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Abstract: The synchronous control of yaw motion and tilting motion is an important problem related
to the lateral stability and energy consumption of narrow tilting vehicles. This paper proposes a
method for the tilting control of narrow tilting vehicles: tilting feedforward synchronous control. This
method utilizes a proposed novel prediction method for yaw rate based on a recurrent neural network.
Meanwhile, considering that classical recurrent neural networks can only predict yaw rate at a given
time, and that yaw rate prediction generally needs to analyze a large amount of computer vision data,
in this paper, the yaw rate is represented by a polynomial operation to predict the continuous yaw
rate in the time domain; this prediction is realized using only the driving data of the vehicle itself
and does not include the data generated by computer vision. A prototype experiment is provided in
this work to prove the advantages and feasibility of the proposed tilting feedforward synchronous
control method for narrow tilting vehicles. The proposed tilting feedforward synchronous control
method can ensure the synchronous response of the yaw motion and the tilting motion of narrow
tilting vehicles.

Keywords: narrow tilting vehicles; tilting control; synchronous control; prediction of yaw rate;
recurrent neural network

1. Introduction

Narrow tilting vehicles (NTVs) are highly maneuverable in their ability to drive
quickly in curves and maintain excellent lateral stability [1,2]. The synchronous control of
vehicle tilting and yaw is the key to achieving lateral stability [3]. When the active tilting
motion of NTVs is synchronized with the yaw motion, the moment of the roll degree of
freedom (DoF) is zero, the active tilting motion consumes less energy, and the asymmetric
wear of the tires on both sides is reduced [4,5]. However, the active tilting of the NTV to
the left and right is achieved by the suspension on the left and right sides moving up and
down [6,7], respectively. The suspension of NTVs is inevitably fitted with shock absorbers.
The shock absorbers provide some damping to improve the comfort of NTVs on uneven
roads [8,9]. These dampers also contribute when the suspension is moved up and down to
achieve the active tilting motion of the NTVs. As a result, the response of active tilt motion
lags behind yaw motion, rather than synchronous response [4].

Many methods have been proposed to solve this problem. Claveau et al. [10,11] found
that controlling the actuators of active tilting motion and yaw motion based on the driver’s
steering wheel angle feedback can reduce the response lag of the tilting angle and designed
a nonlinear control method. Nguyen et al. [5] proposed a linear variable parameter control
method based on the feedback of vehicle motion states, such as driving velocity and yaw
rate, to reduce the error of the tilting angle in the process of yaw motion. Tang et al. [12–14]
studied the NTV dynamic of rollover critical conditions. A roll index based on yaw rate
feedback is proposed to calculate the target tilting angle. They designed a model predictive
controller based on the rollover index. The controller reduces the error between the true
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and target tilting angles, improves the handling performance of the NTV, and ensures the
lateral and roll stability of the NTV. Ren [4] proposed a tilting control method based on a
torque vector. Based on NTV drive torque feedback and steer-based tilting control [15,16],
this method reduces the average relative error of the tilting angle to 1.546%.

The above methods of tilting control are based on the feedback of the driver’s operation
or the vehicle’s motion state [9,17]. These control methods analyze the dynamics of the
NTV suspension to speed up the tilting response through the cooperative output of single
or multiple actuators [10,11]. Due to the principle of feedback control and the dynamic
characteristics of damping, traditional methods can only speed up the tilting response as
much as possible [15,16]. In fact, there is always a lag between the active tilting motion and
the yaw motion [12–14].

We propose a tilting feedforward synchronous control (TFSC) method. In this method,
the yaw motion of the NTV is predicted first, and the predicted value is earlier than the
tilting motion in the time domain. The predicted value is used as the feedforward of
tilting control, which is more conducive to the synchronization of active tilting motion and
yaw motion.

Behavior prediction of dynamic systems such as yaw rate prediction is an important
problem in the context of intelligent vehicles [18,19]. Recurrent neural networks (RNN)
have been widely used to solve this problem [20]. Many methods have been proposed to
predict the motion of vehicles or obstacle vehicles [21,22]. Patel et al. [20] found that the use
of RNN to analyze road condition information could predict and classify driver intentions
in the next 3 s. Liu et al. [21] proposed a depth algorithm based on RNN to predict vehicle
mobility in the next 10–30 min. The input of this method contains a large area of road
condition information. Although the prediction result is accurate, the computation time
of each step is long. Min et al. [22] proposed a trajectory prediction method for obstacle
vehicles based on RNN deep integration. The input of the integrated network model
includes the distances of other moving agents on the road. This prediction method could
predict the trajectory of obstacle vehicles in the next 2 s.

