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Abstract: Vehicle driving cycles have complex characteristics, but there are few publicly reported
methods for their quantitative characterization. This paper innovatively investigates their multifractal
characteristics using the fractal theory to characterize their complex properties, laying the foundation
for applications such as vehicle driving cycle feature identification, vehicle energy management
strategies (EMS), and so on. To explore the scale-invariance of the vehicle driving cycles, the four
vehicle driving cycles were analyzed using the Multifractal Detrended Fluctuation Analysis (MF-DFA)
method, three of which are standard vehicle test cycles: the New European Driving Cycle (NEDC), the
World-wide harmonized Light-duty Test Cycle (WLTC) and the China Light-duty Vehicle Test Cycle
for Passenger Car (CLTC-P), and the other is the Urban Road Real Driving Cycle (URRDC), which
was obtained by analyzing and processing vehicle driving data collected in actual urban driving
conditions. The fluctuation functions, the generalized Hurst exponents, the mass exponent spectra,
the multifractal singularity spectra, and the multifractal characteristic parameters were calculated
to verify the multifractal characteristics, and to quantify the fluctuation singularities of different
driving cycles as the time series. The results show that the fluctuations of all four driving cycles
have long-range anticorrelations and exhibit significant multifractal characteristics. The results can
provide a basis for the analysis of the complexity of the vehicle driving cycles.

Keywords: vehicle driving cycles; complexity; multifractal; detrended fluctuation analysis

1. Introduction
1.1. Research Background

As a core element of vehicle research, vehicle driving cycles research is of great signifi-
cance in developing and designing new models, testing pollutant emissions, optimizing
energy management strategies, and improving overall vehicle performance [1].

The study of the driving conditions (including the driving cycles and test procedures)
has the following three main purposes: [2]

- check the compliance of vehicle pollutant emissions with respect to the applicable
emissions limits;

- establish the reference vehicle fuel consumption and CO2 performance;
- reduce the gap between type approval values and real world emissions.

The vehicle driving cycle is a time series of data representing vehicle speed, which is
intended to reflect a vehicle’s movement in real road conditions. It can also be used in the
evaluation of a vehicle or engine in terms of its economy and emissions. The driving cycle
also makes up a significant part of the test procedure. Therefore, the study of vehicle cycle
characteristics is very critical. This paper focuses on the differences between the driving cycles
themselves, so the broader test procedures will not be examined or discussed in detail [3].

The base element of any driving cycle is the speed trace—the cycle itself. Monica
Tutuianu et al. [2] discussed a comparative analysis of the different characteristics of several
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light-duty vehicle test cycles used in Europe, Japan, and the USA in their presentation on
the development of WLTC (See Abbreviations). Jieqin Xing et al. [4] analyzed the influence
of driving conditions on the energy consumption of each part of the vehicle and the working
efficiency of power components by combining the characteristic parameters of driving
cycles. Also, Yachao Wang et al. [5] compared the characteristics of different driving cycles
by calculating relevant parameters such as average speed, relative positive acceleration,
and idling time under different conditions in their study to evaluate fuel consumption and
vehicle emissions. As the above examples show, driving cycles are currently characterized
by relevant parameters, such as average speed, average acceleration, idle ratio, etc.

Vehicle driving cycles, for instance, can indicate the law of things changing, but
because their development is influenced by a variety of factors, their changing processes
are often non-smooth and show complex non-linear characteristics, resulting in a more
difficult analysis. Therefore, the fractal theory is introduced to deal with non-stationary
time series in order to effectively explore their intrinsic laws.

1.2. Introduction of the MF-DFA Method

In recent years, the multifractal theory has become a major development in the field
of fractal geometry, where Detrended Fluctuation Analysis (DFA) was first proposed by
Peng CK et al. [6] and proved to be one of the most important and reliable tools for detecting
long-range correlation in non-stationary time series. On the basis of DFA, Kantelhardt JW
et al. [7] further proposed the Multifractal Detrended Fluctuation Analysis (MF-DFA) of
non-stationary finite sequences, which is a multi-scale technique widely used to quantitatively
describe the nonlinear evolution feature of complex systems, not only to detect long-range
correlation and determines its scale-invariance, i.e., fractal characteristics, but also to determine
whether the sequence has multifractal characteristics [8]. Meanwhile, based on MF-DFA, the
singular spectrum can be obtained, from which the important information with multifractal
characteristics can be extracted, so that the complexity of the time series is quantified. The
analysis method has important applications in many disciplines and fields, such as physics,
economics, network traffic, image processing, automotive performance diagnostic tests [9–15],
etc. For example, Shang et al. [16,17] proposed an algorithm to calculate the Hölder exponent
of time series by analyzing the traffic time series of Beijing Yuquanying Expressway, and
finally verified that the traffic flow data exhibited multifractal characteristics; Zhuo et al. [18]
introduced the multifractal theory into the study of working condition feature identification
and confirmed the multifractal characteristics of the cement rotary kiln current signal; Zhang
et al. [19] analyzed the multifractal characteristics of the high-speed train vibration signal
according to the MF-DFA theory, and extracted several parameter features to form a high-
dimensional feature vector, and finally used the Support Vector Machine method to realize
the signal state identification under seven operating conditions.

