
Citation: Staessens, T.; Lefebvre, T.;

Crevecoeur, G. Optimizing Cascaded

Control of Mechatronic Systems

through Constrained Residual

Reinforcement Learning. Machines

2023, 11, 402. https://doi.org/

10.3390/machines11030402

Received: 24 January 2023

Revised: 15 March 2023

Accepted: 16 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Optimizing Cascaded Control of Mechatronic Systems through
Constrained Residual Reinforcement Learning
Tom Staessens , Tom Lefebvre and Guillaume Crevecoeur *

Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University,
9000 Ghent, Belgium; tom.staessens@ugent.be (T.S.); tom.lefebvre@ugent.be (T.L.)
* Correspondence: guillaume.crevecoeur@ugent.be

Abstract: Cascaded control structures are prevalent in industrial systems with many disturbances to
obtain stable control but are cumbersome and challenging to tune. In this work, we propose cascaded
constrained residual reinforcement learning (RL), an intuitive method that allows to improve the
performance of a cascaded control structure while maintaining safe operation at all times. We draw
inspiration from the constrained residual RL framework, in which a constrained reinforcement
learning agent learns corrective adaptations to a base controller’s output to increase optimality. We
first revisit the interplay between the residual agent and the baseline controller and subsequently
extend this to the cascaded case. We analyze the differences and challenges this structure brings and
derive some principle insights from this into the stability and operation of the cascaded residual
architecture. Next, we propose a novel actor structure to enable efficient learning under the cascaded
setting. We show that the standard algorithm is suboptimal for application to cascaded control
structures and validate our method on a high-fidelity simulator of a dual motor drivetrain, resulting
in a performance improvement of 14.7% on average, with only a minor decrease in performance
occurring during the training phase. We study the different principles constituting the method
and examine and validate their contribution to the algorithm’s performance under the considered
cascaded control structure.

Keywords: mechatronics; motion control; cascaded control; reinforcement learning (RL);
uncertain systems

1. Introduction

Cascaded control structures are indispensable for the operation of various industrial
systems, providing stable control for applications where a single controller fails to stabilize
a control variable that is subject to non-trivial disturbances. By introducing a second, inner
controller that stabilizes the secondary influence according to the needs of the primary
control loop, the overall system can be rendered stable. Examples of cascaded control
include valve positioning [1], electrical motor control [2], industrial drying processes [3],
steam boiler feedwater control [4] and motion control in robotic systems [5]. Due to the
interplay between the different controllers resulting from the nested structure, however,
cascaded controllers are cumbersome and challenging to tune in order to obtain the desired
system response [6,7]. As mechatronic systems and drivetrains face an increasing need
to become more performant and autonomous while operating in varying environments,
the tuning of cascaded control structures is still an active research area [8–10], studying,
amongst others, methods such as genetic algorithms [11] or Bayesian optimization [12] to
obtain the appropriate control parameters.

Opposed to conventional control structures, in recent years, reinforcement learning
(RL) [13] has emerged as a promising alternative for challenging systems or environments.
RL is a rapidly developing research field, with several algorithms that have sparked a
wide range of applications and research paths, notable examples being soft actor critic [14],

Machines 2023, 11, 402. https://doi.org/10.3390/machines11030402 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11030402
https://doi.org/10.3390/machines11030402
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-5117-3185
https://orcid.org/0000-0003-4548-9623
https://orcid.org/0000-0001-7630-8579
https://doi.org/10.3390/machines11030402
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11030402?type=check_update&version=1

Machines 2023, 11, 402 2 of 19

proximal policy optimization [15], maximum a posteriori policy optimization [16] and
more recently temporal difference learning for model predictive control [17]. By optimizing
a feedback policy directly from observations of the controlled system’s behavior under
the given task, RL algorithms provide a framework to learn control policies tailored to
the system at hand, while requiring no underlying assumptions about the system or
its environment. While RL has achieved successes in challenging problems over the
recent years [18–20], its adoption in industry has been limited. A first reason impeding
its integration is the frequent gap between applications of RL research and commonly
occurring control structures, such as cascaded controllers.

Recent work exists in this area for the altitude and attitude control of an airplane [21],
where a cascaded structure is obtained by training two RL algorithms sequentially. In [22],
a similar approach is followed for the position and attitude control of quadrotors. The
difficulty of such architectures is further illustrated by the offline training requirement
due to unstable behavior, as noted in [21]. In [23], a framework is proposed to align the
terminology of cascaded control with that of hierarchical RL [24]. Related to cascaded
control, in hierarchical RL a challenging task is tackled by decomposing it into subtasks.
As this subdivision to different tasks results in a similarly nested architecture, some recent
examples of applications to cascaded structures exist in [25], where hierarchical RL is
used to control the water level in connected canals and [26] to optimize fuel cell use and
degradation in a fuel cell hybrid electrical vehicle. Next to hierarchical RL, multi-agent
RL [27], in which the simultaneous control of RL agents is studied, finds applications in
systems with a degree of cascaded structure, such as smart grids and industrial production
energy balancing [28] or wake control of wind farms [29], by considering all controlled
variables as distinct subsystems. Though the challenge of a cascaded control structure has
surfaced in a number of works on reinforcement learning, to the best of our knowledge, the
potential of RL for such systems has not been studied distinctly.

A second main reason inhibiting the integration of RL into industrially used devices
and drivetrains is the lack of safety guarantees. As RL fashions new insights through
trial and error, potentially dangerous situations can occur for safety-critical applications,
especially during the early exploration phases during training or when faced with unseen
conditions after convergence. This lack of safety guarantees may be prohibitive for its
application, especially—but not exclusively—in industrial environments. As such, the need
for safe RL is one of the current grand challenges in reinforcement learning research [10]
and has led to an emerging research field in the recent years. A particularly interesting
branch of research into robust learning control covers combining (deep) learning methods
with conventional controller structures. Notable examples include neuroadaptive learning,
using neural networks as extended state observers and virtual control law approximators
in backstepping-based control [30], combining RL with robust MPC [31] or employing a
safe fallback policy for the RL agent in unknown states [32]. Specifically for industrial
applications, constrained residual RL (CRRL) [33] takes a control engineering point of
view by using RL methods to optimize the performance of a stabilized system. A robust
base controller is used to guide and constrain the RL policy, which is added residually to
the outputs of the conventional controller. As such, the conventional controller provides
the bulk of the control action and ensures robustness at all times, while the RL agent
learns a residual output to optimize performance for the current operating conditions. The
performance of this method was demonstrated in [33] both experimentally and theoretically.
As one of its main drawbacks, however, the method was only validated for single-input-
single-output (SISO) systems, providing no guarantees on the more complex situation
of multiple-input-multiple-output (MIMO) systems, as can be encountered in cascaded
control structures.

In this contribution, we aim to bridge this gap in the current literature by studying
the potential of safe reinforcement learning for cascaded control problems in an industrial
setting. We propose cascaded CRRL, a method allowing to optimize MIMO control systems
in a cascaded setting. We show that the standard CRRL framework is suboptimal for

Machines 2023, 11, 402 3 of 19

these systems and study the impact of the cascaded structure of the base controllers on
the proposed algorithm and its different components. The contributions of this work are
as follows:

• We study the generalization of the CRRL method to MIMO, cascaded systems and
propose a novel CRRL architecture for such systems.

