
Citation: Qiao, Y.; Wu, N.; Li, Z.;

Al-Ahmari, A.M.; El-Tamimi, A.-A.;

Kaid, H. A Two-Step Approach to

Scheduling a Class of Two-Stage

Flow Shops in Automotive Glass

Manufacturing. Machines 2023, 11,

292. https://doi.org/10.3390/

machines11020292

Academic Editor: Mosè Gallo

Received: 1 December 2022

Revised: 3 February 2023

Accepted: 5 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

A Two-Step Approach to Scheduling a Class of Two-Stage Flow
Shops in Automotive Glass Manufacturing
Yan Qiao 1,* , Naiqi Wu 1,2 , Zhiwu Li 1, Abdulrahman M. Al-Ahmari 3 , Abdul-Aziz El-Tamimi 3

and Husam Kaid 3

1 Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems,
Macau University of Science and Technology, Macao 999078, China

2 State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment,
Guangdong University of Technology, Guangzhou 510006, China

3 Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia

* Correspondence: yqiao@must.edu.mo

Abstract: Driven from real-life applications, this work aims to cope with the scheduling problem of
automotive glass manufacturing systems, that is characterized as a two-stage flow-shop with small
batches, inevitable setup time for different product changeover at the first stage, and un-interruption
requirement at the second stage. To the best knowledge of the authors, there is no report on this
topic from other research groups. Our previous study presents a method to assign all batches to each
machine at the first stage only without sequencing the assigned batches, resulting in an incomplete
schedule. To cope with this problem, if a mathematical programming method is directly applied to
minimize the makespan of the production process, binary variables should be introduced to describe
the processing sequence of all the products, not only the batches, resulting in huge number of binary
variables for the model. Thus, it is necessary and challenging to search for a method to solve the
problem efficiently. Due to the mandatory requirement that the second stage should keep working
continuously without interruption, solution feasibility is essential. Therefore, the key to solve the
addressed problem is how to guarantee the solution feasibility. To do so, we present a method to
determine the minimal size of each batch such that the second stage can continuously work without
interruption if the sizes of all batches are same. Then, the conditions under which a feasible schedule
exists are derived. Based on the conditions, we are able to develop a two-step solution method. At
the first step, an integer linear program (ILP) is formulated for handling the batch allocation problem
at the first stage. By the ILP, we need then to distinguish the batches only, greatly reducing the
number of variables and constraints. Then, the batches assigned to each machine at the first stage
are optimally sequenced at the second step by an algorithm with polynomial complexity. In this
way, by the proposed method, the computational complexity is greatly reduced in comparison with
the problem formulation without the established feasibility conditions. To validate the proposed
approach, we carry out extensive experiments on a real case from an automotive glass manufacturer.
We run ILP on CPLEX for testing. For large-size problems, we set 3600 s as the longest time for getting
a solution and a gap of 1% for the lower bound of solutions. The results show that CPLEX can solve
96.83% cases. Moreover, we can obtain good solutions with the maximum gap of 4.9416% for the
unsolved cases.

Keywords: CPLEX; glass manufacturing; integer linear program; scheduling; two-stage flow-shop

1. Introduction

Due to globalization, products are diversified and should be produced in a customized
way with small batches and low cost. To do so, a manufacturing system should be flexible.
One important flexibility type of a production system is characterized by the capability

Machines 2023, 11, 292. https://doi.org/10.3390/machines11020292 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020292
https://doi.org/10.3390/machines11020292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5162-0224
https://orcid.org/0000-0001-6782-458X
https://orcid.org/0000-0002-3079-0141
https://doi.org/10.3390/machines11020292
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020292?type=check_update&version=2

Machines 2023, 11, 292 2 of 19

to produce multiple product types. To produce different products in a single system,
changeovers are performed frequently due to the small batch size and setups often re-
quired [1]. In many cases, the setup activities take significant time, which cannot be ignored
in operating a system. Flow-shop systems are widely adopted production systems. In a
classical flow-shop system, a set of jobs are sequentially processed at multiple stages, where
each stage has one machine only. If there is at least one stage consisting of more than one ma-
chine, the system is addressed as a flexible flow-shop [2]. A flexible flow-shop is also called
a hybrid flow shop. Scheduling a flexible flow-shop production system that processes a
variety of product types with small batches is an important issue in industrial applications.

