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Bujna, M.; Kušnerová, M.; Mikuš, R.;

Boržan, M. Comparison of Linear

Regression and Artificial Neural

Network Models for the Dimensional

Control of the Welded Stamped Steel

Arms. Machines 2023, 11, 376.

https://doi.org/10.3390/

machines11030376

Academic Editor: Angelos P.

Markopoulos

Received: 9 February 2023

Revised: 6 March 2023

Accepted: 8 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Comparison of Linear Regression and Artificial Neural
Network Models for the Dimensional Control of the Welded
Stamped Steel Arms
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Abstract: The production of parts by pressing and subsequent welding is commonly used in the
automotive industry. The disadvantage of this method of production is that inaccuracies arising
during pressing significantly affect the final dimension of the part. However, this can be corrected by
the choice of the technological parameters of the following operation—welding. Suitably designed
parameters make it possible to partially eliminate inaccuracies arising during pressing and thus
increase the overall applicability of this technology. The paper is focused on the upper arm geometry
of a car produced in this manner. There have been two neural networks proposed in which the
optimal welding parameters are determined based on the stamped dimensions and the desired final
dimensions. The Levenberg–Marquardt back-propagation algorithm and the Bayesian regularised
back-propagation algorithm were used as the learning algorithm for ANNs in multi-layer feed-
forward networks. The outputs obtained from the neural networks were compared with a linear
prediction model based on a on the design of experiment methodology. The mean absolute percentage
error of the linear regression model on the entire dataset was 3 × 10−3%. A neural network with
Levenberg–Marquardt back-propagation learning algorithm had a mean absolute percentage error
of 4 × 10−3. Similarly, a neural network with a Bayesian regularised back-propagation learning
algorithm had a mean absolute percentage error of 3 × 10−3%.

Keywords: welding; distortion; stamping; model; prediction; neural network

1. Introduction

Welding plays a significant role in the automotive industry. It is a topic that has
received extensive research attention [1–3]. The automotive industry focuses primarily
on the following types of arc welding: MIG (Metal Inert Gas) or gas metal arc welding
(GMAW) and TIG (Tungsten Inert Gas) welding. In arc welding, the arc is brought between
two metal pieces, the heat input (heat transferred into the material) melts the welded edges
of the metal, and then the weld is received (after crystalizing and cooling).

When welding with a consumable electrode, such as MIG or MAG welding, the arc has
two main functions: to melt the materials and to transport the molten wire material down
to the weld pool. An important factor in this droplet transfer is the electromagnetic forces
and surface tension within the arc region [4]. The welding process is greatly influenced
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by these forces. Unlike MIG and MAG, TIG welding uses a non-consumable tungsten
electrode to run a current through the metals being joined. TIG is an effective process to
weld metals which are difficult to weld otherwise, like aluminium and titanium. Welding
with MIG/MAG is suitable for mild steel, low alloyed steel, stainless steel, aluminium,
copper and copper alloys, nickel and nickel alloys, etc. MIG/MAG welding also depends
on a number of parameters: voltage, wire size, wire feed speed and current, wire stick-
out length, welding speed, inductance, choice of shielding gas and gas flow rate, torch,
and joint position [5]. A metal condition also affects process parameters and welding
incompatibilities [6]. A number of welding parameters must be optimized in order to
achieve the best results when using MIG and other welding processes. It is common to
use a single knob to set the welding parameters, which is referred to as synergic setting.
Combinations of parameters were originally established by skilled welders, for instance,
wire feed speed, current, voltage, etc., with the results stored in the power source’s memory.
Initially, the user must select the type of process, followed by the material, wire diameter,
and shielding gas. Any subsequent change in the wire feed speed will then be compensated
by the power source [7].

The heat input produced by fusion welding results in stresses and deformations
in the welded material. As stresses and deformations are undesirable phenomena, it is
important to reduce them to the lowest possible levels by predicting their behaviour. This
is crucial in designing and using the weld, as well as the entire welded structure [8]. The
deformation caused by welding affects both dimension accuracy and product performance
negatively [9]. The presence of weld distortion in a structure poses two main problems. The
first consequence is the development of dimensional inaccuracies that may make it difficult
to align the edges in subassemblies. Additionally, the distortions in the welds increase the
manufacturing costs of a structure due to additional rectifying and straightening processes,
which are time-consuming [10].