First, the classical RNN method can only predict the yaw rate at a given time [21]. Then,
all of these methods incorporate a large amount of environmental information through
computer vision (CV) [23], including moving agents (e.g., pedestrians and vehicles) and
road context information (e.g., lanes, traffic lights) [24]. The driving status information of
the vehicle itself is rarely considered. For NTVs, as a short urban commuting tool, due
to their compact body, high mobility, multi-DoF motion (tilt, yaw, lateral advance, and
longitudinal advance), and low cost characteristics, it does not necessarily need to consider
complex environmental information but needs to pay attention to the driving state of the
NTV itself.

To further boost the computational speed of the prediction algorithm and provide a
yaw rate prediction method for NTVs, we propose a prediction algorithm based on RNN.
This algorithm can achieve the continuous prediction of vehicle yaw rate by analyzing only
the data generated by the vehicle itself (including lateral and longitudinal driving velocity
and displacement), avoiding the large amount of data generated by CV.

This work aims to predict the yaw rate of NTVs and realize the synchronous control
of the yaw rate and tilting angle based on the prediction. The contributions include:

(1) A calculating method for predicting the yaw rate is proposed. The NTV yaw rate
is represented by a polynomial operation to predict the continuous yaw rate in the
time domain.

(2) The tilting feedforward synchronous control (TFSC) method for NTVs based on the
predicted value of the yaw rate is proposed.

(3) A network model is designed based on RNN to predict the coefficients of the polynomial
operation. The model is trained on real driving data collected by an NTV prototype.

(4) The NTV prototype is used to collect vehicle driving data, and the network model
works entirely with data obtained from onboard sensors. The feasibility of the TFSC
method is verified by the prototype experiment.
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The remainder of this paper is organized as follows: The calculating method and
the network model for predicting are studied and trained in Section 2. Section 3 presents
the TFSC method for NTVs based on the predicted value of the yaw rate. Experiments
are studied in Section 4 to compare the TFSC method and the traditional direct tilt
control (DTC) without prediction. The discussion and conclusions are presented in
Sections 5 and 6, respectively.

2. Mathematics and Network Model for Prediction

This section describes how to predict the future yaw rate of an NTV based on RNN.
The predictive value is used in the TFSC. The accurate predictive value is the basis for
realizing TFSC.

2.1. Mathematics, Input, and Output

To predict the continuous yaw rate in the time domain, it is expressed as a time-
dependent polynomial operation. The polynomial operation has three coefficients. The
operation method is shown in Figure 1.
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Figure 1. The diagram of the algorithm.

The NTV coordinate at time t0 is located at the center of the NTV at time t0, and the
x-axis points to the heading of the NTV. In the coordinate, the real trajectory before time t0 is
divided into n steps with an interval of 0.01 s. Since the interval of each step is very short
in the calculation, the lateral acceleration (ay) and longitudinal velocity (vx) between each
step are assumed to be constant. In the NTV coordinate system at time t0, the predicted
trajectory of the NTV can be expressed as follows:{

µy = at2 + bt
µx = ct

(1)

where t ε [t0, t1]; µx/µy is the longitudinal/lateral displacement of the NTV in the time t;
a, b, and c are the three coefficients to be calculated.

Therefore, relative to the NTV coordinate at time t0, the yaw angle ϕ at time t can be
expressed as the angle between the x-axis of NTV at time t and the x-axis of NTV at time t0,
that is, the angle between the trajectory tangent at time t and the x-axis of NTV at time t0.
Therefore, the yaw angle ϕ of the predicted trajectory can be expressed as:

ϕ = arctan
(

2at + b
c

)
(2)

where
(

2 a
c t + b

c

)
is the slope of the trajectory tangent.