1.3. Statement of the Design Approach

In summary, it can be seen that the driving cycle has an important influence on the
energy consumption, endurance mileage, and braking energy recovery effect of the vehicle.
However, the current description of the driving cycle characteristics only stays at the
stage of calculating and comparing the key parameters of different driving cycles. The
driving cycle derived from the simulation in the test procedure is essentially a time series
with nonlinear characteristics. In view of the unique advantages of multifractal theory
in quantitatively describing the nonlinear operation laws of complex systems, this paper
introduces the multifractal theory to study the driving cycle characteristics. It is verified
that the driving cycle has significant multifractal characteristics, which lays the foundation
for the subsequent quantitative characterization of the driving cycle through fractal theory
and entropy theory, etc. This also provides an innovative way for the characterization study
of the driving cycle.

Taking four vehicle driving cycles: NEDC, WLTC, CLTC-P, and URRDC as research
objects, MF-DFA is applied to study their multifractal characteristics in this paper. By
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analyzing the fractal characteristics inherent in these cycles, their evolution law is revealed
to provide reasonable criteria and scientific basis for applications such as vehicle driving
cycle identification, vehicle EMSs, and so on.

The remainder of the paper is structured as follows. In Section 2, several time series
of vehicle driving cycles as the research objects are introduced. The MF-DFA method is
described in Section 3. In Section 4, the calculation about the characteristic parameters
of these time series with MF-DFA is carried out, and the results are analyzed in detail.
Section 5 draws the main conclusions of the paper.

2. Description of Different Driving Cycles

The vehicle driving cycle is the time-speed curve obtained by the method of specific
data analysis and processing from a large number of real vehicle driving data, which
reflects the kinematic characteristics of the vehicle driving in a specific traffic environment.
In this paper, the four driving cycles, NEDC, WLTC, CLTC-P and URRDC, were selected as
research objects. The standard driving cycles are the common driving cycles formulated
and promulgated by some authoritative departments and certified by law. They are
generally not very specific to the type of vehicle and driving range, and are used by vehicle
enterprises to develop new models and environmental protection departments to measure
traffic pollution [20]. NEDC is an early and commonly used range standard for light-duty
vehicles, which includes four Urban Driving Cycles (UDC) and one Extra Urban Driving
Cycle (EUDC) developed by the Economic Commission of Europe (ECE), as shown in
Figure 1. In the early days of the electric vehicle industry, NEDC was used by many
manufacturers as a direct reference in the absence of many industry standards to choose
from. However, NEDC has become obsolete in China due to the significant differences
between NEDC and the actual vehicle driving environment, and the fact that the terrain in
Europe is very different from the vast and complex terrain of China. WLTC [2] is currently
one of the mainstream driving range standards and has been promoted in EU, US, Japan,
South Korea, and other countries and regions, with the driving curve shown in Figure 2.
As it incorporates gearing and vehicle weight into the test, the range obtained from the
WLTC test is considered to be closer to the range in actual driving. The Fuel Consumption
Limits for Passenger Cars [21] announced and implemented in 2021, mentions that NEDC
will no longer be used for testing certain new energy vehicles by 2025, but will be replaced
entirely by the WLTC.
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Figure 1. The speed trace for the NEDC test cycle.
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Figure 2. The speed trace for the WLTC test cycle.

