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Abstract: Robots allow industrial manufacturers to speed up production and to increase the product’s
quality. This paper deals with the grasping of partially known industrial objects in an unstructured
environment. The proposed approach consists of two main steps: (1) the generation of an object
model, using multiple point clouds acquired by a depth camera from different points of view; (2) the
alignment of the generated model with the current view of the object in order to detect the grasping
pose. More specifically, the model is obtained by merging different point clouds with a registration
procedure based on the iterative closest point (ICP) algorithm. Then, a grasping pose is placed on
the model. Such a procedure only needs to be executed once, and it works even in the presence of
objects only partially known or when a CAD model is not available. Finally, the current object view
is aligned to the model and the final grasping pose is estimated. Quantitative experiments using a
robot manipulator and three different real-world industrial objects were conducted to demonstrate
the effectiveness of the proposed approach.

Keywords: robot grasping; 3D registration; automotive industry; industrial robots

1. Introduction

The term Industry 4.0 was used for the first time in 2011 in order to denote the fourth
industrial revolution, which includes the actions needed to create smart factories [1]. In
these smart factories, a novel type of robots, called collaborative robots (or cobots) [2]
are used in order to overcome the classical division of labor, which requires robots to be
confined in safety cages far away from human workers. In the context of Industry 4.0,
collaborative robots are designed to work in unstructured environments by leveraging
learning capabilities. A challenging issue in collaborative robotics is the grasping of partially
known objects. This problem can be divided into other small tasks, equally important,
that include object localization, grasp pose detection and estimation and force monitoring
during the grasp phase. Moreover, the choice of the contact point between the robot end-
effector and the object and the type and amount of forces to be applied are a nontrivial
tasks. The object localization and grasp pose detection task can be resolved by using vision
sensors that allow the robot to get information about the environment without entering in
contact with it.

It is important to notice that the visual techniques have some drawbacks. In particular,
they are affected by the lighting conditions of the environment and the object texture or
reflection. Moreover, calibration errors and partial occlusions can occur, especially in the
presence of an eye-in-hand configuration, i.e., when the camera is rigidly mounted on the
robot end-effector (see Figure 1). This configuration differs from the so-called eye-to-hand
setup, where the camera observes the robot within its work space. A camera in an eye-in-
hand configuration has a limited but more precise view of the scene, whilst a camera in an
eye-to-hand configuration has a global but less detailed sight of the scene [3].
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Figure 1. Robot and camera setup for the data acquisition.

In this work, we focused on the problem of grasping partially known objects for which
a model is not available, with an industrial robot equipped with an eye-in-hand depth
sensor in an unstructured environment.
The proposed method consists of two steps:

1. The generation of a model of the object based on a set of point clouds acquired from
different points of view. The point clouds are merged by means of a 3D registration
procedure based on the ICP algorithm. Once the model is obtained, the grasping pose
is selected. It is worth noticing that such a procedure is needed only once.

2. The alignment of the obtained model with the current view of the object in order to
detect the grasping pose.

The contributions of the paper are threefold.

1. As a difference with respect to expensive 3D scanning systems usually adopted for
large production batches, the proposed strategy only requires an off-the-shelf low-cost
depth sensor to generate the model and to acquire the current view of the object.
Moreover, the proposed system is highly flexible with respect to the position of the
object, and it allows one to acquire different views of the object, since the camera is
mounted on the wrist of a robot manipulator.

2. According to the Industry 4.0 road map, our system is robust to possible failures. In
fact, it can detect a potential misalignment between the acquired point cloud and
the model. In such a case, the point of view is modified and the whole procedure
is restarted.

3. While deep-learning-based approaches to object grasping pose detection usually
require a huge quantity of data and a high computational burden to train the network,
the proposed approach exploits a fast model reconstruction procedure.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
Our strategy for grasping the objects and the adopted methods are described in Section 3.
The hardware setup and the software details are presented in Section 4. Section 5 shows
the experimental tests conducted by considering three different automotive components.
Finally, conclusions are drawn in Section 6.
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2. Related Work

In this section, the related approaches to object grasping pose detection and some
recent registration methods are analyzed.

2.1. Object Grasping

Approaches to the problem of object grasping can be roughly classified into analytic
and data-driven [4].

• Analytic methods require a knowledge (at least partial) of the object features (e.g., shape,
mass, material) and a model of the contact [5].

• Data-driven approaches aim at detecting the grasp pose candidates for the object via
empirical investigations [6].