• We deepen the theoretical understanding of the standard CRRL control architecture
and extend this to principle insights into the operation and stability of the cascaded
CRRL architecture.

• We consider the practical design considerations required to enable the efficient training
of a cascaded CRRL agent operating at different levels of a control structure. We
propose a dedicated architecture for the residual agent and validate its performance
and different assumptions through ablation studies on a high fidelity simulator of a
dual motor drivetrain.

The manuscript is structured as follows. Section 2 first lays out the necessary back-
ground knowledge before detailing the developed method. Section 3 describes the system
on which the method is validated. Section 4 presents the performed experiments and
discusses their results. Finally, Section 5 concludes the study and gives an outlook to future
research based on the work in this contribution.

2. Method
2.1. Preliminaries: Reinforcement Learning

Reinforcement learning aims to solve a Markov decision process (MDP). An MDP is a
tuple M = (S ,A, r, p), with s ∈ S the states, a ∈ A the actions, r(s, a) the reward function
that values taking action a in state s, and p(st+1|st, at) the probability of transitioning to state
st+1 at the next timestep. The return or objective is defined as the infinite discounted sum
of rewards R(τ) = limT→∞ ∑T

t=0 ηtr(st, at) with τ = (s0, a0, s1, a1, . . .) being a progressive
sequence of states and actions and 0 ≤ η ≤ 1 being a temporal discount factor. The
resulting goal of any RL method is to find an optimal policy π∗(at|st) that maximizes the
expected return [34]

J(π) = Eτ∼p(τ|π)[R(τ)]

π∗ = argmax
π

J(π)
(1)

with p(τ|s0, π) = ΠT−1
t=0 p(st+1|st, at)π(at|st).

In this work, we employ the soft actor–critic (SAC) algorithm for all experiments.
SAC is a state-of-the-art RL method that combines a state-action-value estimate, i.e., the
critic, with a separate policy, i.e., the actor, both approximated by a neural network. These
estimates are updated iteratively through temporal differencing until they satisfy the
Bellman equation. The main characteristic of SAC is the use of a stochastic policy, the
entropy of which is actively steered so as to accommodate the exploration–exploitation
dichotomy [35]. The stochastic policy outputs a mean and variance in response to an
input state, and actions are realized by sampling according to the corresponding Gaussian
distribution. By actively steering this, exploration is encouraged during training, and a
higher stability after convergence is reached. For further details, we refer to [14,35].

2.2. Constrained Residual Reinforcement Learning

Residual reinforcement learning (RRL) refers to a learning control architecture that
merges classical control principles with ideas from reinforcement learning. The main idea
is straightforward [33]. The plant is controlled by the superposition of a stabilizing base
controller and a residual agent. The agent has access to the same state as the stabilizing
base controller, possibly augmented with additional system information and is trained
using standard learning methods from RL. With constrained RRL (CRRL), the contribution
of the agent is constrained between a fixed lower and upper bound. During training, the

Machines 2023, 11, 402 4 of 19

agent learns to adapt the base controller’s output to increase the overall optimality, directly
from observed system behavior.

More formally, in CRRL, the total control input to the system uθ(s) is the sum of the
conventional controller’s output, u(s), and the RL algorithm’s constrained output, πθ(s, y).
Here, y represents any information that the agent can access but the base controller cannot.
Two variants were studied in [33]: absolute and relative CRRL. Absolute CRRL is defined as a
residual agent whose actions are constrained by a uniform, absolute bound irrespective of
the base controller’s output

uθ(s) = u(s) + βAπθ(s, y) (2)

where βA is the parameter that determines the scale of the residual actions. For relative
CRRL, the residual actions are constrained to a fraction of the conventional controller’s
output and therefore scale with the latter. uθ(s) is then given by

uθ(s) = u(s)(1 + βRπθ(s, y)) (3)

with βR > 0 as a parameter constraining the actions of the neural network relative to the
actions of the base control algorithm.

CRRL topologies were proposed in an attempt to realize a version of safe RL. Indeed,
a simple argument can be put forth to assure that the overall architecture respects some def-
inition of safety. During the operation of a CRRL architecture, we can distinguish between
two phases: An exploration phase is where the agent’s actions are random and explorative.
During this phase, the agent is trained and is characterized by a performance decrease.
The second and final exploitation phase deploys the trained agent and is characterized by a
performance increase.

During the exploration phase, there is no way to assure that the residual agent’s actions
are helpful. In the most pessimistic case, this implies that in the initial phases of training,
the (random) agent’s action has the same effect as a destabilizing disturbance. However,
after some number of iterations, the randomness injected by the learning framework will
eventually cool down and the agent should converge to its optimal policy. In turn, this
should result in a performance increase. Then, because there is formally no difference
between natural exogenous input disturbances and the artificially injected agent’s actions,
the performance is maintained by the efforts of the base controller. If we tune the base
controller assuming a superposition of any natural input disturbances and the agent’s
actions, we can avoid any disastrous performance decrease during training. Here, one may
recognize two conflicting design criteria. On the one hand, we want to design the controller
so that the input disturbances are not amplified beyond a certain safety value. On the other
hand, we want to design the controller so that the injected disturbances are not filtered out
entirely, which would prevent the agent from learning anything except that its actions are
pointless. We come back to this later.

In conclusion, we may note that the relative CRRL topology was empirically shown
to maintain safety better during training [33]. An increased performance improvement
after convergence could be observed for an equal performance decrease during exploration,
compared to the absolute CRRL topology. We argue this is a direct result of the non-
uniformity of the absolute bounds. Note, nonetheless, that the relative bounds imply that
when the base control signal is zero, the residual agent’s action is constrained to zero as
well. Though it might not be possible to express a more optimal control signal like this for
just any application, for those cases where this is true, one obtains a natural scaling of the
exploration, resulting in accelerated and improved learning.

This work pursues a practical generalization of the CRRL approach to MIMO systems.
Intuitively, the same reasoning applies as was detailed in Section 2.2. If the base controller is
capable of attenuating input disturbances, the safety of the learning controller is guaranteed.
A precise analysis dedicated to the control and system at hand should deliver some practical
bounds to consider when balancing the robustness and learning capacity. In this work, we

Machines 2023, 11, 402 5 of 19

further consider the special case of cascaded control structures as is common in MIMO
contexts. Simply put, a residual agent is superposed on any cascaded control output
resulting into N agents for N-state cascades.