In this paper, we investigate the scheduling problem of automotive glass manufacturing
systems (AGMSs) that is described as follows. In an automotive context, there are many
glass products and all of them should be produced in a single AGMS. For a glass product
to be produced in an AGMS, there are five processing steps: pre-processing, bending,
Polyvinyl Butyral (PVB) stretching and lamination, vacuuming, and final inspection. The
shapes of different products produced in an AGMS are different, changeovers for producing
different products are inevitable. For the addressed AGMS, setups with significant time
for a changeover are required at Step 1. At Step 2, dies are used to form different shapes
for different products. By proper process planning, dies can be changed when a machine
is operating, leading to no setup time. Furthermore, in an AGMS, no setup is required
for Steps 3–5 either and Steps 2–5 are designed to be paced to maximize the productivity.
Therefore, an AGMS is a typical two-stage flow-shop (TSFS), where Step 1 forms the first
stage, while the other steps form the second stage. Further, there are multiple machines at
both Stages 1 and 2. Thus, an AGMS is also a two-stage flexible flow-shop (TSFFS).

For the addressed AGMS, the second stage is naturally recognized and designed as
the bottleneck in practice since a machine at the second stage cannot be interrupted so as to
keep the processing environment (i.e., temperature) due to quality assurance requirements.
Thus, this work aims to minimize the makespan of TSFFSs with small batches, sequence-
independent setup time at the first stage and no-interruption requirement at the second
stage. For this addressed problem, a set of ζ batches (each batch can be treated as a job)
are processed. To meet the no-interruption requirement for Stage 2, when a product in
a batch is completed by a machine at Stage 1, this product should be scheduled to be
processed at Stage 2 immediately without waiting for the completion of the entire batch.
Furthermore, after processing a product in a batch that is previously completed by machine
i, the next product processed by Stage 2 may be a product from a different batch completed
by machine j with i 6= j. Thus, if a mathematical programming method is directly applied
to minimize the makespan of the presented TSFFS in this work, we need binary variables
to identify the processing sequence of all the products but not only the batches. In this
way, a huge number of binary variables should be introduced, leading to a model size
that is extremely large. Thus, it is an important issue to search for a method such that the
problem can be efficiently solved, which it is very challenging. This motivates us to conduct
this work.

Due to the mandatory requirement that the second stage should keep working contin-
uously without interruption, solution feasibility is essential. Therefore, the key to solve the
addressed problem is how to guarantee solution feasibility. To do so, this work makes the
following contributions:

(1) We present a method to determine the minimal size of each batch such that the second
stage can continuously keep working without interruption if the sizes of all batches
are same;

(2) The conditions under which a feasible schedule exists are derived;
(3) Based on the conditions, we are able to develop a two-step solution method;

(3.1) At the first step, an integer linear program (ILP) is formulated for handling the
batch allocation problem at the first stage.

(3.2) At the second step, the batches assigned to each machine at the first stage are
optimally sequenced by an algorithm with polynomial complexity.

Machines 2023, 11, 292 3 of 19

For the proposed two-step method, at the first step, we need to distinguish the batches
only, greatly reducing the number of variables and constraints in the ILP. In this way, by
the proposed method, we greatly reduce the computational complexity in comparison with
the problem formulation without the established feasibility conditions.

The rest of the paper is constructed as follows. Section 2 briefly reviews the related
work. Section 3 analyzes properties of the system. Then, a two-step solution method
is proposed in Section 4. Experimental results are given to test the performance of the
proposed method in Section 5. Finally, the last section concludes this work.

2. Literature Review

Many studies have been conducted on flow-shop scheduling problems. For flow-
shop scheduling problems, there are various variants, considering different constraints,
scheduling scenarios, and optimization objectives [3]. The main constraints include setup
time [4], limited buffers [5], uncertain processing time [6], due dates [7], etc. Many re-
searchers attempt to solve such scheduling problems by using mathematical models [4,8],
meta-heuristics algorithms [5,9], artificial intelligence [4], and methods based on scheduling
policy [10,11]. Interested readers can refer to the surveys in [3,12,13] for more details about
the scheduling analysis of flow-shop systems. Since the addressed scheduling problem
comes from a real AGMS that is treated as a TSFS, this work mainly reviews the works
related to the scheduling problems of TSFS.

Some studies have been carried out for TSFS system scheduling problems. With
one machine at Stage 1, by considering the machine breakdown, [14] propose efficient
approaches to minimize the makespan. With one machine at Stage 2, based on a branch and
bound technique, [15] developed an algorithm to find an optimal schedule. With arbitrary
arrival time of jobs, [16] present an ant colony algorithm to schedule a TSFS system. A
multi-objective hybrid ant colony algorithm is constructed by [17] to trade off the makespan
and total energy costs for a two-stage blocking permutation flow-shop. For a no-waiting
TSFS, [18] design a linear-time combinatorial algorithm.

By considering independent setup time, [19] construct several heuristic algorithms for
scheduling a TSFS. With the fuzzy makespan and total agreement index as objective, [20]
adopt a diversified teaching–learning-based algorithm for a TSFS with sequence-dependent
setup time. By applying reinforcement learning, [21] propose a novel approach for the TSFS
system scheduling problem. In addition, efficient algorithms are presented for two-stage
assembly flow-shops [22–25]. In such a system, normally, the first stage is used to fabricate
multiple types of components, while the second stage assembles the components to form
the final product.