Among data-driven methods, deep-learning-based approaches are becoming very
popular thanks to the availability of powerful Graphics Processing Units (GPUs) . More
specifically, in order to make deep learning techniques very effective, a database with
geometric object models and a number of good grasp poses is needed. In [7], convolutional
neural networks (CNNs) were adopted with a mobile manipulator, in order to perform a
2D object detection, which, combined with the depth information, allowed the manipulator
to grasp the object. They proposed an improvement of the structure of the Faster R-CNN
neural network to achieve a better performance and a significant reduction in computational
time.

In [8,9], a generative grasping convolutional neural network (GG-CNN) was proposed.
It directly generated a grasp pose and quality measure for every pixel in an input depth
image, and it was fast enough to perform grasping in dynamic environments. Given a
depth image I ∈ IRh×w, where h and w are the height and width of the image, respectively,
a grasp is described by g̃ = (s, φ̃, w̃, q), where s = (u, v) is the center in pixel of the box
representing the grasp pose, φ̃ is the grasp rotation in the camera reference frame, w̃ is the
grasp width in image coordinates, i.e., the gripper’s width required for a successful object
grasp, and q is a scalar quality measure, representing the chances of grasp success.

The set of grasp poses in the image space is referred as the grasp map of I, denoted by
G, from which it is possible to compute the best visible grasp in the image reference frame.
Then, through the calibration matrices, this pose is expressed in the inertial reference frame
to command the robot and grasp the object.

In CNN-based grasping approaches, when the camera is in an eye-in-hand configu-
ration, once the grasp pose is determined, often, the robot executes the motion without
visual feedback since occlusion appears under a certain distance. For this reason, a precise
calibration between the camera and the robot and a completely structured environment are
often required. Recently, in [10], grasping of partially known objects in unstructured envi-
ronments was proposed based on an extension to an industrial context of the well-known
technique of background subtraction [11]. In [12], the authors proposed a CNN-based ar-
chitecture, named GraspNet, in charge of distinguishing on the object surface the candidate
grasping region.

In the case of unknown objects, where it is assumed neither object knowledge nor
grasp pose candidates are available, some approaches approximate the object with shape
primitives, e.g., by determining the quadratic function that best approximates the shape of
the object using multiview measurements [13]. Other approaches require to identify some
features in sensory data for generating grasp pose candidates [14]. The concept of familiar
objects, i.e., known objects similar to those to be grasped in terms of shape, color, texture
or grasp poses was exploited in [6]: to transfer the grasp experience, the objects were
classified on the basis of a similarity metric. Similarly, in [15], the grasp pose candidates
were determined by identifying parts on which a grasp pose had already been successfully
tested, and in [16] the objects were classified in categories characterized by the same grasp
pose candidates. In [17], a data-driven object grasp approach using only depth-image
perception was proposed. In this case, a deep convolutional neural network was trained in
a simulated environment. The grasps were generated by analytical grasp planners and the
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algorithm learned grasping-relevant features. At execution time, a single-grasp solution
was generated for each object. In [18], some strategies that exploited shape adaptation
were presented. Two types of adaptation were used to implement these strategies: the
hand/object and the hand/environment adaptation. The first allowed one to simplify the
scene perception. Indeed, the algorithm could make errors in determining the object shape,
because they were canceled by the shape adaptation. Moreover, shape adaptation also
occurred between the hand and the environment, i.e., the algorithm optimized the grasping
strategy based on the constraints induced by the environment.

The work proposed in [19] focused on grasping unknown objects in cluttered scenes.
A shape-based method, called symmetry height accumulated features (SHAF), was intro-
duced. This method reduced the scene description complexity, and the use of machine
learning techniques became feasible. SHAF derived from height accumulated features
(HAF) [20]. The HAF approach is based on the idea that to grasp an object from the top,
parts of the end-effector need to envelop the object and, for this reason, need to go further
down than the top of the object. Considering small regions, the differences between the
average heights give an abstraction of the objects shape. The HAF approach does not check
if there is symmetry between features, hence, in [19], this approach was extended by an
additional feature type. These symmetry features were used to train a Support Vector
Machine (SVM) classifier.