Consider the block diagram of a generic N-stage MIMO cascaded control architecture
in Figure 1. Note that all signals are vector quantities considering the present MIMO
context. The closed-loop system exists of N controllers, Cn, and N subsystems, Pn so
that the n-th controller generates the (n− 1)-th reference x∗n−1, and the (n− 1)-th process
variable is used as the input of the n-th subsystem, Pn. In normal operation, the system may
be affected by input disturbances {dn}, modeling exogenous excitations. Conveniently,
we also include N disturbances, d∗n, that affect the intermediate reference signals, x∗n. Note
that d∗1 = d1. These reference disturbances are not a part of any natural control operation
provided that the left branch of Figure 1 usually represents a deterministic computation.
Instead, they represent the input from the cascaded CRRL agents. This situation is different
from the standard CRRL topology, where N = 1 so that the notion of reference disturbances
does not apply.

𝐶𝑁

⋯

𝐶1

𝑃𝑁

⋯

𝑃1

𝑥𝑁
∗

𝑑𝑁
∗

𝑑2
∗

𝑑1
∗ = 𝑑1

𝑑𝑁

𝑑2

𝑥𝑁
+ −

+

−

+

++

+

−
+

+

+

+
+

+
+

𝑥𝑁−1

𝑥1

Figure 1. Block diagrams of a generic N-stage cascaded MIMO controller.

In the following subsections, we concretize this general idea of a cascaded CRRL
structure, where a residual agent is superposed on the conventional controller at each
cascade level. In Section 2.3, we first derive some general principles, giving insight into
the operation and stability of such a structure. In Section 2.4, we consider the practical
implementation details and propose the dedicated actor structure required to efficiently
train under the considered cascaded control architecture. In Section 4, the performance of
this method is validated in simulation, and its different assumptions are tested.

2.3. Stability Considerations Based on Linear System Analysis

As mentioned in the previous section, the operating principle of a CRRL learning
architecture relies entirely on the stability and robustness of the base controller. From a
traditional control perspective, the residual agent(s) can be treated as exogenous input
disturbances. If the base controller is capable of effectively attenuating the disturbances,
there will be a limited decrease in performance, even with the additional artificial explo-
ration noise. This analysis holds for the training phase. During the exploitation phase,
when the residual agent’s actions are supposedly beneficial, the base controller should
not filter out the agent’s actions. This discussion implies that it is important to keep two
design criteria in mind when tuning the base controller knowing that it will be augmented
into a CRRL architecture afterwards. One should try to limit the performance degradation

Machines 2023, 11, 402 6 of 19

during training on the one hand, whilst allowing sufficient maneuverability to enjoy a
performance improvement during the exploitation phase.

It is hard to develop bounds for the residual agent(s) that guarantee stable operation
irrespective to the field of application and the standard base controller specific to that field.
Therefore, in this section, we first lay out a number of design principles that may be applied
when adopting a CRRL architecture. Next, as the present analysis attempts an extension
to cascaded architectures, we extend this discussion to a cascaded structure and employ
these to derive some principle insights into the stability of the cascaded CRRL structure.
Note that this extension to a cascaded structure will require some additional precautions
since now the input of the different agents, which can be considered as a disturbance
during the exploration phase, may be amplified by the various cascades. On the other hand,
when we alter our perspective, the cascaded outputs can be interpreted as reference signals
for the succeeding levels, except for the final output. That way, we want good tracking
performance of the first cascaded layers to avoid completely filtering out the actions of
the residual agents on those levels such that the exploration signals would not reach
the system.

The analysis in this section is limited to linear systems and is a frequency domain
analysis. We argue that the principles transfer to nonlinear systems as long as the non-
linearity is limited. We discuss design principles that aim to minimize the performance
‖e‖2

2 for natural white noise disturbances, d, and low-frequency reference signals. This
description follows the definition of input–output controllability. The following discussion
relies on ideas taken from the book [36].

2.3.1. Standard Feedback Controller

Let us first consider a standard feedback controller with system and control frequency
response matrices, P, and, C, and control disturbance d. Then the closed loop dynamics are
governed by

x = Tx∗ + Sd∗ (4)

with
S = (I + PC)−1P

T = SC
(5)

which implies that

‖x(jω)‖2 ≤ σ(T)‖x∗(jω)‖2 + σ(S)‖d∗(jω)‖2 (6)

or with G = T − I

‖e(jω)‖2 ≤ σ(G)‖x∗(jω)‖2 + σ(S)‖d∗(jω)‖2 (7)

with σ(.) corresponding to the maximum singular value. The analysis in this section
is based on the consideration that the satisfactory gain for a matrix transfer function is
determined by the singular values of the transfer function [36]. As such, the former allows
to derive some high-level reasonings about the influence of the residual agent at different
frequencies when we apply it on the signal d or x∗. The superposition of the residual
agent on d corresponds with the standard topology, which we will refer to as the control
topology. Superposition on x∗ corresponds with an until now unstudied reference topology.
Consideration of this topology is useful for the analysis of cascaded controllers.

We may identify the following design objectives:

1. For good input–output controllability, we want σ(T) ≈ σ(T) ≈ 1, preferably for all
frequencies but certainly for lower frequencies corresponding to common reference
signals. For most physical closed-loop response functions, σ(T) → 0 for ω → ∞.
The analysis is largely the same for the control or reference topology. Except for
the reference topology, it might be beneficial to have σ(T) ≈ 1 for a slightly higher
frequency range at the expense of σ(T) > 1 at lower frequencies. This to make

Machines 2023, 11, 402 7 of 19

sure that the exploration noise is not filtered out entirely, in the context of slightly
nonlinear systems.

2. For disturbance attenuation, we want σ(S) small at high frequencies. At lower
frequencies, however, a distinction with conventional design objectives appears, as we
then want σ(S) to have the same order of magnitude as σ(T). As such, high-frequency
disturbances are filtered out whilst low-frequency disturbances continue to have a
measurable effect on the output. The order of magnitude determines the decrease
in performance during the exploration phase, but at the same time the performance
increases during the exploitation phase. For the reference topology, we can adopt the
same design objective as for any conventional control topology.

We refer to [36] for a discussion on how these design objectives translate into actionable
design principles on the open loop gain PC.

2.3.2. Cascaded Feedback Controller

Let us now also consider the cascaded feedback control architecture. Consider there-
fore the following closed-loop dynamics of a generic cascaded system, as shown in Figure 1:

xn = Tnx∗n +
n

∑
i=1

n−i

∏
j=1

Sn−jTi−1d∗i +
n

∑
i=2

n−i

∏
j=1

Sn−jdi (8)

where
Sn = (I + PnTn−1Cn)

−1Pn

Tn = SnTn−1Cn
(9)

with T0 = I. These expressions resemble those of the standard topology with the exception
that in the computation of the outer loop dynamics, we have to take into account the inner
loop dynamics Tn−1. Usually, cascaded controllers are therefore tuned starting from the
inner loop and working our way out to the final outer loop. In fact, this is exactly the use
of cascaded control such that with Tn−1 ≈ I, each loop can be considered a conventional
control design problem.