Thus, the yaw rate
.
ϕ of NTV can be denoted as:

.
ϕ =

2ac
4a2t2 + 4abt + b2 + c2 (3)
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The calculated
.
ϕ is defined in the NTV coordinate at time t0. The input of the network

model is also defined in the NTV coordinate at time t0, including the lateral acceleration
(ay), the longitudinal/lateral velocity (vx/vy), and the coefficients a, b, and c of the

.
ϕ before

the time t0.
input =

[
ay vx vy a b c

]
(4)

Since the network model needs to process time-sequential data, the input data of n
steps before time t0 form an n × 6 time-sequential matrix with a 0.01 s interval as the input
of the network model. The network model gives the output by calculating the input.

The output of the network model is the yaw rate coefficients apred, bpred, and cpred

after the time t0. According to (3) and the output coefficients, the predicted yaw rate (
.
ϕpred)

can be determined by (5).

.
ϕperd =

2aperdcperd

4aperd
2t2 + 4aperdbperdt + bperd

2 + cperd
2 (5)

2.2. Network Model

The network model is designed based on RNN. The input is n time-sequential data
points with 6 variables. The interval of the time-sequential data points is 0.01 s. Therefore,
the size of the input data is [batch × n × 6].

The structure of the network model is shown in Figure 2. Input ti, i ε (−n+1,0)
represents the n time-sequential data points inputted in n operation steps. Furthermore, i is
an integer.
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Before the input data enter the hidden layer, a dense layer [25] (Dense0) is calculated.
The input is converted into a vector of length Non after the Dense0 calculation. Non is the
number of nodes (Non) in each hidden layer.

After the hidden layer calculation, the output of the hidden layer ot is used for three
other different dense layer operations (Dense1, Dense2, and Dense3), used to generate
3 coefficients as the output: anet, bnet, and cnet. The 3 coefficients are obtained by performing
linear operations on the output ot of the last time step.anet

bnet
cnet

 =

Wa
Wb
Wc

ot +

ba
bb
bc

 (6)
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where Wa is the weight used to calculate the coefficient anet; ba is the bias of the coefficient
anet; Wb is the weight used to calculate the coefficient bnet; bb is the bias of the coefficient bnet;
Wc is the weight used to calculate the coefficient cnet; and bc is the bias of the coefficient cnet.

The final coefficients for predicting the yaw rate are obtained by dividing anet, bnet,
and cnet by λa, λb, and λc, respectively. As the weight variables defined for training the
network model, λa, λb, and λc are described in the training section of the present work.

apred
bpred
cpred

 =


anet
λa

bnet
λb
cnet
λc

 (7)

2.3. Training

Before training, we know the true values of µx and µy at each step in the data set;
when the training coefficients are anet, bnet, and cnet, the true yaw rate coefficients at, bt, and
ct are obtained by calculating the true values of µx and µy at every step. Corresponding
to each step, there is a set of µx and µy, which contains the next n (number of steps in the
neural network) steps µx and µy. Through this set, combined with (1), the true values of
at and bt can be obtained by the polynomial regression [26] fitting function and the true
value of ct can be obtained by the linear regression [27] fitting function.

Each coefficient has a different value range; both the true value and the mean square
error loss of the coefficient are very small. Therefore, it is necessary to normalize coefficients
during training [28]. For normalization, when at, bt, and ct are used for training, they are
weighted with λa = 1000, λb = 10,000, and λc = 1, respectively. In order to minimize the
loss, the anet, bnet, and cnet training targets are the values obtained after multiplying the
true coefficients at, bt, and ct by λa, λb, and λc, respectively. The mean square error loss of
anet, bnet, and cnet for the training is as follows:

Lmse = (λaat − anet)
2 + (λbbt − bnet)

2 + (λcct − cnet)
2 (8)

The optimizer uses the loss function (8) to optimize the weight and bias of the network
model in the direction of minimizing Lmse. In the training process, Wa, Wb, Wc, ba, bb, and
bc are trained according to the coefficients of the yaw rate. The size of each training batch is
12,000, the learning rate is 0.1, and the number of iterations in training is 10,000. Adam’s
optimizer [29] was used to handle the weights and biases, and the optimizer parameters
were the following: β1 = 0.9, β2 = 0.999, and ε = 10−8.