An approach that required as input only the raw depth data from a single frame, did
not use explicit object model and was free from online training was proposed in [21]. The
inputs of the algorithm were a depth map and a registered image acquired from a stereo
sensor. The first step consisted of finding a candidate grasp pose in a 2D slice of the depth
map. After that, based on the idea that a solid grasp required that the shape of the grasped
part should be similar to the shape of the gripper’s interior, the regions of the depth map
which better approximated the 3D shape of the gripper’s interior were computed. To
choose between all the found regions, an objective function that assigned a score to each
region was defined and needed to be maximized. The method was reliable and robust, but
since only a single view was exploited, uncertainties on the grasp pose selection could be
experienced due to the presence of occluded regions. To overcome this problem, different
views can be added.

2.2. Three-Dimensional Registration

Thanks to the diffusion of powerful graphical processors and low-cost depth sensors,
many 3D registration algorithms have been proposed to solve the object localization and
reconstruction problem [22]. For example, in [23], the reconstruction of a nonflat steel 3D
surface was performed by means of the 3D digital image correlation (3D-DIC) method [24].
Such a method leads to very accurate results but requires a time-consuming elaboration
and the presence of a known pattern on the surface. Another technique that overcomes
this drawback is the iterative closest point (ICP) [25], based on an iterative minimization
of a suitable cost function. The ICP algorithm has been adopted to reconstruct an entire
object starting from point clouds acquired from different views [26,27]. In [28], the ICP,
combined with a genetic algorithm in order to improve its robustness to local minima, was
adopted in an automotive factory environment in order to estimate the pose of car parts.
The problem of local minima was addressed also by [29], where a global optimal ICP, based
on a branch-and-bound theory, was presented. A recent algorithm for the registration of
point clouds in the presence of outlier can be found in [30], where the registration problem
was reformulated using a truncated least-squares cost function. It allowed the decoupling
of the scale, rotation, and translation estimation in three subproblems solved in cascade
thanks to an adaptive voting scheme.
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3. Proposed Approach

The proposed strategy is shown in Figure 2 and includes the following steps:

(a) The 3D data of the object are acquired from different points of view, e.g., by using an
RGB-D camera, in order to obtain n different point clouds of various portions of the
object.

(b) The point clouds are merged to obtain the model of the object surface, through a
registration algorithm.

(c) A frame that represents the best grasping pose for the object is attached to a point of
the model built in the previous step. The grasping point is selected on the basis of the
object geometry and the available gripper. Since more than a grasping point can be
defined for each object, the one closest to the end-effector frame is selected.

(d) The model is aligned to the current point cloud, in order to be able to transport the
grasp pose on the current object. As a measure of the alignment, a fitness metric is
computed. Thus, in the case of a bad alignment, the robot can move the camera in a
new position, acquire the object point cloud from a different point of view and repeat
the alignment.

(e) The current grasp pose is transformed into the robot coordinates frame through
the camera–end-effector calibration matrix and the robot is commanded to perform
the grasp. 
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Figure 2. Proposed strategy. (a) Object data acquisition; (b) Model generation; (c) Grasp pose fixing.
At execution time: (d) object data acquisition and overlapping with the model; (e) coordinate frame
transformation and object grasping.
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The registration algorithm used to merge the initial point clouds to obtain the object
model was the iterative closest point algorithm (ICP) [25]. In particular, the point-to-plane
version described in [31,32] was used. The calibration matrix was computed by acquiring a
series of images of a calibration target, in arbitrary positions. A calibration target is a panel,
with a predefined pattern, and the calibration software tool knows exactly its size, the color
tone and the surface roughness.

3.1. Object Model Reconstruction

Consider two point clouds obtained by the same surface from two different points
of view, S and Q. They are registered if, for any pair of corresponding points si ∈ S and
qj ∈ Q, representing the same point on the surface, there exists a unique homogeneous
transformation matrix T ∈ IR4×4 such that

∀si ∈ S , ∃qj ∈ Q | ‖T s̃i − q̃j‖ = 0. (1)

The symbol ˜ in (1) is the homogeneous representation of the coordinate vectors [33],
i.e., s̃i = [sT

i 1]T.
Consider n point clouds acquired by means of an RGB-D camera from different views,

Pi (i = 1, . . . , n), the registration requires to find the homogeneous transformation matrices,
T i, that align the point clouds in a common reference frame.