The China Automotive Test Cycle (CATC) released in 2019, is a range standard de-
veloped specifically for the Chinese context. CATC was developed using a large number
of vehicle driving conditions in China, including some electric vehicle driving data. In
addition, compared to NEDC, it adds urban, suburban, and high-speed cycles. The China
Light-duty Vehicle Test Cycle (CLTC) is a standard vehicle test cycle for light-duty vehi-
cles, including CLTC-P for passenger cars and CLTC-C for commercial cars, as shown in
Figure 3. Since the release of the CATC, it has been used for pure electric and fuel cell
vehicles in China, and after 2025, the WLTC standard used for fuel consumption testing of
vehicles including those mentioned in the Fuel Consumption Limits for Passenger Cars
will be replaced by the ever-improving CATC. The CLTC-P standard shown in Figure 3a, is
currently used for pure electric vehicles in China.
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Figure 3. The speed trace for the CLTC test cycles. (a) The speed trace for the CLTC-P test cycle;
(b) The speed trace for the CLTC-C test cycle.

URRDC is obtained by analyzing and processing the collected actual vehicle driving
data. The process is as follows [22]: the short-trip rules are developed based on a standard
cycle such as WLTC; and operations such as bad data deletion, missing data filling, and
short-trip segmentation are performed according to these short-trip rules; on this basis,
the actual driving conditions of vehicles on urban roads are transformed into four typical
driving conditions by introducing nine characteristic parameters and using principal
component analysis and K-means clustering analysis; finally, a new comprehensive driving
cycle can be combined from these four typical driving conditions, as shown in Figure 4.



Machines 2023, 11, 423 5 of 14
Machines 2023, 11, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 4. The speed trace for the URRDC driving cycle. 

3. Description of the MF-DFA Method 
3.1. Calculation Steps of the MF-DFA Method 

For a series of length N{푥 , 푘 = 1,2, . . . , 푁} , the calculation steps for the MF-DFA 
method are as follows [7]. 

Step 1: Data pre-processing 
(1) Constructing a new series 푦(푖) 

푦(푖) = (푥 − 푥̅), 푖 = 1,2, . . . , 푁 (1)

where 푥̅ is the mean value of the original series 푥 . 
(2) Dividing segments at equal intervals 

Dividing 푦(푖) into non-overlapping equal-length segments of length 푠, the series of 
length 푁 is divided into a total of 푁 = 푖푛푡(푁/푠) segments. Since the length N is not nec-
essarily divisible by the length s, there may be some residual data that cannot be used. In 
order to ensure that the original series information is not lost, the series can be subdivided 
by the same length 푠 forward from its end, so that a total of 2푁  segments can be ob-
tained. 
(3) Detrending 

The local trend within each segment 푣(푣 = 1,2, … , 2푁 )  is fi ed using the least 
squares method to obtain the 푚  order fi ed polynomial 푦푣(푖). Generally, 푚 = 1,2,3,..., 
and the magnitude of 푚 reflects the extent to which each segment is detrended. 

푦푣(푖) = 푎1푖푚 + 푎2푖푚−1 + ⋯ + 푎푚푖 + 푎푚+1  (2)

where 푎푖 is the fi ed polynomial coefficient. 
Calculating the variance 

퐹 (푣, 푠) =
1
푠

{푦[(푣 − 1)푠 + 푖] − 푦 (푖)}      푣 = 1,2, . . . , 푁  (3)

for each segment 푣, 푣 = 1,2, . . . , 푁  and 

퐹 (푣, 푠) =
1
푠

{푦[푁 − (푣 − 푁 )푠 + 푖] − 푦 (푖)}      푣 = 푁 + 1, 푁 + 2, . . . ,2푁  (4)

for 푣 = 푁 + 1, 푁 + 2, . . . ,2푁 . 
Step 2: Testing the existence of multifractal characteristic 

(1) Determining the 푞  order fluctuation function for the full series: 

0
10
20
30
40
50
60
70
80

0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
R

R
D

C
 [k

m
/h

]

Time [sec]

Figure 4. The speed trace for the URRDC driving cycle.

3. Description of the MF-DFA Method
3.1. Calculation Steps of the MF-DFA Method

For a series of length N{xk, k = 1, 2, . . . , N}, the calculation steps for the MF-DFA
method are as follows [7].

Step 1: Data pre-processing

(1) Constructing a new series y(i)

y(i) =
i

∑
k=1

(xk −
−
x), i = 1, 2, . . . , N (1)

where x is the mean value of the original series xk.

(2) Dividing segments at equal intervals

Dividing y(i) into non-overlapping equal-length segments of length s, the series of
length N is divided into a total of Ns = int(N/s) segments. Since the length N is not
necessarily divisible by the length s, there may be some residual data that cannot be used.
In order to ensure that the original series information is not lost, the series can be subdivided
by the same length s forward from its end, so that a total of 2Ns segments can be obtained.