It follows that
‖xn(jω)‖2 ≤ σ(Tn)‖x∗n(jω)‖2

+
n

∑
i=1

n−i

∏
j=1

σ(Sn−j)σ(Ti−1)‖d∗i (jω)‖2

+
n

∑
i=2

n−i

∏
j=1

σ(Sn−j)‖di(jω)‖2

(10)

or likewise that
‖en(jω)‖2 ≤ σ(Gn)‖x∗n(jω)‖2

+
n

∑
i=1

n−i

∏
j=1

σ(Sn−j)σ(Ti−1)‖d∗i (jω)‖2

+
n

∑
i=2

n−i

∏
j=1

σ(Sn−j)‖di(jω)‖2

(11)

These expressions further give rise to the following worst case scenario:

‖xn(jω)‖2 ≤

α‖x∗n(jω)‖2 +
β− βn+1

1− β
α‖d∗(jω)‖2 +

β− βn

1− β
‖d(jω)‖2

(12)

or
‖en(jω)‖2 ≤

γ‖x∗n(jω)‖2 +
β− βn+1

1− β
α‖d∗(jω)‖2 +

β− βn

1− β
‖d(jω)‖2

(13)

Machines 2023, 11, 402 8 of 19

so that α = max
n

σ(Tn), β = max
n

σ(Sn), γ = max
n

σ(Gn), ‖d(jω)‖2 = max
n
‖dn(jω)‖2 and

‖d∗(jω)‖2 = max
n
‖d∗n(jω)‖2. Note that this expression reduces trivially to Equation (6).

To give a first analysis, assume that the cascaded controller was designed successfully
according to conventional principles so that α ≈ 1, β < 1 and γ ≈ 0 in the frequency ranges
of practical interest. It follows that the outer control loops are affected by the inner loop
disturbances; however, the effect diminishes with each iteration. The analysis above also
allows to give some frequency-dependent bounds on the noise amplitudes d∗n. In case that
the system’s performance cannot be guaranteed using a conventional control architecture
and design and a CRRL approach is adopted, we can adopt the design principles from
the standard case and extrapolate them control layer by control layer when designing the
CRRL approach.

This section gives some superficial design objectives and principles related to CRRL
control architectures. The aim of this analysis was to provide some deeper insights in the
operating principles of CRRL architectures. We recognize that these principles are still far
from practical, but we believe that they already grasp some essential aspects of standard
and cascaded CRRL approaches. Overall, it is a very interesting prospect to consider the
use of a learning method in the lifetime of the system already during its initial control
design. For now though, we leave this conceptual direction for future research.

2.4. Practical Implementation

The considered cascaded architecture poses both challenges and opportunities in
terms of the specific design required to enable a residual agent to optimize the baseline
controller at each level. In this section, we propose a novel structure for the RL agent to
realize the cascaded CRRL architecture and detail the different elements of this structure.
In Section 4, these are validated through ablation studies on a simulated system.

(a) Actor: Figure 2 shows the structure of the cascaded CRRL actor network. The
network consists of a separate output head for each cascade level in the form of a cascading
block, as well as a common part that forms a common state representation, passed to all
cascade output heads. Through the cascading block, the cascaded structure of the system
is reflected in the policy network. Each cascading block calculates the residual output
for its respective level. As the objective of these residual actions is to optimize their base
controller’s outputs, which can commonly not be derived from the current system’s state
only (e.g., due to the integration effect in a PI controller), the base controller’s action is a
necessary input for each output head. Since the lower-levels’ base controller outputs are not
known beforehand, as these depend on the residual actions of the preceding output heads,
the base controllers are included as non-trainable network layers in the policy, represented
as fx in the cascading blocks. In each block, the base controller’s output for the next level is
calculated from the current residual action and the previous level’s base input, along with
any necessary state information. This is passed together with the representation of the state
and top level base action, calculated by the common layers, to the next level’s output head,
which calculates the level’s residual action through its block-specific network layers. This
is continued until the residual for the lowest level is calculated.

While this structure for the actor network, including the base controllers as non-
trainable layers, is necessary for training, during deployment, the residual policy can
be reduced to its neural network layers only (i.e., discarding the fx blocks and cascaded
connections) and executed in parallel with the base controllers’ cascaded structure. After
execution of the first cascade level, the first level’s residual and the state representation
of the common layers is calculated. The residual is applied and execution of the second
output head is halted until the second level’s base controller’s output is calculated. This is
passed together with the common state representation to the second head, after which the
second level’s residual is calculated. This is again continued until the residual action for
the lowest level is calculated.

Machines 2023, 11, 402 9 of 19

Figure 2. Overview of the actor network in cascaded CRRL. The actor consists of a number of shared
layers, forming a common state representation from the input state s that is passed to all cascading
blocks. Each cascading block calculates the respective cascade level’s residual output action a and
ensures that the next level’s block has the full system information by providing it with its output,
passed through a layer computing the corresponding base controller’s action µ when applying the
calculated residual.

Formally, the total control action uθ,i(s) for the i-th cascade level is given by

uθ,i(s) = u(s, uθ,i−1(s))(1 + βRπθ,i(y(s, uθ,i−1(s)))). (14)

(b) Critic: The objective of the critic is to estimate the state–action–value estimate of
the current action in the given state. Similar to [33], we found that passing the total action
applied to the system, i.e., the vector combining uθ,i(s) for i = 1 . . . n with n the number
of cascade layers and uθ,i the corresponding level’s residual action multiplied by the base
controller action and βR, along with the state s provides enough information for the critic
to learn an appropriate estimate.

In the following sections, the performance of the method is validated, and the require-
ment and influence of the different elements are studied.

3. Simulation Environment
3.1. System Overview

In this contribution, we study the cascaded CRRL methodology on a simulated dual-
drive drivetrain. In a dual-drive configuration, two motors actuate a single load. This
topology has been proposed as an alternative to single-drive systems in varying config-
urations for different applications such as electric vehicles [37], robot actuation [38] and
haptic feedback [39]. For our simulation experiments, we employ a high fidelity simulator,
designed through a dedicated study on the dual-motor drivetrain architecture for electrical
vehicles [40]. In this section, we provide a high level overview of the simulated system, its
operation and parameters. As a detailed description of its implementation particularities is
out of scope for this paper, we refer to [40] for further info.

The considered drivetrain and its load consists of two different induction motors,
connected to and driving a single axis. A load, e.g., the vehicle, is attached to the drive-
train that is required to track a varying velocity setpoint. A velocity controller tracks the
velocity reference, determining the overall torque setpoint. A second supervisory controller
subsequently determines the power split between the two drives. Within each drive, a
flux controller determines a flux setpoint given the motor’s torque setpoint, after which
field-oriented control [41] is employed to determine the necessary phase currents and
subsequently the voltages of the motors. In this work, we limit ourselves to the velocity,
power split and flux controllers, resulting in a three-level cascaded structure, in which the
third level is present in parallel for both motors.