The driving data of an NTV prototype [3] are used for training, as shown in Figure 3.
The NTV prototype has two steering front wheels and one driving rear wheel. A global
navigation satellite system/inertial navigation system (GNSS/INS, Shanghai, China) and
wheel speed Sensor (WSS, Zhejiang, China) were installed on the prototype to provide
real-time data as the input to the network model. The ay in the input is directly obtained
by the inertial measurement unit (IMU) embedded in the GNSS/INS. vx and vy were
calculated from the data obtained by IMU and WSS. The coefficients a, b, and c can be
obtained by calculating the true values of µx and µy at every step, which can be obtained
by GNSS/INS.
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Figure 3. The prototype of an NTV.

The model of GNSS/INS is RoHS-X2-CAN; the WSS model is TE-ABS-181; the vehicle
chip model of the vehicle control unit (VCU) is NXP5744P; the network model is calculated
by a Jetson Xavier NX; all driving data were recorded by CAN-DTU200; the above devices
communicate with each other by CAN bus [30]. Through the prototype test, 100 datasets
were obtained for training the network model. Each dataset contained 120 s of driving data
(12,000 time-sequential data points). In addition to the training set, 10 additional datasets
were used as the test sets to obtain the final results.

For performance comparison, the number of hidden layers (Nol), the number of hidden
layers nodes (Non), and the number of steps (n) of the network model were different. The
test sets were used to find the appropriate network structure and the number of steps.
After training, the root mean squared error (RMSE) of the test sets was calculated, and the
operation times of each step are shown in Figure 4. The operation time was determined by
a Jetson Xavier NX test.
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Figure 4. The result of training. (a) RMSE, Unit: ◦/s; (b) The operation time of each step, Unit: ms.

Since the input sends data at a time interval of 0.01 s, the network model should not
spend more than 10 ms in performing each step calculation. To balance the operation time
and performance of the network model, a 20-step network structure with 2 hidden layers
and 12 hidden layer nodes in each layer was chosen. The final size of the network model
used for burning was 7072 kB. The network model under this structure was applied to the
test sets, and the prediction result is shown in Figure 5.
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The yaw rate and its error calculated from the prediction results are shown in Figure 6.
ϕt was obtained by calculating the true yaw rate coefficients at, bt, and ct.
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The results show that the maximum absolute error of the yaw rate predicted by the
network model was 0.3468 deg/s. The mean absolute error was 0.0013 deg/s. The relative
error at the maximum absolute error was 6.31%. The average relative error was 4.07%.

The value range of the yaw rate in the test set was between −6 deg/s and 6 deg/s,
and the maximum absolute error appeared near −6 deg/s. The maximum absolute error
of the yaw rate was 0.2008 deg/s in an interval between −2.5 deg/s and −2.5 deg/s. The
mean absolute error was 0.000264 deg/s.

These errors mainly come from the three coefficients of the network model output.
The accuracy of the output with the network model is analyzed in the discussion section of
this work.

3. Tilting Feedforward Synchronous Control

In this section, we propose that the TFSC is synchronized with the active tilting motion
and yaw motion of NTVs. The TFSC is described based on the NTV prototype above.

When the prototype is driving forward, the prototype takes the ideal tilting angle [9,17]
as the target tilting angle, which is calculated by (9) [9,17]. The ideal tilting angle and the
yaw rate are synchronized in the time domain.

θt =
v

.
ϕ

g
(9)

where θt is the target tilting angle;
.
ϕ is the yaw rate; v is the driving velocity; and g is the

acceleration of gravity.
In the traditional direct tilt control (DTC), shown in Figure 7, the prototype takes (9)

as the control target to control the tilting angle.
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Figure 7. The diagram of DTC.

Driving at the driving velocity v = 30 km/h, the yaw rate, target tilting angle, and true
tilting angle of the NTV prototype are shown in Figure 8.

There is a time lag between the true and target tilting angles. The average lag time
tb = 0.17 s.

To synchronize the true tilting angle and the yaw rate in the time domain, the TFSC
method causes the control target of the tilting angle at time t0 to be calculated as follows:

θt0 =
vt0

.
ϕt0+tb
g

(10)
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where vt0 is the driving velocity at time t0; θt0 is the target tilting angle at time t0; and
.
ϕt0+tb is the yaw rate at time t0+tb, where

.
ϕt0+tb is obtained by the prediction of the

network model.
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Figure 8. Lag time of true tilt angle with DTC: (a) yaw rate; (b) tilting angle.