(3) Detrending

The local trend within each segment v(v = 1, 2, . . . , 2Ns) is fitted using the least
squares method to obtain the mth order fitted polynomial yv(i). Generally, m = 1, 2, 3,...,
and the magnitude of m reflects the extent to which each segment is detrended.

yv(i) = a1im + a2im−1 + . . . + ami + am+1 (2)

where ai is the fitted polynomial coefficient.
Calculating the variance

F2(v, s) =
1
s

s

∑
i=1
{y[(v− 1)s + i]− yv(i)}2 v = 1, 2, . . . , Ns (3)

for each segment v, v = 1, 2, ..., Ns and

F2(v, s) =
1
s

s

∑
i=1
{y[N − (v− Ns)s + i]− yv(i)}2 v = Ns + 1, Ns + 2, . . . , 2Ns (4)

for v = Ns + 1, Ns + 2, ..., 2Ns.
Step 2: Testing the existence of multifractal characteristic

(1) Determining the qth order fluctuation function for the full series:
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Fq(s) =

[
1

2Ns

2Ns

∑
v=1

F2(v, s)
q/2
]1/q

(5)

where q can be any non-zero real number.
When q = 0, the fluctuation function F0(s)

F0(s) = exp

[
1

4Ns

2Ns

∑
v=1

ln F2(v, s)

]
(6)

(2) Calculating the qth order generalized Hurst exponent and the multifractal singularity
spectrum

By analyzing the relationship of log-log curves Fq(s)− sh(q) , the scalar exponent h(q)
of the fluctuation function can be determined, i.e., there is a power-law relationship

Fq(s) ∝ sh(q) (7)

The slope of log-log curves, h(q), obtained by a least squares linear fitting, is called
the generalized Hurst exponent and characterizes the correlation of the original series. For
stationary time series, when q = 2, h(2) is called the classical Hurst exponent H, also known
as the long-range correlation exponent, describing the long-range correlation of the series.
When H = 0.5, it means that the series is uncorrelated and is an independent stochastic
process, in other words, no correlation between the past and the future, and the fluctuation
signal is a completely independent process. When 0.5 < H ≤ 1, it means that the series has
a long-range correlation, i.e., persistence, which has an increasing (decreasing) trend in the
past and must be increasing (decreasing) in the future. When 0 < H < 0.5, it indicates that
the series has a negative long-range correlation, meaning that the anti-persistence, which
has an increasing (decreasing) trend in the past, must be decreasing (increasing) in the
future [23–25].

In addition, in Equation (5), the fluctuation function Fq(s) depends on the weak
fluctuation deviation F2(v, s) when q < 0; when q > 0, the fluctuation function Fq(s)
depends on the strong fluctuation deviation F2(v, s). Different q describes the effect of
different degrees of fluctuations on Fq(s), as reflected in h(q). When h(q) does not vary
with q, the original sequence is a single fractal process, and vice versa for multifractal
processes [26].

Another set of parameters describing the multifractal is the multifractal singularity
spectrum f (α). The generalized Hurst exponent h(q) is related to the multifractal scaling
exponent, namely, the mass exponent τ(q), the singularity strength or Hölder exponent α,
and the multifractal singularity spectrum f (α) as follows:

τ(q) = qh(q)− 1 (8)

α = h(q) + q
dh(q)

dq
(9)

f (α) = q[α− h(q)] + 1 (10)

The width of the multifractal scaling exponent, ∆α = αmax − αmin, indicates the
strength of the multifractal. The larger it is, the stronger the multifractal characteristics,
and conversely the smaller it is, the weaker it is, or even monofractal. The extreme value of
the multifractal singularity spectrum f (α) indicates the continuity and symmetry of the
fluctuations, and describes the probability of occurrence of fluctuations at different levels.
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3.2. Extraction of Multifractal Characteristic Parameters

The generalized Hurst exponent parameters, the mass exponent spectrum parameter,
and the multifractal singularity spectrum parameter were extracted by the MF-DFA method.

(1) The generalized Hurst exponent parameters

The average h(q) and the variance Sh(q) of the generalized dimensions are determined
by the following two equations, respectively

h(q) =
1
N

N

∑
i=1

h(i) (11)

Sh(q) = (
1
N

N

∑
i=1

(h(i)−h(q))
2

)

0.5

(12)

The magnitude of h(q) reflects the average correlation of the time series, and the
magnitude of Sh(q) reflects the fluctuation of the generalized Hurst exponent [19].