During welding, dimensions change primarily as a result of thermodynamic events.
This process primarily involves mass transfer and heat transfer, and subsequently, the
flow of the protective atmosphere through the melt and the changes of the crystal lattice
until cooling.

The effects of these events were investigated and analysed locally, as well as for the
change in the weldment as a whole, and can be well-simulated. Thermal metallurgical
analysis of a weld requires knowledge of the material’s chemical composition, density,
specific heat capacity, heat transfer coefficient, and an ARA diagram that describes phase
transformations. Material data for mechanical analysis require knowledge of Poisson’s
constant, coefficient of thermal expansion, modulus of elasticity, strain hardening of the
material (such as stress differences for a specified plastic strain and yield strength), and
the tensile diagram at different temperatures and phases [11]. For a welding process to be
low cost and productive, it is essential to have reliable controls in place. Weld inspection is
standardized in current technical practice and is performed automatically using a variety
of sensors [12,13].

In order to achieve both increased productivity and enhanced quality in the welding
industry, innovative technology and processes must be developed. In recent years, signifi-
cant progress has been made in understanding various welding processes. A great deal of
attention has been paid to the research on materials and their weldability, welded structures
reliability, development of welding technologies and related processes, development of
welding materials, and welding safety. Metal fabrication and construction industries have
faced difficulties finding skilled welders in recent years. A basic requirement for less
experienced welders is to enable them to produce quality welds through the incorporation
of their reasoning and judgement skills with machines [14–16].

Predictive analysis tools may be used to determine the susceptibility of a design
to different types of distortion and assist in selecting the geometry configuration and
manufacturing processes that are most likely to minimise distortion. In the process of
welding a large steel structure, the design dimension may not be satisfactory at the final
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stage if the welding distortion cannot be predicted accurately during the assembly stage.
This may result in the need to cut or add components to the structure. It is necessary to
maintain dimensional consistency in metal constructions through the control of distortion.
This is either in order to increase the structural integrity of the product or to improve
its performance [17,18].

It is highly recommended to decide the dimensions of components during each assem-
bly stage, taking into account the above-mentioned situation in the design process, to be
able to predict welding deformation accurately before welding is conducted [19].

In the sheet metal process, part tolerances have traditionally been developed according
to the stack-up model of rigid bodies, in which assembly variation is the direct outcome of
part variation. In industrial practice and previous research, there is increasing evidence
that differences in the rigidity of components and joint design in welding significantly
contribute to the total assembly variation.

A wide variety of factors influencing distortion can be taken into account properly by
calculating the effects of different factors on a part design or welding procedure. When a set
of conditions is given, distortion prediction makes it possible to choose those factors that
will result in the least amount of distortion in the final structure. Prediction of distortion
will allow for a better understanding of distortion mechanisms and better control of
welding distortion.

Welding prediction refers to a quantitative analysis of the degree of distortion that
can be expected after welding. Many studies have been conducted on this topic. The
various predictive models available can be divided into three categories: empirical method,
analytical solution, and numerical modelling. In general, empirical methods are based
on empirical data. It is necessary to conduct extensive experiments in order to validate
the suggested prediction formulas. There is no universally applicable empirical formula
published in the literature [20,21]. The majority of analytical solutions have been developed
to calculate heat transfer in welding. One of the advantages of analytical solutions to
distortion is that all the relationships can be expressed explicitly through mathematical
formulations [22,23]. However, their use is restricted by their inability to handle complex
geometry and temperature-dependent material behaviour [24]. Several numerical methods
have been established to simulate welding processes, usually based on simplified repre-
sentations of the welding process [25–27]. One of the most powerful numerical modelling
methods is Finite Element Analysis (FEA). The use of FEA has gained popularity in recent
decades due to its ability to analyse a wide variety of physical problems and advances
in computer technology [28]. A number of advanced finite element techniques are being
developed in order to simulate welding in a more realistic manner. The use of FEA has, in
fact, contributed to a greater understanding of the thermomechanics of welding compared
to empirical and analytical techniques. There are many factors that influence the type and
extent of welding distortion. A welded structure’s distortion distribution and magnitude
depends on the parameters of the welding process and the joint design used during the
welding process [29,30].