In the TFSC, as shown in Figure 9, the predicted yaw rate output from the network
model is used as the basis for calculating the control target. The target tilting angle of
synchronous control is earlier than the yaw rate in the time sequence, which is used to
compensate for the time lag of the true tilting angle caused by suspension damping [30,31].
The network model is used to realize data feedforward in order to realize the synchroniza-
tion of the active tilting motion and the yaw motion. The NTV prototype takes (10) as the
control target to control the tilting angle, and the synchronization effect achieved is verified
in the experiments section of this work.
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4. Experiments

The above prototype was used in experiments as a test NTV to acquire the dataset, as
shown in Figure 10. Four typical scenarios [32] are provided to analyze the performance
of the proposed TFSC and prove its applicability. The proposed method can be expanded
to other scenarios with structured roads easily. The illustrative examples are tested by
the experiments.
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Figure 10. The experimental process.

When obtaining the training set and test set, the prototype experiment was carried out
on the “S”-type route with a pile spacing of 10 m and the “C”-type route with a turning
radius of 5.6 m. The “C”-type route involves only one turning process, while the “S”-type
route involves many turning processes. Two driving scenarios were considered: in scenario
(1), the prototype was driven at a constant velocity (30 km/h); and in scenario (2), the
prototype was driven within the prescribed route at a velocity that was entirely controlled
by the driver.

To verify the effect of the TFSC method based on prediction, the trained network
model was downloaded onto the VCU and Jetson Xavier NX of the NTV prototype, and
the NTV prototype was driven on the following four routes, as shown in Figure 11. The
four types of routes are the “S”-type route, the “C”-type route, the single lane change route,
and the double lane change route. When the TFSC was adopted, the tb in (10) was 0.17 s.
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4.1. “S”-Type Route Experiment

The data of the NTV prototype when driving on the “S”-type route are shown in
Figure 12. The true tilting angles of the NTV prototype with DTC and TFSC are compared
with the ideal tilting angle. The ideal tilting angle is synchronized with the yaw rate [9].
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When the prototype drove on the “S”-type route, the maximum absolute error of the
prediction was 0.7531◦/s, and the average absolute error was 0.2026◦/s. The true tilting
angle with TFSC was closer to the corresponding target [9]. The tilting angle error is shown
in Table 1.

Table 1. The tilting angle error of the “S”-type route experiment.

Maximum
Absolute Error (◦)

Average
Absolute Error (◦)

Average
Lag Time (s)

DTC 3.317 1.179 0.21
TFSC 1.208 0.401 0.11

4.2. “C”-Type Route Experiment

The data of the NTV prototype when driving on the “C”-type route is shown in
Figure 13. The true tilting angles of the NTV prototype with DTC and TFSC are compared
with the ideal tilting angle.
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When the prototype drove on the “C”-type route, the maximum absolute error of the
prediction was 0.3466◦/s, and the average absolute error was 0.0445◦/s. The true tilting
angle with TFSC was closer to the corresponding target [9]. The tilting angle error is shown
in Table 2.

Table 2. The tilting angle error of the “C”-type route experiment.

Maximum
Absolute Error (◦)

Average
Absolute Error (◦)

Average
Lag Time (s)

DTC 3.488 0.5167 0.07
TFSC 1.308 0.1938 0.03

4.3. Single Lane Change Route Experiment

The data of the NTV prototype when driving in the single lane change route are
shown in Figure 14. The true tilting angles of the NTV prototype with DTC and TFSC are
compared with the ideal tilting angle.
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When the prototype drove on the single lane change route, the maximum absolute
error of the prediction was 0.6537◦/s, and the average absolute error was 0.1335◦/s. The
true tilting angle with TFSC was closer to the corresponding target [9]. The tilting angle
error is shown in Table 3.

Table 3. The tilting angle error of the single lane change route experiment.

Maximum
Absolute Error (◦)

Average
Absolute Error (◦)

Average
Lag Time (s)

DTC 3.029 0.5963 0.16
TFSC 1.321 0.2716 0.07

4.4. Double Lane Change Route Experiment

The data of the NTV prototype when driving in the double lane change route are
shown in Figure 15. The true tilting angles of the NTV prototype with DTC and TFSC are
compared with the ideal tilting angle.
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When the prototype drove in the double lane change route, the maximum absolute
error of the prediction was 0.4492◦/s, and the average absolute error was 0.1023◦/s. The
true tilting angle with TFSC was closer to the corresponding target [9]. The tilting angle
error is shown in Table 4.