(2) The mass exponent spectrum ( τ(q) ∼ q) parameter

Variations of the exponent τ(q) with different scale value q form the mass exponent
spectrum. The changing curvature of the spectrum indicates multifractality or fractal
measure, and reflects the increment of complexity of the time series. The larger the value
is, the stronger the nonlinearity of investigated time series. Then, in order to make some
quantificational analysis, we divide the curve into two parts, the left and the right, and give
the least squares that fit the experimental data of both sides respectively, where q→ −∞
and q→ +∞ are the extreme points of q. The two fitting lines intersect at a point. The
angle formed is denoted as ϕ ( ϕε(π/2, π]). Then, the mass exponent spectrum curvature
Kτ(q) is defined as [26]

Kτ(q) = tan ϕ (13)

where the angle ϕ is the slope angle of the mass exponent curve.
A larger value of

∣∣∣Kτ(q)

∣∣∣ indicates a more inhomogeneous distribution of the proba-
bility measures over the entire fractal structure of the time series, and a greater degree of
nonlinearity. Therefore, it can be used to describe the complexity of the analyzed signal
and the degree of inhomogeneity [27].

(3) The multifractal singularity spectrum ( f (α) ∼ α) parameter

The asymmetry parameter Z of the multifractal singularity spectrum is determined by
the following equation

Z =
α0 − αmin
αmax − α0

(14)

where α0 is the value corresponding to the maximum value of f (α), which can describe the
irregularity of the fluctuation signal.

The parameter can represent the magnitude of the local singularity of the time series.
The larger the value is, the greater the proportion of small singular values in the time series,
and the stronger the local singularity of the analyzed signal, on the contrary, the smaller the
value is, the greater the proportion of large singular values in the time series, the weaker
the local singularity of the analyzed signal [19].

4. Calculation of Multifractal Parameters for the Driving Cycles and Analysis of Results
4.1. Calculation Modeling

As mentioned above, we will select the MF-DFA method to calculate the relevant
parameters for the four driving cycles NEDC, WLTC, CLTC-P, and URRDC, and to carry
out their multifractal characterization. According to the above calculation steps, Matlab
is used to write the program, and the calculation flow chart is shown in Figure 5. After
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pre-processing the data, the fluctuation functions of these time series and their double
logarithmic relationship with the scale s are calculated separately to determine whether
the time series have fractal characteristics; if yes, the generalized Hurst exponent is cal-
culated, on this basis, the mass exponent spectra and the multifractal singularity spectra
are calculated to determine whether the time series have multifractal characteristics; if yes,
the multifractal characteristic parameters (Kτ(q), h(q), Sh(q) and Z) are further calculated to
analyze the degree of multifractal characteristics of the time series.
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4.2. Calculation Results and Analysis

For the calculation, the fitting order m = 2, q ∈ [−10, 10], and the step size is 0.2.
Log-log curves of the fluctuation function Fq(s) versus the scale s are obtained as shown in
Figure 6, the generalized Hurst exponent curves ( h(q) ∼ q) are shown in Figure 7, the mass
exponent spectra ( τ(q) ∼ q) are shown in Figure 8, the multifractal singularity spectra
( f (α) ∼ α) are shown in Figure 9.
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As shown in Figure 6, at q > 0, the curves of the four driving cycles all show a good
linear relationship; at q < 0, they show different degrees of fluctuation, while the linear
relationship of URRDC is the best, and the fluctuation of WLTC is the largest, but the curves
of the four driving cycles are still dominated by the linear relationship. The fluctuation
function Fq(s) therefore satisfies a power-law relationship with the scale s. This means that
the four driving cycles are scale-free in the specified scale variation range, and have fractal
characteristics.