The load and reference velocity of the drivetrain are based on a vehicular load and a
modal driving cycle. Nonetheless, note that we consider the system as a general industrial
drivetrain as we include the velocity controller in our analysis, considering the load to be
representative for a general application. The vehicular-based load is divided in the pow-
ertrain load Fpowertrain as the motor transfers power to the wheels through the drivetrain,

Machines 2023, 11, 402 10 of 19

a drag force Fdrag due to the air resistance and a force Froll due to the rolling resistance of
the tires:

Fpowertrain =
i f (TIM1 + itTIM2)

rw
, (15)

Fdrag =
1
2

ρaircd Av2, (16)

Froll = crmg, (17)

where it and i f are the transmission and differential gear ratio; TIM1 and TIM2 are the
delivered torque by the first and second induction machines, respectively; rw is the wheel
radius; ρair is the air density; cd is the drag coefficient; A is the cross sectional area of the
vehicle; v is the absolute speed of the vehicle, as the wind speed is not taken into account;
and cr is the rolling resistance coefficient given by cr = cr,1 + cr,2v2. The total mass of the
system, including the longitudinal and rotational inertia, is given by

mt = m +
Jw

r2
w
+

Jdi2f
r2

w
+

i2f (JIM1 + i2t JIM2)

r2
w

, (18)

with m as the vehicle’s mass, and Jw, Jd, JIM1 and JIM2 as the inertia of the wheels, drivetrain
and the induction machines, respectively. Through Newton’s second law, the change of
load velocity v is then given by

v̇ =
1

mt
(Fpowertrain + Fdrag + Froll). (19)

For the simulation of the induction machines, we refer to the in-depth description
given in [40]. The employed parameter values can be found in Appendix A.

3.2. Base Controllers

For each cascade level, the following base controller is implemented:

3.2.1. Velocity

As is common, a PI controller with KP = 110, KI = 8 and sample frequency 50 Hz is
employed to track the velocity setpoint.

3.2.2. Power Split

The power split between the motors is given by η ∈ [0, 1], with TIM1 = ηT and
TIM2 = (1− η)T with T the overall torque setpoint determined by the velocity controller.
To determine the power split between the motors, we employ a feedforward model-based
controller that minimizes the total estimated steady state losses of the two motors. The loss
in each motor is estimated as

Ploss = k1ψ2
rd + k4

T2

ψ2
rd

, (20)

k1 =
3
2
(

Rs

L2
m
+

N2
Pω2L2

m
RmL2

r
), (21)

k4 =
2

3N2
P
(

RsL2
r

L2
m

+ Rr), (22)

as described in [42]. When η is either 1 or 0, i.e., one of the motors delivers the full power,
the other motor can be either left on or turned off (i.e., the motor’s inverter switches remain
open). This is implemented by ranging η from −0.1 to 1.1, with IM1 turned off if η < 0 and
IM2 turned off if η > 1.

Machines 2023, 11, 402 11 of 19

3.2.3. Flux

As with gamma, the base flux controller of each motor is a feedforward model-based
controller that minimizes the steady-state losses [42]:

ψset, IM =
√

Tset, IM

√√√√√2
3

Lr

NP

√√√√ RsL2
r + RrL2

m

RsL2
r + L4

m
N2

Pω2
M

Rm

(23)

4. Simulation Experiments and Results

In this section, a series of simulation experiments are performed aimed at testing
the performance of the proposed method (Sections 4.1, 4.2, 4.4 and 4.5) and studying the
assumptions and operation of the method (Sections 4.1 and 4.3). We first provide the
necessary general, point-by-point information of the performed simulation experiments.
Next, we detail each experiment and discuss the results.

All results in this section are generated by training an agent on the training trajectory,
whose total length is 5 h 30, and subsequently deploying it deterministically, i.e., by taking
the mean value of the actor’s output distribution [35] instead of sampling an action, on the
test trajectory of length 1h. The trajectories, based on modal driving cycles, are visualized
in Figure 3. Unless stated otherwise, the results shown are the performance on the test
trajectory, averaged over 20 independent train/evaluation runs. The employed reward for
the cascaded CRRL algorithm is the mean absolute error (MAE) of the linear velocity of the
vehicular load and its reference. The hyperparameters for the single and multiple output
configurations as defined later are given in Table 1. The relative allowed deviation βR for
each CRRL agent is 0.2 over all experiments, unless stated otherwise. The CRRL agents
read the state and apply an action to the system every 1.5 s. An epoch is defined as 75 s.
The state of the system, passed to the agents, consists of the current and previous overall
torque setpoint, the previous torque setpoint of both induction motors, a flag indicating if
each motor is currently on or off, the actual and current reference velocity and the current
estimated stator flux of both induction motors. For the multiple output configuration, the
total calculation time for the training of 1 epoch is 3.3 s on an Intel i9-12900K CPU. Note
that this is only necessary for training the network. During deployment, only a forward
pass of the actor network is needed, which consists of only 135 680 FLOPS with the current
network parameters.

Table 1. SAC parameters.

Parameter Single Multiple
Output Output

Optimizer (all networks) Adam Adam
Learning rate—Actor 3 × 10−5 3 × 10−5

Learning rate—Critic 3 × 10−3 3 × 10−4

Discount (η) 0.91 0.91
Batch size (randomly sampled from replay buffer) 256 256
Replay buffer size 1 × 106 1 × 106

Number of hidden layers—Actor 2 2
Number of actor head-specific layers - 1
Number of hidden layers—Critic 3 3
Number of neurons per hidden layer—Actor 128 64
Number of neurons per hidden layer—Critic 256 128
Nonlinearity ReLU ReLU
Target smoothing coefficient 0.005 0.005

Machines 2023, 11, 402 12 of 19

0 250 500 750 1000 1250 1500 1750
Time [s]

0

5

10

15

20

25

v r
ef

[m
/s

]

Train

Validation

Figure 3. Visualization of the modal load cycles employed for training and validation.

4.1. Cascaded CRRL Performance

As described in Section 2.2, the training and deployment of a CRRL architecture con-
sists of two phases: the exploration phase and the exploitation phase. During the exploration
phase, the residual agent’s actions have a significant degree of randomness as the agent
is learning to optimize the overall system. As this corresponds to a disturbance on the
base controller’s output, this phase might result in temporarily decreased performance of
the overall system. During the exploitation phase on the other hand, the residual agent
has converged to its (possibly local) optimal policy, improving the overall system perfor-
mance given a successful training phase. As such, the performance of the cascaded CRRL
controller needs to be evaluated both after convergence and during training.

(a) Exploitation phase: Figure 4 on the left shows the overall performance increase after
convergence of the cascaded CRRL controller (Casc.) on the test trajectory, i.e., the
total MAE on this trajectory, relative to the overall performance when deploying the
base controllers only. On the test trajectory, the cascaded CRRL consistently results in
a significant improvement through its system-specific corrective adaptations over the
different runs, with an average improvement of 14.7%.

(b) Exploration phase: Figure 4 on the right and Figure 5 compare the performance of the
cascaded CRRL controller during training with that of the baseline controller. Figure 5
shows the MAE per epoch during training for both cascaded CRRL (Casc.) and with only
the base controllers acting (no residual). Figure 4 on the right shows a more detailed
view, giving the increase in MAE per epoch during training for each epoch, where the
performance with the cascaded CRRL agent was decreased compared to when only
the base controllers are deployed. This relative representation allows to compare the
different forms of CRRL controllers, as studied in the following experiments, more
accurately. In Figure 5, we can see that due to the CRRL structure that is maintained,
the final improvement of 14.7% on average is obtained with only minimal performance
decrease during the exploration phase. This shows that the cascaded CRRL algorithm
maintains the main property of the CRRL framework, leveraging the robustness of
the base controller to maintain safe operation at all times during training, as opposed
to standard RL algorithms, where the initial exploration phase may result in unsafe
situations before a performance improvement is attained.