The majority of stamped and formed sheet metal parts in the vehicle structure require
welding and assembly, and the welded parts also exhibit deformation [31,32]. This can be
illustrated by an example of the control arm that is assembled by joining stamped panels, so
the distribution of residual stresses depends on how the stamping and welding processes
are combined.

Today, the global market has to adapt to the modern trend known as Industry 4.0. A
rapid development is taking place within this field of welding automation. An important
goal of Industry 4.0 is the development of a flexible, autonomous manufacturing cell, which
is composed of a number of different, but closely connected, subsystems. Manufacturing
cells must have the ability to identify the blanks for the product to be manufactured, as
well as the order for the product, in order to operate autonomously. Using this component,
the individual systems are instructed, and, in the case of the welding system, welding
parameters are transmitted. During the welding process, these are checked and corrected
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if necessary. As more and more information is required in digital form, sensor systems
and the digitization of expert knowledge will become increasingly important to generate
added value [33]. A trend in this direction has been reported in [34], where the authors
have implemented back-propagation artificial neural networks (ANNs) and other artificial
intelligence methods to simulate a wide variety of manufacturing processes, including
welding. Experimental investigations were conducted in [35] to examine the effects of
the parameters (welding current, welding time, and gun force) on the deformation of the
subassemblies. Consequently, neural networks and multi-objective genetic algorithms are
used to select welding parameters that produce the least amount of dimensional deviations
in the sub-assemblies.

The work in [36] was the first to address the dimensional specifics of welded stampings
using a central composite design (CCD) with pseudocentral points, which resulted in a
verified mathematical model. Consequently, it is possible to modify the dimension of
the part statistically significantly, thereby increasing the accuracy and usability of the
chosen technology. This article presents novel results concerning the implementation and
verification of prediction models based on neural networks, while no similar work has been
published in this area previously. In this paper, a significant contribution is made to the
field of improving the accuracy of welded stampings.

2. Materials and Methods

The subject of the research is the upper arm geometry of a passenger car. It is
a welded part consisting of two stampings. The thickness of the resulting part is 24
mm, and the required value of the observed dimension is 315.5 mm with a tolerance of
0.2 mm. An example of a specific stamping is shown in Figure 1. In this case, the entire
series of stampings was 0.28 mm larger. The pressing was carried out on a SIMPAC MC2-
500 press. A 13-operation progressive mould was used. The experiments were carried out
on stampings made of two-phase steel SGAFC590DP, for which the chemical and physical
properties are given in Table 1.
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Table 1. Chemical composition (weight%) and mechanical properties of tested material [36].

Tested Material Chemical Composition
(Weight %) Mechanical Properties

SGAFC590DP
(2 mm thickness)

C 0.071 Yield Strength
(MPa) 405Si 0.183

Mn 1.895 Ultimate Tensile
Strength (MPa) 643P 0.018

S 0.004 Elongation (%) 28

Welding of the stampings was carried out using an OTC DM-400 welding machine
(OTC Daihen Europe, GmbH., Mönchengladbach, Germany) in combination with an
Almega AX V6 welding robot (OTC Daihen Europe, GmbH., Mönchengladbach, Ger-
many) [36]. A number of parameters are related to the welding technology, with current,
voltage, and welding speed being important and precisely controllable. In the selected
configuration, the device allows for automatic voltage determination. Since this option is
used in practice, the voltage parameter was not further investigated with respect to the
multicollinearity of the linear model. The individual welding parameters are presented
in Table 2.

Table 2. Welding parameters.