As shown in Figure 7, the generalized Hurst exponent h(q) of the four driving cycles
decreases with increasing q. From Equation (5), the fluctuation function Fq(s) is correlated
with q. Then the series have different degrees of fluctuation at a certain scale s after
eliminating the trend, indicating the existence of irregular multifractal characteristics. It can
also be seen from Figure 7 that the generalized Hurst exponent curves for different driving
cycles have different shapes, locations, and value domains, and have different degrees of
fluctuation in increasing order of URRDC, NEDC, CLTC-P, and WLTC.
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The specific generalized Hurst exponent parameters h(2), |h(q)|min, h(q)max, ∆h(q),
h(q), and Sh(q) are shown in Table 1. The smooth parameter h(2) of the driving cycles, i.e.,
the Hurst exponent H, can describe the long-range correlation of the series. The Hurst
exponents for all four driving cycles are between 0 and 0.5, indicating that the future
increments of the driving cycles have a negative correlation with the past increments,
i.e., the trend is increasing at one moment, while it is likely to change abruptly to a
decreasing trend at the next moment. ∆h(q) = h(q)max − h(q)min can measure the strength
of the driving cycle multifractality, and the larger the value of ∆h(q) is, the stronger its
multifractality [19]. The value of h(q) reflects the average degree of correlation of the
driving cycles. The value of Sh(q) reflects the fluctuation degree of the generalized Hurst
exponent, and the larger it is, the greater fluctuation and the more unstable value of the
generalized Hurst exponent. As can be seen from Table 1, the values of ∆h(q), h(q) and
Sh(q) are ranked from the smallest to largest: URRDC, NEDC, CLTC-P, and WLTC.
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Table 1. Generalized Hurst exponent parameters of the four driving cycles.

h(2) h(q)min h(q)max ∆h(q) ¯
h(q) Sh(q)

NEDC 0.042 −0.039 1.911 1.951 0.814 0.860

WLTC 0.036 −0.015 2.182 2.197 0.950 0.993

CLTC-P 0.036 −0.015 2.068 2.083 0.891 0.935

URRDC 0.024 −0.015 1.843 1.858 0.782 0.831

As shown in Figure 8, the mass exponent spectrum curves ( τ(q) ∼ q) of the four
driving cycles have an upward convexity, i.e., there is a nonlinear relationship between
τ(q) and q, further indicating that these series have multifractal characteristics. At q < 0,
the slope Kτ(q) of the mass exponent spectrum curve also varies for each driving cycle,

and the results of the calculation are shown in Table 2. The larger
∣∣∣Kτ(q)

∣∣∣ is, the greater
the degree of inhomogeneity in the distribution of the driving cycles and the higher its
complexity. The values of

∣∣∣Kτ(q)

∣∣∣ are ranked from the smallest to largest: URRDC, NEDC,
CLTC-P, and WLTC, reflecting that the multiple fractality of WLTC is stronger than that of
CLTC-P, NEDC, and URRDC in order, which is related to the fact that WLTC covers richer
driving cycles. The conclusion that the complexity of CLTC-P is lower than that of WLTC is
also consistent with the conclusion of Wang et al. [20] in their study that the speed indexes
of CLTC-P are mostly lower than those of WLTC. This conclusion is the same as that of the
generalized Hurst exponent curves.

Table 2. The mass exponent spectrum parameters of the four driving cycles.

NEDC WLTC CLTC-P URRDC

Kτ(q) 0.918 1.064 1.006 0.893

As shown in Figure 9, the multifractal singularity spectra ( f (α) ∼ α) of different
driving cycles are all parabolas with downward openings, indicating that all four cycles
have multifractal characteristics. However, the width of the opening of each multifractal
singular spectrum differs, indicating that the strength of the multifractal characteristic
varies. The forms of the multifractal singularity spectra may be influenced by the way
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in which the discrete derivatives of Equation (9) are performed. For discrete data sets,
the error in the midpoint derivative is small, while the error in the forward derivative
is insignificant. The specific multifractal singularity spectrum parameters are shown in
Table 3. The width ∆α of the multifractal singularity spectrum describes the degree of
inhomogeneity of the probability measure distribution over the entire fractal structure and
the multifractal strength [27]. The larger ∆α is, the more inhomogeneous the probability
measure distribution of the driving cycles. The values of ∆α for all driving cycles are
similarly ranked from the smallest to largest as: URRDC, NEDC, CLTC-P, and WLTC. This
is the same conclusion as for the mass exponent spectrum parameters and the generalized
Hurst exponent parameters. The fractal dimension difference (∆ f = f (αmin)− f (αmax))
characterizes the ratio of the number of elements in the subsets of a physical quantity at
the probability maximum and minimum. When ∆ f < 0, the number of the probability
maximum subsets is greater than that of the probability minimum subsets, and otherwise
the reverse is true [25]. For the driving cycles, this parameter can be used to characterize
the proportion of large and small peaks and their growth rate. From Table 3, it can be
seen that the values of ∆ f are all greater than 0 for all four driving cycles, indicating that
the number of their probability maximum subsets is smaller than that of their probability
minimum subsets.