To this aim, the same approach followed in [32], based on the point-to-plane iterative
closest point (ICP) algorithm, was adopted. More specifically, the transformation matrix
T i

j (j = i + 1, . . . , n) that aligned Pj to Pi was derived by minimizing the following cost

function with respect to T i
j

C(T i
j) = ∑

π j,l ∈Pj , π i,l ∈Pi

(
(T i

jπ̃ j,l − π̃i,l)
Tñi

j,l

)2
, (2)

where ñi
j,l = T i

jñj,l is the homogeneous representation of the unit vector normal to the

surface represented by the point cloud Pj in the point π j,l . Each T i
j was characterized by

12 unknown components: by resorting to a a least-squares estimation, finding the matrix
T i

j that minimized the cost function (2) required at least 4 pairs of corresponding points.
This method was exploited in the multiway registration algorithm, implemented

in the Open3D library [34], which was run to register the acquired point clouds, Pi.
The registered point clouds were finally merged in a single point cloud to have the

reconstructed object model, i.e.,

Pr =
n⋃

i=1

Ni⋃
j=1

T iπ̃i,j. (3)

3.2. Grasp Point Estimation

Once the model of the object was built, one grasp point candidate, O, was selected,
and the relative coordinate frame Fo = O, xoyozo was defined. The RGB-D camera acquired
a point cloud, Pa, of the object to be grasped, and such a point cloud was aligned to the
known one (3) representing the model. Again, a procedure based on the ICP algorithm
was applied:

1. A set of local features, called fast point feature histograms (FPFH), were extracted
from each point of Pa [35];

2. The corresponding points of the two point clouds were computed by using a RANSAC
(random sample consensus) algorithm [36]: at each iteration, given µ points randomly
extracted from Pr, the corresponding points of Pa were the nearest with respect to the
extracted features.
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3. The transformation matrix computed at the previous step was used as an initial guess
for the ICP algorithm aimed at refining the alignment.

If the acquired point cloud was not very detailed, the previous algorithm led to
accurate results only in the presence of a small orientation error between the two point
clouds, otherwise poor surface alignments could be obtained. To avoid this issue and to
have an accurate estimation of the grasping pose, the acquired point cloud was compared
with nR different point clouds, obtained by rotating the reconstructed model by an angle
2π/nR. The point cloud with the best match was then selected to compute the grasping pose.
The best match was measured through a fitness metric, which measured the overlapping
area between the two point clouds. In particular, the fitness was computed as the ratio
between the number of correspondence points, i.e., points for which the corresponding
point in the target point cloud had been found and the number of the points in the target
point cloud.

Once the point cloud model Pr was aligned with the acquired one Pa, it was possible
to localize the position of the grasping point O and the orientation of the corresponding
reference frame in the camera coordinate frame. Finally, trough a camera calibration pro-
cess [37], it was possible to compute the camera–end-effector transformation and transform
the grasping pose in the robot’s base coordinate frame.

3.3. Grasping

Define the coordinate frame Fe attached to the robot’s end-effector as shown in
Figure 3. The grasp requires the alignment of Fe to the object’s frame Fo. To this aim, a
trajectory planner for the end-effector was implemented by assigning three way-points,
namely, the current pose, a point along the z axis of the object reference frame at a distance
of 10 cm to the origin O, and the origin of the object frame O.

ℱ𝑐𝑐

ℱ𝑜𝑜

ℱ𝑒𝑒

Figure 3. Reference frames for the end-effector, the camera and the object.

Regarding the orientation of Fe, the planner aligned the axis ze to −zo and ye to yo
before reaching the second way-point, and then it was kept constant for the last part of
the path.



Machines 2023, 11, 396 8 of 15

By denoting with xd and xe the desired and the actual end-effector pose, respectively,
the velocity reference for the robot joints, q̇r, were computed via a closed-loop inverse
kinematics algorithm [33]

q̇r = J†(q)(ẋd + K(xd − xe)), (4)

where J†(q) is the right pseudoinverse of the Jacobian matrix, and K ∈ IR6×6 is a matrix of
positive gains.

4. Implementation

The experimental setup consisted of a collaborative robot Franka Emika Panda [38]
equipped with an Intel RealSense D435 camera [39] in an eye-in-hand configuration as
shown in Figure 1. The libfranka C++ open-source library was used to control the robot
by means of an external workstation through an Ethernet connection. The workstation,
equipped with an Intel Xeon 3.7 GHz CPU with 32 GB RAM , ran the Ubuntu 18.04 LTS
operating system with a real-time kernel. The camera was calibrated with a set of 30 images
of a 2D checkerboard flat pattern through the method developed in [37]. Vision software
ran on the same workstation of the robot control, while the camera data acquisition required
the librealsense2 library.

5. Experimental Results

The proposed approach was evaluated by considering three different objects used in a
real-world automotive factory. Each object was located above the table surface to allow a
faster background elimination from the point cloud.

