time and service-time distribution
parameters on the KPI predictions [28]. They identified cases where it was not clear which
machine was the factory bottleneck. The way to overcome this issue, which arises due to
the high uncertainty level, is to design data-collection plans in a way to reveal production
bottlenecks in a fast and accurate manner.
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7.3. Accelerating What-If Analysis to Perform Risk-and-Return Trade-Off

Digital twin simulations enable sophisticated what-if analysis. Because we may have
to answer many what-if questions using the simulation-generated data, it is important to
conduct fast scenario analyses. A way of accelerating what-if analysis is via the integrated
use of simulation and machine learning in three steps. First, the factory simulation is
run, and the simulation output data are saved in a rectangular data set of all input and
output realizations. Second, an ML model is fit to the simulation-generated data set. Third,
the model is evaluated for the specific input parameter values indicated by the what-if
questions. In [29], Biller outlines the steps of accelerating what-if analyses using simulation-
generated data and machine learning for real-time prediction as illustrated in Figure 10.
Additional steps can be added to the workflow here by embedding the machine learning
models in an optimization problem formulation to represent the objective function and/or
the constraints. In [30], Biller et al. provide hands-on instructions about how these steps
can be conducted via an integrated use of simulation, machine learning, and optimization.

Figure 10. A three-step approach to predict factory KPIs in real time [29,30].

7.4. Providing an Environment to Train Reinforcement Learning Agents

In this section, we revisit the use case introduced in Section 7.1 for real-time queue
monitoring and resource control. We assume that the CV AI has already transformed the
entity and queue tracking data into queue entry and exit times and queue lengths, from
which stochastic input models have been developed to drive a simulation of the system.
The next step is to develop recommendations about the number of active resources for part
processing, in real time, with the objective of minimizing operating costs and waiting time.
The digital twin development framework for this use case is given in the left-hand side of
Figure 4.

The method that enables real-time control of queues and resources is reinforcement
learning (RL). Figure 11 illustrates the corresponding RL framework and the role of simula-
tion in it. Specifically, simulation is used to mimic the real environment, generating a big
data set. This data set is used to train the RL agents in the simulated environment. Once
the training of the RL agents is completed, they can be deployed into the real environment
where they make real-time recommendations about queue and resource control.
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Figure 11. Illustrating RL framework for real-time queue monitoring and resource control.

7.5. Addressing Standardization and Globalization in Digital Twin Integration

It is natural to expect standardization to accelerate digital twin development and
simplify the management of digital twins over the life cycles of the products and processes.
However, digital twin development has been motivated by use cases, requiring a certain
level of customization to meet the customer requirements. Thus, the topic of standardization
remains a challenge in digital twin development. Nevertheless, attempts have been made
to modularize the digital twin development effort; the goal is to transfer learning from
one development to another, reducing the overall development time. Section 3 provided
frameworks to overcome today’s challenge of customization in developing digital twins.

Every factory simulation should be accompanied by a data model describing all
(regular and resource) entities and their attributes. This data model also describes how the
attributes of an entity are updated throughout its flow in the manufacturing facility and
how the attributes of multiple entities relate to each other. The data model concludes with
the presentation of the output data, defining every sample path generated by the factory
simulation. The creation of a good simulation data model requires expertise and experience.
However, this is still a challenging task even for an expert as there appears to be a need
to combine these factory simulation data models in a supply chain network simulation
data model. Managing the resulting digital twin simulation data model in coordination
with all stakeholders over the life cycle of products and processes remains one of the key
challenges of process digital twin development.

8. Conclusions

This article described how digital twins, built on manufacturing process flow sim-
ulations, machine learning, and reinforcement learning, can help companies replay his-
tory, gain predictive visibility into the future, and optimize manufacturing and supply
chain performance. First, we discussed the four foundational elements of digital twin
development—Data, Domain, Analytics, and Outcome—to help the reader differentiate
between different digital twin development approaches and solution offerings. Then, we
presented digital twin development frameworks built on the Data, Domain, Analytics, and
Outcome elements. After a discussion of building and operationalizing digital twins and
outlining Offline Model Development, Real-Time Synchronization, and Online Learning
as the three primary digital twin functions, we focused on simulation’s role in factory
twin development. We presented the primary modules of factory twin simulations and
explained why digital twin simulation is a KPI generation, a risk quantification, and a risk
management tool. We further shared our evaluation criteria to design and select factory
simulation software. We concluded with several different challenges that often arise in
industrial process twin use cases, waiting for simulation methodologists, AI, ML, and RL
scientists, and practitioners to provide innovative solutions.
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