Table 3. Multifractal singularity spectrum parameters of the four driving cycles.

α0 αmin αmax ∆α f(αmin) f(αmax) ∆f Z

NEDC 0.087 −0.091 2.024 2.115 0.488 −0.127 0.615 0.188

WLTC 0.048 −0.049 2.289 2.338 0.653 −0.070 0.723 0.043

CLTC-P 0.047 −0.049 2.179 2.229 0.652 −0.110 0.763 0.045

URRDC 0.030 −0.044 1.950 1.994 0.714 −0.070 0.785 0.038

5. Conclusions

The application of the fractal theory to analyze the complexity of nonlinear time series
is a research area that has gradually emerged in recent years. In this paper, the theory is
applied to a detailed analysis of the multifractal characteristics of the four driving cycles
for the purpose of characterizing their complexity in quantitative form. In particular, their
fluctuation functions, generalized Hurst exponents, mass exponent spectra, and multifractal
singularity spectra were investigated using the MF-DFA method to verify the existence and
the strength of their multifractal characteristics. The detailed findings are as follows.

(1) From Figure 6, the fluctuation functions of the four driving cycles satisfy a power-law
relationship with scale s, which indicate that they are scale-free within the specified
scale variation, have fractal characteristics. Meanwhile, it can be seen from Figure 6a–d
that overall, the log-log curves of URRDC have the best linear relationship and the
log-log curves of WLTC have the largest fluctuation.

(2) From Figure 7, the generalized Hurst exponents of the four driving cycles decrease
with the increase of q, which indicate the existence of irregular multifractal character-
istics of each series. And by calculating the generalized Hurst exponent parameters, it
is concluded that these exponents are all between 0 and 0.5, which indicate that the
driving cycles have long-range anticorrelations. By comparing the values of ∆h(q),
h(q) and Sh(q), the multifractal strength in order from weak to strong is URRDC,
NEDC, CLTC-P, and WLTC.

(3) From Figure 8, the mass exponent spectrum curves of the four driving cycles are
upwardly convex, further indicating that these cycles have multifractal characteristics.
As mentioned above, a larger value of

∣∣∣Kτ(q)

∣∣∣ indicates a more inhomogeneous distri-
bution of the probability measures over the entire fractal structure of the time series,
and a greater degree of nonlinearity. By comparing the magnitude of the

∣∣∣Kτ(q)

∣∣∣, the



Machines 2023, 11, 423 13 of 14

inhomogeneity in the distribution of the driving cycles is concluded to be URRDC,
NEDC, CLTC-P, and WLTC from lowest to highest, and this conclusion is the same as
that of the generalized Hurst exponent curves.

(4) From Figure 9, the multifractal singularity spectra of the four driving cycles are
downward opening parabolas, also verifying that these cycles have multifractal
characteristics. The width of the opening of each multifractal singular spectrum
differs, indicating that the multifractal strength varies. By comparing the values
of the width ∆α of the multifractal singularity spectrum, it is concluded that the
inhomogeneity of the probability measure distribution from the lowest to the highest
is URRDC, NEDC, CLTC-P, and WLTC, which is the same conclusion as for the mass
exponent spectrum parameters and the generalized Hurst exponent parameters.

It is concluded that the four driving cycles have multifractal characteristics, which
verifies the feasibility of characterizing the driving cycles through the fractal theory and
lays the foundation for subsequent research on driving cycle identification. The next plan is
to quantitatively characterize the driving cycles by using fractal theory and entropy theory,
to use the results to identify the vehicle driving cycles and to study the vehicle energy
management strategy.
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Abbreviations

EMS Energy Management Strategies
MF-DFA Multifractal Detrended Fluctuation Analysis
NEDC New European Driving Cycle
WLTC World-wide harmonized Light duty Test Cycle
CLTC-P China Light-duty Vehicle Test Cycle for Passenger Car
URRDC Urban Road Real Driving Cycle
DFAUDC Detrended Fluctuation AnalysisUrban Driving Cycles
EUDC Extra Urban Driving Cycle
EUE Economic Commission of Europe
CATC China Automotive Test Cycle
CLTC China Light-duty Vehicle Test Cycle
CLTC-C China Light-duty Vehicle Test Cycle for Commercial Car
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