To generate the model, having the camera in a fixed position, the object was rotated
to allow the data acquisition in 30 different configurations. Examples of acquired point
clouds are shown in Figure 4. Then, according to the method described in Section 3.1, these
point clouds were merged by using the ICP algorithm and a point cloud of the whole object
was obtained (see Figure 5a). This point cloud represented the object model in which the
grasp pose was selected, by using any modeling software. An example of a grasping pose
is shown in Figure 5b.

(a) (b)

Figure 4. Plastic oil separator crankcase (a) and some examples of acquired point clouds (b). The red
circle indicates the same part in the various views.
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𝑧𝑧𝑜𝑜

𝑥𝑥𝑜𝑜

𝑦𝑦𝑜𝑜

(a) (b)

Figure 5. (a) Generated model for the plastic oil separator crankcase; (b) Grasp pose selection.

The mechanical workpieces used in the experiments and their corresponding gener-
ated model are shown in Figure 6.

(a) (b) (c) (d) (e)

Figure 6. Mechanical workpieces and respective generated models: (a) plastic oil separator crankcase,
(b) metal oil separator crankcase, (c) air pipe.

When an object needed to be grasped, its point cloud was acquired and overlapped
with the one that represented the model. As detailed in Section 3.2, the current point cloud
was compared with the model point cloud with eight different orientations, in order to find
the best matching one. Figure 7 shows the models with different orientations.
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Figure 7. Example of the various models with different orientations for the plastic oil separator
crankcase. The red, green and blue arrows represent the x, y and z axes, respectively.

In order to evaluate our approach the following procedure was implemented:

• For each model orientation, a maximum number of 100 iterations was established;
• Two thresholds for the fitness were defined: threshold fl below which the overlap was

considered failed and threshold fh above which the overlap was considered good enough;
• During the overlapping, if threshold fh was exceeded, the algorithm stopped and no

further comparisons were made;
• If no overlap exceeded threshold fh, the one with the highest fitness was considered;
• If no overlap exceeded threshold fl , the algorithm reported a failure.

Examples of correct and incorrect overlaps for the three considered workpieces are
reported in Figure 8.

(a) (b) (c)

Figure 8. Examples of overlap failure (top row) and success (bottom row) for three objects: (a) plastic
oil separator crankcase, (b) metal oil separator crankcase, (c) air pipe. The current point clouds
acquired by the depth sensor are in red, while the model point clouds are in green. The blue circles
highlight the nonoverlap for the metal oil separator crankcase by indicating the same object part
not aligned.

In the case of a failure, the robot manipulator moved the camera around the object in
order to acquire a new image from a different point of view. Then, the whole procedure
was restarted.

After the above procedure, the labeled grasp pose could be projected on the current
object, which was referred with respect to the robot base frame. After a further transforma-
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tion, by using the camera–end-effector calibration matrix, the robot could be commanded
to perform the object grasp.

Regarding the plastic and metal oil separator crankcases (see Figure 6a,b), the algo-
rithm was able to find the match and the robot was able to grasp the object.

Define the estimation grasping position and orientation errors as

eo
p = po − p̂o, (5)

eo
φ = φo − φ̂

o, (6)

where p (φ) is the actual grasping point position (orientation, expressed as a triple of Euler
angles [33]) while p̂ (φ̂) are the estimates provided by the visual algorithm. The superscript
o means that all the variables are expressed in the object frame Fo.

Tables 1 and 2 report the errors for the plastic oil separator crankcase and the metal one,
respectively. A set of snapshots of the grasping procedure for the two objects is detailed in
Figure 9.

As can be observed, on 18 successfully tests conducted in different light conditions
due to the presence of natural light in the environment, the mean error was about 3.82
mm (0.15 radians) for the plastic oil separator crankcase and 4.64 mm (0.06 radians) for the
metal one. However, a wide deviation was experienced in the different tests, as witnessed
by the values of the standard deviations in the Tables. This was mainly due to the adoption
of low-detailed point clouds. More generally, regarding the whole experimental campaign,
a success rate of 88.3% was experienced for the plastic oil separator crankcase and 84.8%
for the metal one.