4.2. Comparison to Standard CRRL

To compare the performance of the cascaded CRRL to the standard CRRL, we first
compare our method to a naive application of the standard concept, where a distinct CRRL
controller is added to each base controller and all four resulting CRRL controllers are
trained simultaneously, denoted as the separate configuration in Figure 4. With a mean
improvement after convergence of only 0.5% due to various runs, where the algorithm did
not converge to a beneficial policy as well as a higher decrease in performance occurring
during training, the resulting performance is significantly worse. This does not come as a
surprise, as, due to the cascaded structure, this configuration suffers from non-stationarity,
which is a well-known issue in hierarchical RL [24] where the observed state–action–next
state transitions vary over time due to the changing lower-level policies.

Machines 2023, 11, 402 13 of 19

Casc. Sep. Seq.
training

−40

−20

0

Performance improvement
after convergence [%]

Casc. Sep. Seq.
training

0

50

100

150

MAE increase per
epoch during training

Figure 4. Left: Overall performance improvement after convergence of the different CRRL controllers
compared to the baseline system. Right: MAE increase per epoch of the different CRRL controllers
compared to the baseline controller, for each epoch where the CRRL controller performed worse.
Casc.: Cascaded CRRL, Sep.: Separately trained standard CRRL, Seq. training: Sequentially trained
standard CRRL.

Casc. No
residual

0

200

400

600

MAE per epoch
during training

Figure 5. Boxplots of the reward per epoch during training for a cascaded CRRL (Casc.) controller
and for the system with only the base controllers acting (No residual).

To mitigate this, we train each standard CRRL controller sequentially until conver-
gence, starting from the top level. After training of the first agent, it is deployed deter-
ministically, and the second agent is trained. This is repeated until all agents are trained.
In Figure 4, where this configuration is denoted as sequential training, we can see that the
performance, both during training as on the test trajectory, significantly improved over the
concurrent training, reaching a mean improvement of 10.9%. However, the performance
of cascaded CRRL is not reached. This indicates that the ability to optimize all residual
actions concurrently is advantageous for reaching a better overall performance, as studied
further in the following experiment.

4.3. Influence of the Elements of Cascaded CRRL

In the previous experiments, it was observed that the performance of cascaded CRRL is
better than when different standard CRRL agents are optimized sequentially. This indicates
that the concurrent information flow of the effect of each action on the estimated Q-value
during training may be beneficial for the agent to learn to improve the overall system
performance.

To test this, we train a configuration in which only the gradients of the output head
of the first level flow through to the common layers. Of the other heads, the gradients
are interrupted after the head-specific layers in the cascading block when moving back-
wards through the network. As such, the common layers, which pass their output state
representation to all output heads, are trained through the information of the top cascade
level only. Note that the information flow is not completely interrupted, as the other
output heads still influence the gradient through the common forward pass of all actions

Machines 2023, 11, 402 14 of 19

through the critic network. The result is shown in Figure 6, denoted as the gradient-halted
configuration. We see that the performance, though still better than in the separate case, is
worse than for the original method, both after deployment and during training, reaching
an average improvement of 11.3%. This confirms that the agent benefits from the improved
information flow due to the joint training.

Casc. Gradient
halted

No
casc.

−40

−20

0

Performance improvement
after convergence [%]

Casc. Gradient
halted

No
casc.

0

50

100

150

MAE increase per
epoch during training

Figure 6. Left: Overall performance improvement after convergence of the different CRRL controllers
compared to the baseline system. Right: MAE increase per epoch of the different CRRL controllers
compared to the baseline controller for each epoch where the CRRL controller performed worse. Casc.:
Cascaded CRRL, No casc.: Standard MIMO CRRL, Gradient halted: Cascaded CRRL with interrupted
gradients of the lower level cascading blocks.

Next, we check the influence of the cascading structure of the actor network. We apply
standard CRRL as if the system was a non-cascaded MIMO system: the actor has an output
layer of four neurons, i.e., the four residual actions, and all base actions, i.e., calculated as if
no residual actions are applied, are passed to the actor together with the state as input to
the first layer. The result is shown in Figure 6, denoted as the no cascading configuration.
We can see that the performance, with a mean improvement of only 1.1%, as several runs
do not converge to a beneficial policy, is significantly worse than for the cascaded structure,
resembling the performance of the separate configuration of Section 4.1. By not including
the base controllers in the actor network and cascading the calculated residuals through
them, the agent does not have access to the full information of the system on which it acts,
which leads to a strongly decreased performance over the cascaded CRRL method. Note
that the no cascading configuration is still given the original base actions as input to its
first layer.

4.4. Effect of Varying the Residual Agent Bounds

The residual RL agent in cascaded CRRL requires no extra parameters to tune com-
pared to the standard hyperparameters of the SAC algorithm [35], except for the bound
of the residual agent, determined by βR. In Figure 7, the effect of varying this bound is
studied for different values of βR. We can see that the freedom allowed by the residual
agent is a trade-off between the potential performance improvement after convergence
and the possible, though at all times limited, performance decrease during training. As
such, βR is an intuitive parameter to tune that can be increased iteratively while observing
system performance in practice.

Machines 2023, 11, 402 15 of 19

0.05 0.1 0.2
βR

0

5

10

15

Performance improvement
after convergence [%]

0.05 0.1 0.2
βR

0

20

40

60

80

MAE increase per
epoch during training

Figure 7. Left: Overall performance improvement after convergence of a cascaded CRRL controller
with varying βR, compared to the baseline system. Right: MAE increase per epoch of a cascaded
CRRL controller with varying βR, compared to the baseline controller, for each epoch where the
CRRL controller performed worse.

4.5. Effect of Measurement Disturbances

Finally, we study the influence of measurement disturbances on the performance of
the cascaded CRRL controller. For this, we perform an experiment where measurement
noise, sampled from N (0, 0.02x) with N the normal distribution and x the nominal value
of the measurement, is added to all measurements. Note that this is a severe disturbance
with a variance of 2% of the nominal value, well out of the accuracy range of common
commercially available encoders and current sensors. The results are shown in Figure 8.
As can be seen, even though the performance unavoidably drops due to the significant
disturbances, the residual agent continues to succeed in finding a policy that further
optimizes the baseline controller significantly.

With
disturbances

Nominal
0

5

10

15

Performance improvement
after convergence [%]

With
disturbances

Nominal
0

50

100

150

MAE increase per
epoch during training

Figure 8. Left: Overall performance improvement after convergence of a cascaded CRRL controller
with significant measurement noise sampled from N (0, 0.02x) with x the nominal value, compared
to the baseline system with nominal measurements. Right: MAE increase per epoch of the cascaded
CRRL controller with significant measurement noise, compared to the baseline system, for each epoch
where the CRRL controller performed worse.