Parameter Parameter Type Marking Value Unit

Welding speed
Variable

v 50–70 cm·min−1

Current I 160–200 A

Gas dosing
Automatic

- >18 l·min−1

Wire dosing - 344–480 cm·min−1

Voltage U 17.4–19 V

Shielding welding gas

Constant

Ar - -
Technology MIG - -
Wire-type KISWEL KC-25M - -

Wire-diameter d 1.2 mm
Location and order

of welds - -

Clamping parts - -

The magnitude of the distortion is directly influenced by the rate of heat input. It is
determined by the welding speed and the magnitude of the electric current. By combining
these parameters, it is possible to weld a part without significant distortion or, on the
contrary, due to the material used and its thickness, it is possible to destroy the part.
Attention had to be paid to the practical aspect, i.e., the speeds used should not significantly
limit the production capacity. The welding technology used is also a limiting factor since,
at higher speeds (corresponding to the selected current), it is not possible to ensure the
required product quality. Based on these facts and preliminary experiments, electric current
values from 160 to 200 A and welding speeds from 50 to 70 cm·min−1 were determined.
The sequence of welds and their locations are shown in Figure 2. The overall deflection
of the component before and after welding was measured on a Romer Absolute Arm.
The monitored dimension can only be evaluated indirectly since it is determined by the
locations of the centres of the two cylindrical holes. A measuring touch was used to record
the position of approximately 20 points along the circumference of each cylindrical hole.
By using PolyWorks|InspectorTM software, these circles were projected onto the plane of
stamping and translated using the measured points. A measurement of the deviation of the
resulting shape from the 3D model of the parts [36] was also made during the experiments,
but these measurements were not essential for the purposes of this paper.
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Figure 2. Location of welds and their order during welding [36].

The experiment was carried out according to Table 3, with individual measurements
taken in order according to column nE. The random order of the performed experiments
(nE represents the random order) ensures that the assumptions of the methodology of the
design of experiment are met, which is necessary for the generalization of the results. Due
to the impossibility of taking measurements at the mean value of the stamping dimension
(Z), the monitored dimensions of the stampings were chosen at the lower and upper limits
of the monitored interval.

Table 3. Measurements—LR model and training (for ANN) data.

n nE I v Z Y

1 18 160 50 316.22 315.714
2 3 180 50 316.22 315.658
3 9 200 50 316.22 315.583
4 15 160 60 316.22 315.920
5 17 180 60 316.22 315.848
6 6 200 60 316.22 315.803
7 2 160 70 316.22 316.031
8 7 180 70 316.22 315.961
9 11 200 70 316.22 315.862
10 1 160 50 315.78 315.287
11 10 180 50 315.78 315.224
12 8 200 50 315.78 315.148
13 12 160 60 315.78 315.485
14 13 180 60 315.78 315.411
15 4 200 60 315.78 315.372
16 14 160 70 315.78 315.601
17 16 180 70 315.78 315.528
18 5 200 70 315.78 315.440

n—the serial number, nE—the measurement number, I—welding current, v—welding speed, Z—the dimension of
the stamping, and Y—the final dimension of the welded part.

To validate the models, the data (Table 4) from another stamping dimension–316.08 mm
were used. These data were not used in the construction of linear regression model (LR) or
in learning ANNs.
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Table 4. Measurements—testing data.

n nE I v Z Y

1 29 160 50 316.08 315.578
2 12 180 50 316.08 315.521
3 22 200 50 316.08 315.442
4 8 160 52 316.08 315.627
5 23 180 52 316.08 315.565
6 3 200 52 316.08 315.475
7 33 160 54 316.08 315.678
8 16 180 54 316.08 315.613
9 21 200 54 316.08 315.526
10 28 160 56 316.08 315.721
11 9 180 56 316.08 315.650
12 30 200 56 316.08 315.584
13 25 160 58 316.08 315.747
14 19 180 58 316.08 315.681
15 2 200 58 316.08 315.627
16 4 160 60 316.08 315.778
17 17 180 60 316.08 315.709
18 24 200 60 316.08 315.668
19 18 160 62 316.08 315.804
20 27 180 62 316.08 315.732
21 7 200 62 316.08 315.687
22 5 160 64 316.08 315.822
23 11 180 64 316.08 315.751
24 14 200 64 316.08 315.698
25 15 160 66 316.08 315.847
26 13 180 66 316.08 315.773
27 6 200 66 316.08 315.711
28 20 160 68 316.08 315.867
29 31 180 68 316.08 315.797
30 26 200 68 316.08 315.726
31 1 160 70 316.08 315.895
32 32 180 70 316.08 315.823
33 10 200 70 316.08 315.729

n—the serial number, nE—the measurement number, I—welding current, v—welding speed, Z—the dimension of
the stamping, and Y—the final dimension of the welded part.