Table 4. The tilting angle error of the double lane change route experiment.

Maximum
Absolute Error (◦)

Average
Absolute Error (◦)

Average
Lag Time (s)

DTC 3.409 0.7089 0.18
TFSC 1.375 0.3229 0.10

4.5. Analysis of Experiment Results

According to Tables 1–4, the tilting motion performance under the control of TFSC
was better than that of traditional DTC. The lag time in Tables 1–4 can meet the perfor-
mance requirements of vehicle suspension [33]. In the four typical scenarios shown in
Sections 4.1–4.4, TFSC reduces the average absolute error of the tilting angle by 65.9%,
63.8%, 54.7%, and 54.5%, respectively; TFSC reduces the average lag time of the tilting
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angle by 47.6%, 57.1%, 56.2%, and 44.4%, respectively. The tilting motion performances
(e.g., average lag time, maximum absolute error and average absolute error of tilting angle)
of TFSC under four scenarios were compared, and the results are shown in Figure 16.
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In terms of error, the performance of TFSC in the four scenarios was relatively average;
in terms of reducing lag time, TFSC performed best in the “C”-type route.

5. Discussion

By comprehensively analyzing the contents of Figures 4–6, it can be seen that the
calculation speed of the prediction algorithm is fast enough, but there are also certain errors.
The main reason for prediction error could be that the output of the three coefficients a,
b, and c are inaccurate. The error of coefficient c is relatively large, but the error of the
yaw rate finally calculated by the three coefficients is relatively small, indicating that the
influence of coefficient c on the yaw rate in the prediction process is relatively less than the
other two coefficients.

According to Figure 6, for the RNN method, no matter how much longer the input
“memory” is compared to others, the prediction effect is not necessarily better. When using
the RNN method, finding the appropriate “memory” length is necessary.

When designing the prediction algorithm of the yaw rate, we assumed that the lateral
acceleration and the longitudinal velocity between each step were constant. This will
certainly lead to some prediction error, but from the prediction results, this error is very
small and can be applied to the proposed TFSC.

The NTV’s tilting motion performance in the proposed TFSC in the “C”-type route
and the single lane change route with only one steering process is better than that in the
“S”-type route and the double lane change route with multiple steering processes, as shown
in Figure 16. There are two reasons for this situation: (1) the accuracy of the predicted
yaw rate; (2) the tb in the TFSC is currently a constant that does not change with the
operating scenarios.

Regarding the accuracy of the predicted yaw rate, the value range of the yaw rate in
the test set was between −6 deg/s and 6 deg/s, and the maximum absolute error appeared
near −6 deg/s. The maximum absolute error of the yaw rate was 0.2008 deg/s in a common
working scenario (between −2.5 deg/s and −2.5 deg/s). The mean absolute error was
0.000264 deg/s.

The tb is a variable in the steering process, as shown in Figure 8. To calculate the target
tilting angle, the tb is approximated to a constant in the TFSC. If tb can be predicted by
deep learning or other methods, the tilting motion performance of TFSC could be further
improved. Future works should aim to address this possibility.
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6. Conclusions

(1) This work researched the calculating method for the prediction of the continuous
yaw rate of NTVs in the time domain. A network model was designed based on an RNN to
predict the NTV yaw rate. The network model spends less than 10 ms performing each
step calculation. The root mean squared error of prediction is 0.0639◦/s.

(2) The tilting feedforward synchronous control (TFSC) method for NTVs, based on the
predicted value of the yaw, rate is proposed. This method reduces the maximum average
error of the tilting angle by 54.5%; the average lag time of the tilting angle is reduced by
44.4%. The experiment showed that this method can effectively synchronize the tilting
motion of the NTV with the yaw motion.

(3) All sensor data used in the network model and the TFSC were obtained through
a prototype and its onboard sensors. The proposed TFSC can be downloaded onto the
onboard chip for use, which shows the practicability of the TFSC.

7. Patents
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