5. Conclusions and Future Work

In this article, we presented cascaded constrained residual reinforcement learning, a
method to optimize the performance of a cascaded control architecture while maintain-
ing safe operation at all times. We drew inspiration from the constrained residual RL
framework, where a reinforcement learning agent is used as an add-on to a conventional
controller to optimize its performance while leveraging its robustness to guarantee safe
operation. We first revisited the interaction between the residual agent and the baseline
controller and discussed the inherent differences between the standard output-based resid-
ual agent topology and the reference topology, which surfaces in a cascaded structure.
Subsequently, we employed this to derive some principle insights in the operation and

Machines 2023, 11, 402 16 of 19

stability of a cascaded residual structure. Next, in simulation experiments, we showed that
a naive application of standard CRRL to the cascaded control structure of a dual motor
drivetrain results in unstable performance due to the non-stationarity of the resulting
observations for the higher level agents. We proposed a novel actor structure, reflecting the
cascaded structure of the system and incorporating the base controllers during training to
ensure full system information for the residual agent. We validated the resulting cascaded
CRRL method’s performance in the simulated environment and showed that it results in
a stable improvement of 14.7% on average of the base controller structure, with limited
decreases in performance during the training phase, maintaining the robustness of the
CRRL framework. In a series of ablation studies, we validated its assumptions and studied
the different principles leading to the efficient optimization of the cascaded, residual agent.

Based on the work in this contribution, a novel research path that will be studied is to
consider the use of a residual agent already in the initial design of the baseline controller,
studying design principles for tuning the base controller for the conflicting objectives of, for
example, noise attenuation, while allowing sufficient exploration of the residual agent. A
second research path that can be discerned and that will be pursued in the following work
is the optimization of cascaded systems with large differences in response time between
the different levels, as often encountered in practical applications.

Author Contributions: The individual contributions of the individual authors can be summarized as
follows. Conceptualization, T.S., T.L. and G.C.; Methodology, T.S. and T.L.; Software, T.S.; Validation,
T.S.; Formal analysis, T.S.; Investigation, T.S. and T.L.; Resources, G.C.; Data curation, T.S.; Writing—
original draft, T.S. and T.L.; Writing—review & editing, G.C.; Visualization, T.S.; Supervision, G.C.;
Project administration, G.C.; Funding acquisition, G.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work received funding from the Research Foundation Flanders (FWO) under SBO
Grant n°S007723N, the Flanders Make Research Project TuPIC and the Flemish Government under
the "Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen" programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions.

Acknowledgments: We thank Arash Farnam for his valuable contributions to the theoretical founda-
tion of this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results

Appendix A. Simulation Parameter Values

The parameter values employed for the simulation are detailed in the tables below.
Table A1 shows the general system parameters. Table A2 lists the parameters used to
simulate the load on the drivetrain. Table A3 finally details the parameters used for each
induction machine in the dual motor drivetrain.

Table A1. General system parameters.

Parameter Value

Simulation timestep [s] 1 × 10−4

Max. overall torque step [N m] 1 × 10−2

Machines 2023, 11, 402 17 of 19

Table A2. Load parameters.

Parameter Value

it 1
i f 1
m [kg] 1726
rw [m] 0.311
cd [m2] 0.56
Jw [kg m2] 9.44
Jd [kg m2] 1.2
cr,1 [-] 203.18
cr,2 [s2 m−2] 0.406

Table A3. Induction motor parameters.

Parameter IM1 IM2

J [kg m2] 1.25 0.37
Lm [H] 1.51 × 10−2 2.91 × 10−2

Lrs [H] 3.35 × 10−4 2.3 × 10−3

Lss [H] 3.35 × 10−4 2.3 × 10−3

Np [-] 2 2
Pnom [kW] 75 37
Rr [Ω] 2.09 × 10−2 6.58 × 10−2

Rs [Ω] 3.55 × 10−2 8.51 × 10−2

Vnom V 400 400
cos φ [-] 0.85 0.85
ψmin [Wb] 0.4 0.4
ψmax[Wb] 0.9 0.9
FOC KP 4 4
FOC KI 2 2

References
1. Mandali, A.; Dong, L. Modeling and Cascade Control of a Pneumatic Positioning System. J. Dyn. Syst. Meas. Control 2022,

144, 061004. [CrossRef]
2. Son, Y.I.; Kim, I.H.; Choi, D.S.; Shim, H. Robust cascade control of electric motor drives using dual reduced-order PI observer.

IEEE Trans. Ind. Electron. 2014, 62, 3672–3682. [CrossRef]
3. Fan, Z.; Ren, Z.; Chen, A. A Modified Cascade Control Strategy for Tobacco Re-Drying Moisture Control Process With Large

Delay-Time. IEEE Access 2019, 8, 2145–2152. [CrossRef]
4. Wu, M.L.; Wei, L.L.; Huang, J.K.; Wu, M.Y. The cascade three-elements fuzzy auto-adapted PID control system for boiler. Adv.

Mater. Res. 2010, 139, 1919–1923. [CrossRef]
5. Guo, H.; Liu, Y.; Liu, G.; Li, H. Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding

mode. Control Eng. Pract. 2008, 16, 1055–1068. [CrossRef]
6. Lee, Y.; Park, S.; Lee, M. PID controller tuning to obtain desired closed-loop responses for cascade control systems. IFAC Proc. Vol.

1998, 31, 613–618. [CrossRef]
7. Sadasivarao, M.; Chidambaram, M. PID Controller tuning of cascade control systems. J. Indian Inst. Sci. 2006, 86, 343.
8. Ikezaki, T.; Kaneko, O. Virtual internal model tuning for cascade control systems. SICE J. Control Meas. Syst. Integr. 2023, 1–8.

[CrossRef]
9. Sakai, Y.; Kawaguchi, N.; Sato, T.; Arrieta, O. Data-driven dual-rate cascade control and application to pitch angle control of UAV.

Asian J. Control 2023, 25, 54–65. [CrossRef]
10. Ensansefat, N.; Chaibakhsh, A.; Jamali, A. Enhancing disturbance rejection performance for a class of networked cascade control

systems: An H∞ approach. Int. J. Control 2023, 96, 223–237. [CrossRef]
11. Kaya, İ.; Nalbantoğlu, M. Simultaneous tuning of cascaded controller design using genetic algorithm. Electr. Eng. 2016,

98, 299–305. [CrossRef]
12. Khosravi, M.; Behrunani, V.N.; Myszkorowski, P.; Smith, R.S.; Rupenyan, A.; Lygeros, J. Performance-driven cascade controller

tuning with Bayesian optimization. IEEE Trans. Ind. Electron. 2021, 69, 1032–1042. [CrossRef]
13. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.