2.1. Linear Regression

R, a programming language for statistical computing and graphics, was used in this
study. A regression analysis was used to identify relationships between input factors and
response factors. The function between the output and output factors can be given in
the form:

Y = β0 + β1 ·X1 + β2·X2 + β3·X3 + · · ·+ βn·Xn (1)

where Y response (dependent variable), β0 to βn are equation parameters for linear rela-
tionship, and X1 to Xn are input factors (independent variables. In our previous paper [36],
a prediction model based on linear regression and an experimental methodology using
pseudo-central points and face-centred axial points in CCD was presented. This demon-
strated the statistical significance of basic process parameters, namely welding current and
welding speed in combination with the changing size of the stamping at a significance level
of 5%. The predictive power of the model expressed by the adjusted index of determination
represents a value of 96.9%. The residual analysis confirmed the validity of the model in
the vicinity of the central level of the stamping size factor.

2.2. Artificial Neural Networks

Artificial neural networks are based on the basic structure of the human brain. ANNs
consist of a number of simple and highly interconnected processing elements, similar to
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neurons in the brain. Basically, the model is a black box containing a series of equations
used to calculate the outcome based on the inputs [37,38]. Figure 3 illustrates a block
diagram of the neuron model.
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Figure 3. A nonlinear model of a neuron.

According to the following Equations (2) and (3), a neuron k may be mathematically
described as follows [39]:

uk =
m

∑
j=1

wkjxj (2)

yk = ϕ(uk + bk) (3)

Neuron inputs are marked as x1, x2, . . . , xm, and the weights of the individual inputs
are marked as wk1, wk2, . . . , wkm. The output signal from the neuron yk is the result of the
activation function ϕ (.), whose argument determines the sum of the linear combination of
inputs and weights uk adjusted by the value of the distortion bk. It is the principle of ANNs
to determine the weights and distortions so that the output of the network is as close to the
target as possible [40]. A reverse propagation algorithm was used in the learning process
of the network based on Levenberg–Marquardt (LM) and Bayesian regularization (BR).

In the hidden layer, the logistic sigmoid nonlinear function for ANN with LM learning
algorithm (LMANN) and a hyperbolic tangent function for ANN with Bayesian regulariza-
tion (BRANN) were used as activation functions. For both networks, the linear transfer
function was used as an activation function in the output layer. Due to the mathematical
properties of neural networks and activation functions, it is appropriate to normalise the
input and output data. Neural networks can also work with non-normalised data, but
mostly with lower accuracy and a higher number of neurons. For the LMANN case, the
data have been normalised according to the relation (4):

Xnorm =
X − Xmin

Xmax − Xmin
(4)

where X is the original input value, Xmin is the minimum input value within the monitored
interval, Xmax is the maximum input value within the monitored interval, and Xnorm is the
normalised input value for the monitored interval ranging from 0 to 1.
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The data for BRANN were also normalized according to the relation (5):

Xnorm = 2· X − Xmin
Xmax − Xmin

− 1 (5)

where X is the original input value, Xmin is the minimum input value within the monitored
interval, Xmax is the maximum input value within the monitored interval, and Xnorm is the
normalised input value for the monitored interval ranging from −1 to 1.

3. Results and Discussion
3.1. LR Results

According to the previous work [36], the following equation has been established for
the final dimension of the welded part:

Y = 2.503 − 3.458 · 10−3 · I + 7.209 · 10−2 · v + 9.846 · 10−1 · Z − 4.750 · 10−4 · v2 (6)

In Figure 4, a comparison of experimental and predicted data is presented.
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Figure 5 shows the regression plots for LR. The figure presents a correlation between
the experimental and predicted values of the resulting dimension of the welded part for
a set of CCD points, for test data gathered near the central level of the input factor of the
dimension of the welded part Z and finally for the entire dataset. Figure 5 shows that all
the data are close to the 45◦ line representing R equal to 1, which represents the minimal
deviation from the predicted data.

As shown in Figure 6, the graphical output of the model shows how the resulting
dimension of the part is related to the welding speed and current, specifically for the
dimension of the stampings Z = 316.00 mm.
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According to this graph, maximum deformations (smaller resulting dimensions of the
welded stamping Y) are achieved at higher currents and lower welding speeds, i.e., while
producing more heat. In addition, it is clearly evident from the graph that it is not a general
plane, but rather a curved surface as a result of the welding speed (Equation (6)).