Although the model was well-built, for the air pipe (see Figure 6c), the experiments
showed that the search for the best match was not successful. This was probably due to the
symmetry of the object and the model not being very accurate. The algorithm was not able
to find a match because many portions of the object were quite similar. Correct overlaps
were found only when the object orientations were close to those considered for the model.
In this case, a success rate of only 32.7% was experienced.
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(e) (f) (g) (h) 

Figure 9. Snapshots of the grasping procedure for two different objects: (a–e) a point cloud is acquired;
(b–f) the robot approaches the object close to the estimated grasping point; (c–g) the end-effector
grasps the object; (d–h) the object is raised by the robot.
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The obtained results show that the proposed method can be promising for the grasp-
ing of partially known objects in the absence of a CAD model, but it requires a further
investigation in order to better analyze the features required for a correct execution of the
registration and make it work on symmetric components as well.

A video of the execution can be found at https://web.unibas.it/automatica/machines.
html (accessed on 14 March 2023) while the code is available in the GitHub repository
at https://github.com/sileom/graspingObjectWithModelGenerated.git (accessed on 14
March 2023).

Table 1. Test results for the plastic oil separator crankcase. The position errors are in mm while the
orientation errors are in rad.

Test epx epy epz eφx eφy eφz

1 1.964 5.316 5.858 0.293 0.084 0.273
2 4.759 1.076 4.006 0.176 0.123 0.233
3 8.460 1.400 1.040 0.048 0.116 0.237
4 0.600 0.380 0.000 0.304 0.072 0.142
5 2.260 2.300 8.200 0.392 0.263 0.130
6 0.310 3.320 6.433 0.169 0.489 0.083
7 5.011 1.637 5.641 0.133 0.171 0.164
8 4.989 1.151 4.758 0.219 0.146 0.230
9 1.240 1.331 5.402 0.202 0.065 0.155
10 4.373 0.095 10.515 0.016 0.170 0.107
11 5.966 1.398 3.785 0.101 0.019 0.179
12 1.442 4.579 5.702 0.104 0.052 0.189
13 4.529 1.033 10.044 0.048 0.115 0.099
14 2.042 1.057 3.729 0.092 0.033 0.113
15 3.533 1.509 2.023 0.110 0.088 0.166
16 2.202 5.128 3.623 0.084 0.154 0.043
17 4.798 3.496 7.289 0.066 0.019 0.216
18 7.122 2.755 13.521 0.012 0.254 0.146

Mean error 3.644 2.164 5.643 0.143 0.135 0.161

Standard deviation 2.219 1.542 3.299 0.103 0.110 0.059

https://web.unibas.it/automatica/machines.html
https://web.unibas.it/automatica/machines.html
https://github.com/sileom/graspingObjectWithModelGenerated.git
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Table 2. Test results for the metal oil separator crankcase. The position errors are in mm while the
orientation errors are in rad.

Test epx epy epz eφx eφy eφz

1 1.143 3.243 13.409 0.039 0.015 0.133
2 3.157 2.066 10.148 0.005 0.051 0.146
3 0.852 6.250 4.402 0.013 0.042 0.291
4 8.063 7.524 0.843 0.024 0.017 0.018
5 6.522 4.445 7.708 0.012 0.019 0.053
6 2.922 0.093 5.704 0.024 0.005 0.068
7 1.727 2.234 6.592 0.013 0.002 0.096
8 0.379 1.559 11.784 0.013 0.026 0.009
9 7.802 1.887 7.063 0.060 0.091 0.054
10 8.114 0.677 8.383 0.023 0.054 0.028
11 2.548 1.079 8.268 0.002 0.040 0.079
12 2.814 2.884 6.487 0.169 0.003 0.183
13 0.816 0.460 13.407 0.017 0.024 0.157
14 5.874 0.002 7.367 0.070 0.189 0.073
15 9.727 0.415 2.165 0.001 0.105 0.000
16 5.761 0.153 9.530 0.038 0.101 0.012
17 4.702 3.785 0.587 0.091 0.082 0.027
18 5.360 2.653 7.143 0.002 0.029 0.051

Mean error 4.349 2.301 7.277 0.034 0.050 0.082

Standard deviation 2.845 2.077 3.616 0.041 0.047 0.073

6. Conclusions

A method to handle the problem of grasping partially known objects in an unstruc-
tured environment was proposed. The approach could be used in the absence of accurate
object models and consisted of a comparison between a point cloud of the object and a
model built from a set of point clouds previously acquired. The experiments, conducted on
a set of mechanical workpieces used in real-world automotive factories, showed that the
method was applicable in the case of objects with particular shapes, but not in the case of
objects with symmetric shape. Camera features influenced the overall performance: a more
accurate sensor could allow us to build a more detailed model to improve the performance
and robustness of the approach. Future work will be devoted to extending the method to
any kinds of components.
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