http://doi.org/10.1115/1.4053966
http://dx.doi.org/10.1109/TIE.2014.2374571
http://dx.doi.org/10.1109/ACCESS.2019.2960192
http://dx.doi.org/10.4028/www.scientific.net/AMR.139-141.1919
http://dx.doi.org/10.1016/j.conengprac.2007.11.005
http://dx.doi.org/10.1016/S1474-6670(17)44994-9
http://dx.doi.org/10.1080/18824889.2023.2175581
http://dx.doi.org/10.1002/asjc.2835
http://dx.doi.org/10.1080/00207179.2021.1986745
http://dx.doi.org/10.1007/s00202-016-0367-4
http://dx.doi.org/10.1109/TIE.2021.3050356

Machines 2023, 11, 402 18 of 19

14. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

15. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

16. Abdolmaleki, A.; Springenberg, J.T.; Tassa, Y.; Munos, R.; Heess, N.; Riedmiller, M. Maximum a posteriori policy optimisation.
arXiv 2018, arXiv:1806.06920

17. Hansen, N.; Wang, X.; Su, H. Temporal Difference Learning for Model Predictive Control. arXiv 2022, arXiv:2203.04955.
18. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
19. Degrave, J.; Felici, F.; Buchli, J.; Neunert, M.; Tracey, B.; Carpanese, F.; Ewalds, T.; Hafner, R.; Abdolmaleki, A.; de Las Casas, D.;

et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 2022, 602, 414–419. [CrossRef]
20. Perolat, J.; De Vylder, B.; Hennes, D.; Tarassov, E.; Strub, F.; de Boer, V.; Muller, P.; Connor, J.T.; Burch, N.; Anthony, T.; et al.

Mastering the game of Stratego with model-free multiagent reinforcement learning. Science 2022, 378, 990–996. [CrossRef]
21. Dally, K.; Van Kampen, E.J. Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control. In Proceedings of

the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2078.
22. Han, H.; Cheng, J.; Xi, Z.; Yao, B. Cascade Flight Control of Quadrotors Based on Deep Reinforcement Learning. IEEE Robot.

Autom. Lett. 2022, 7, 11134–11141. [CrossRef]
23. Erdenlig, I.S. A Control Theory Framework for Hierarchical Reinforcement Learning; Artificial Intelligence and Robotics Laboratory of

Politecnico di Milano: Milan, Italy, 2018.
24. Pateria, S.; Subagdja, B.; Tan, A.h.; Quek, C. Hierarchical reinforcement learning: A comprehensive survey. ACM Comput. Surv.

(CSUR) 2021, 54, 1–35. [CrossRef]
25. Ren, T.; Niu, J.; Liu, X.; Wu, J.; Lei, X.; Zhang, Z. An efficient model-free approach for controlling large-scale canals via hierarchical

reinforcement learning. IEEE Trans. Ind. Inform. 2020, 17, 4367–4378. [CrossRef]
26. Yuan, J.; Yang, L.; Chen, Q. Intelligent energy management strategy based on hierarchical approximate global optimization for

plug-in fuel cell hybrid electric vehicles. Int. J. Hydrog. Energy 2018, 43, 8063–8078. [CrossRef]
27. Zhang, K.; Yang, Z.; Başar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of

Reinforcement Learning and Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–384.
28. Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spanò, S. Multi-agent reinforcement learning: A

review of challenges and applications. Appl. Sci. 2021, 11, 4948. [CrossRef]
29. Dong, H.; Zhao, X. Data-Driven Wind Farm Control via Multiplayer Deep Reinforcement Learning. IEEE Trans. Control. Syst.

Technol. 2022. [CrossRef]
30. Yang, G.; Yao, J.; Dong, Z. Neuroadaptive learning algorithm for constrained nonlinear systems with disturbance rejection. Int. J.

Robust Nonlinear Control 2022, 32, 6127–6147. [CrossRef]
31. Zanon, M.; Gros, S. Safe reinforcement learning using robust MPC. IEEE Trans. Autom. Control 2020, 66, 3638–3652. [CrossRef]
32. García, J.; Shafie, D. Teaching a humanoid robot to walk faster through Safe Reinforcement Learning. Eng. Appl. Artif. Intell.

2020, 88, 103360. [CrossRef]
33. Staessens, T.; Lefebvre, T.; Crevecoeur, G. Adaptive control of a mechatronic system using constrained residual reinforcement

learning. IEEE Trans. Ind. Electron. 2022, 69, 10447–10456. [CrossRef]
34. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal

Process. Mag. 2017, 34, 26–38. [CrossRef]
35. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic

algorithms and applications. arXiv 2018, arXiv:1812.05905.
36. Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2005.
37. De Keyser, A.; Vandeputte, M.; Crevecoeur, G. Convex mapping formulations enabling optimal power split and design of the

electric drivetrain in all-electric vehicles. IEEE Trans. Veh. Technol. 2017, 66, 9702–9711. [CrossRef]
38. Janko, B. Dual Drive Series Actuator. Ph.D. Thesis, University of Reading, Reading, UK, 2015.
39. Barrow, A.; Harwin, W.S. High bandwidth, large workspace haptic interaction: Flying phantoms. In Proceedings of the

2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Reno, NE, USA, 13–14 March 2008;
pp. 295–302.

40. De Keyser, A. A Sensing-Control Architecture for Energy-Efficient Actuation of an All-Electric Dual-Drive Powertrain. Ph.D.
Thesis, Ghent University, Ghent, Belgium, 2020.

41. Le-Huy, H. Comparison of field-oriented control and direct torque control for induction motor drives. In Proceedings of the
Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370); IEEE:
Piscataway, NJ, USA, 1999; Volume 2, pp. 1245–1252.

42. Stumper, J.F.; Dötlinger, A.; Kennel, R. Loss minimization of induction machines in dynamic operation. IEEE Trans. Energy
Convers. 2013, 28, 726–735. [CrossRef]

http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/s41586-021-04301-9
http://dx.doi.org/10.1126/science.add4679
http://dx.doi.org/10.1109/LRA.2022.3196455
http://dx.doi.org/10.1145/3453160
http://dx.doi.org/10.1109/TII.2020.3004857
http://dx.doi.org/10.1016/j.ijhydene.2018.03.033
http://dx.doi.org/10.3390/app11114948
http://dx.doi.org/10.1109/TCST.2022.3223185
http://dx.doi.org/10.1002/rnc.6143
http://dx.doi.org/10.1109/TAC.2020.3024161
http://dx.doi.org/10.1016/j.engappai.2019.103360
http://dx.doi.org/10.1109/TIE.2022.3144565
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1109/TVT.2017.2745101
http://dx.doi.org/10.1109/TEC.2013.2262048

Machines 2023, 11, 402 19 of 19

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Method
	Preliminaries: Reinforcement Learning
	Constrained Residual Reinforcement Learning
	Stability Considerations Based on Linear System Analysis
	Standard Feedback Controller
	Cascaded Feedback Controller

	Practical Implementation

	Simulation Environment
	System Overview
	Base Controllers
	Velocity
	Power Split
	Flux

	Simulation Experiments and Results
	Cascaded CRRL Performance
	Comparison to Standard CRRL
	Influence of the Elements of Cascaded CRRL
	Effect of Varying the Residual Agent Bounds
	Effect of Measurement Disturbances

	Conclusions and Future Work
	Appendix A
	References