3.2. ANN Results

The main structure of ANNs is shown in Figure 7. The structure with a single hidden
layer was used.
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The input layer consists of three neurons, and the output layer consists of one neuron.
The number of neurons in the hidden layer (seven) was chosen based on preliminary testing
of neural networks for the two selected learning algorithm types. Table 5 summarizes the
properties of the two ANNs used. The following settings were used to train LMANN:
epochs = 1000, mu = 0.001, mu_dec = 0.1 and mu_inc = 10, momentum = 0.9 and LR = 1.2.
In order to train the BRANN, the following settings were used: epochs = 1000, mu = 0.005,
mu_dec = 0.1, and mu_inc = 10. For each training session, the weights were randomized.
As soon as default minimum gradient reached a certain value, all trainings were stopped.
In order to compare ANNs and LR, our decision was to train ANNs primarily using DOE
data only, which in this case greatly simplifies the comparison of different models.

Table 5. Properties of the used ANNs.

ANN Learning
Algorithm

ANN
Structure

Hidden Layer
Activation
Function

Output Layer
Activation
Function

LMANN Levenberg–Marquardt BP
3-7-1

Logistic
Sigmoid Linear

Transfer
BRANN Bayesian Regularization BP Hyperbolic

Tangent
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The LMANN-based prediction equation for the final dimension of the welded part is
given by the equation:

Y = 0.083·FLS1 − 0.617·FLS2 − 0.317·FLS3 − 0.786·FLS4 − 0.961·FLS5 + 0.932·FLS6 + 0.214·FLS7 + 1.116 (7)

Each of the values FLSi were calculated using the Logistic Sigmoid function [41]:

FLSi =
1

1 + e−Ei
(8)

Values of exponents Ei were calculated as follows:

Ei = W1i·I + W2i·v + W3i·Z + bi (9)

The values of weights and biases for LMANN are presented in Table 6.

Table 6. Weight and bias values between input and hidden layer for LMANN.

i W1i W2i W3i bi

1 0.349 −0.031 0.186 0.542
2 0.304 0.076 −1.208 0.105
3 1.063 −0.120 −2.101 0.951
4 0.143 −2.427 −0.737 0.559
5 −0.424 −1.071 −0.479 0.022
6 −0.518 −1.564 −0.630 −0.128
7 −0.652 0.192 1.294 −0.109

Similarly, the BRANN-based prediction equation for the resulting dimension of the
welded part is given by the equation:

Y = 0.582·FHT1 + 0.363·FHT2 + 0.284·FHT3 − 0.327·FHT4 + 0.253·FHT5 + 0.334·FHT6 − 0.362·FHT7 (10)

Each value FHTi was calculated using the Hyperbolic Tangent function [41]:

FHTi =
e2Ei − 1
e2Ei + 1

(11)

Values of exponents Ei were calculated as follows:

Ei = W1i·I + W2i·v + W3i·Z + bi (12)

The values of weights and biases for BRANN are presented in Table 7.

Table 7. Weight and bias values between input and hidden layer for BRANN.

i W1i W2i W3i bi

1 0.139 0.894 0.020 0.449
2 −0.117 −0.032 0.284 −0.054
3 −0.090 −0.003 0.231 −0.078
4 0.109 0.020 −0.249 0.073
5 −0.113 −0.016 0.243 −0.059
6 −0.116 −0.034 0.254 −0.096
7 0.125 0.026 −0.271 0.080

Figures 8 and 9 demonstrate a comparison between the outputs of the individual
neural networks and the experimental data for LMANN and BRANN.
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3.3. Perfrormance Comparison for the LR Model and ANN Models

The tightness of the model output and target values can be assessed in several ways.
Several indicators can be used when comparing linear regression and neural network
models. Due to the common practice of providing regression plots when evaluating neural
networks, the values of the regression coefficients (R) are summarized in Table 8. The
values of root mean square error (RMSE) and mean absolute percentage error (MAPE) are
also reported.

Table 8. Selected performance values of the applied models.

Dataset
R RMSE MAPE (%)

LR LMANN BRANN LR LMANN BRANN LR LMANN BRANN

Training 0.999 0.996 1.000 0.011 0.022 0.009 0.003 0.006 0.002
Testing 0.996 0.992 0.993 0.010 0.015 0.013 0.003 0.003 0.004
All data 0.998 0.995 0.998 0.010 0.018 0.012 0.003 0.004 0.003
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The high accuracy of the regression model is evident from the above data. BRANN
also achieves similar accuracy. LMANN lags slightly behind, but this model can also be
assessed as highly accurate. When evaluating the performance of the models, it should be
noted that training ANNs on such a low number of data is not common. However, the
main advantage of the experimental methodology is the high accuracy of the model with a
reduced number of measurements, and the results of ANNs show that neural networks
can be successfully used in this field as well. It can be expected that repeated training of
ANNs using additional measurements will result in a model that is more accurate than
the original LR model. Figure 12 illustrates the potential of this approach by showing the
MAPE values for all data, while the neural networks were gradually trained on a larger
number of data sets.



Machines 2023, 11, 376 16 of 18Machines 2023, 11, x FOR PEER REVIEW 17 of 19 
 

 

 

Figure 12. The dependence of MAPE (all data) on the used set of training data. 

4. Conclusions 

This paper deals with the implementation of neural networks in the process of weld-

ing stampings in the automotive industry and increasing the accuracy of the final dimen-

sion of the component under study. The well-known dependence of product dimension 

on many factors is often a limiting factor for this combination of technologies. It has been 

confirmed that the resulting dimension can be corrected by exploiting the thermal distor-

tion during welding, while neural networks can also be used to determine the optimal 

welding parameters. 

There are two models presented in this paper, namely a Levenberg–Marquardt back-

propagation algorithm and a Bayesian regularised back-propagation algorithm, which are 

used as the learning algorithms for neural networks in multi-layer feed-forward networks. 

Based on the design of experiments methodology, the models have been compared to a 

mathematical model with similar accuracy. 

The results can be summarised as follows: 

• Neural networks can be trained on reduced number of samples of data based on a 

design of experiment methodology. 

• The new derived Equations (7) and (10) can be used to predict the resulting dimen-

sion directly from the input operating parameters within the considered interval. 

• It was observed that linear regression had the lowest MAPE when training the ANN 

using DOE data. Despite the low number of training data, the neural network with 

Bayesian regularized back propagation algorithm achieved comparable results. 

• MAPE for ANN with Levenberg–Marquardt back-propagation algorithm fluctuated 

around a value of 4 × 10−3%, which is greater than that for LR. 

• MAPE for ANN with Bayesian regularized back-propagation algorithm trained on 

DOE data was at the MAPE level of 3 × 10−3%. However, the accuracy of the model 

increased with the increase of the training dataset up to the level of 1.6 × 10−3%. 

Figure 12. The dependence of MAPE (all data) on the used set of training data.

4. Conclusions

This paper deals with the implementation of neural networks in the process of welding
stampings in the automotive industry and increasing the accuracy of the final dimension
of the component under study. The well-known dependence of product dimension on
many factors is often a limiting factor for this combination of technologies. It has been
confirmed that the resulting dimension can be corrected by exploiting the thermal distor-
tion during welding, while neural networks can also be used to determine the optimal
welding parameters.

There are two models presented in this paper, namely a Levenberg–Marquardt back-
propagation algorithm and a Bayesian regularised back-propagation algorithm, which are
used as the learning algorithms for neural networks in multi-layer feed-forward networks.
Based on the design of experiments methodology, the models have been compared to a
mathematical model with similar accuracy.

The results can be summarised as follows:

• Neural networks can be trained on reduced number of samples of data based on a
design of experiment methodology.

• The new derived Equations (7) and (10) can be used to predict the resulting dimension
directly from the input operating parameters within the considered interval.

• It was observed that linear regression had the lowest MAPE when training the ANN
using DOE data. Despite the low number of training data, the neural network with
Bayesian regularized back propagation algorithm achieved comparable results.

• MAPE for ANN with Levenberg–Marquardt back-propagation algorithm fluctuated
around a value of 4 × 10−3%, which is greater than that for LR.

• MAPE for ANN with Bayesian regularized back-propagation algorithm trained on
DOE data was at the MAPE level of 3 × 10−3%. However, the accuracy of the model
increased with the increase of the training dataset up to the level of 1.6 × 10−3%.
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