For a TSFS system, if each stage has one machine only, the system becomes a two-
machine flow shop (TMFS) and great efforts have been made for scheduling such systems.
With sequence-independent setup time, the branch and bound techniques are employed to
optimize the makespan in [26]. In [27,28], methods are proposed to minimize makespan
by considering the release dates, while in [29], several metaheuristics are examined by
considering both release dates and blocking constraint. To minimize the total tardiness,
lower bounds and dominance conditions are established in [30]. In addition, there are
studies [31,32] that focus on TMFSs with deteriorating jobs. Note that there are extensive
studies on scheduling TMFSs. Due to the fact that the addressed AGMS in this work
is much more complex, we do not make an extensive review on this issue, in order to
save space.

To the best knowledge of the authors, there is no report on the scheduling problem
of TSFFSs with small batches, sequence-independent setup time at the first stage and no-
interruption requirement at the second stage from other research groups. For the addressed
problem in this work, our previous study presents a method to assign all batches to each
machine at Stage 1 for being processed [33]. However, it gives no way to sequence the
assigned batches, resulting in an incomplete schedule. Moreover, it does not present
how to find the minimal size of each batch such that Stage 2 can continuously work

Machines 2023, 11, 292 4 of 19

without interruption if the sizes of all batches are same. Notice that the key to present
the existence conditions of a feasible schedule is to determine the minimal sizes of all
batches. This motivates us to perform this work such that the addressed problem can be
completely solved.

3. Scheduling Analysis
3.1. System Description

Before presenting the proposed method, we first introduce the addressed AGMS
as follows.

(1) There are parallel multiple machines with same processing functions at each stage;
(2) Only one product can be processed by a machine at a time;
(3) At Stage 1, a batch should be processed by a single machine without splitting;
(4) Stage 2 is the bottleneck;
(5) Stage 1 has the setup time;
(6) Each batch contains identical products;
(7) For any two batches, their product types are different, with the result that if one batch

is just processed at Stage 1, setup time is required before another one is processed
next; and

(8) After its completion at Stage 1, a product is ready to be processed immediately by a
machine at Stage 2.

Since each stage has multiple machines, g≥ 1 and h≥ 1 are used to denote the number
of machines at Stages 1 and 2, respectively. Further, let Nk = {1, 2, . . . , k}. Then, M1i, i∈Ng,
and M2j, j∈Nh, represent the i-th and j-th machines at the two stages, respectively. Figure 1
describes an AGMS with small batches to be processed and multiple machines at each
stage. The time for processing a product of any type by M1i and M2j is known and denoted
as α and µ, respectively. Further, the setup time for a machine at Stage 1 is known and it is
represented by δ. Without setup time at Stage 2, we treat the h machines there as just one
machine, leading to that the processing time of a product at Stage 2 is β = µ

h time units.

Machines 2023, 11, x FOR PEER REVIEW 4 of 20

interruption requirement at the second stage from other research groups. For the ad-

dressed problem in this work, our previous study presents a method to assign all batches

to each machine at Stage 1 for being processed [33]. However, it gives no way to sequence

the assigned batches, resulting in an incomplete schedule. Moreover, it does not present

how to find the minimal size of each batch such that Stage 2 can continuously work with-

out interruption if the sizes of all batches are same. Notice that the key to present the

existence conditions of a feasible schedule is to determine the minimal sizes of all batches.

This motivates us to perform this work such that the addressed problem can be completely

solved.

3. Scheduling Analysis

3.1. System Description

Before presenting the proposed method, we first introduce the addressed AGMS as

follows.

(1) There are parallel multiple machines with same processing functions at each stage;

(2) Only one product can be processed by a machine at a time;

(3) At Stage 1, a batch should be processed by a single machine without splitting;

(4) Stage 2 is the bottleneck;

(5) Stage 1 has the setup time;

(6) Each batch contains identical products;

(7) For any two batches, their product types are different, with the result that if one batch

is just processed at Stage 1, setup time is required before another one is processed

next; and

(8) After its completion at Stage 1, a product is ready to be processed immediately by a

machine at Stage 2.

Since each stage has multiple machines, g  1 and h  1 are used to denote the number

of machines at Stages 1 and 2, respectively. Further, let ℕk = {1, 2, …, k}. Then, M1i, iℕg,

and M2j, jℕh, represent the i-th and j-th machines at the two stages, respectively. Figure 1

describes an AGMS with small batches to be processed and multiple machines at each

stage. The time for processing a product of any type by M1i and M2j is known and denoted

as  and , respectively. Further, the setup time for a machine at Stage 1 is known and it

is represented by . Without setup time at Stage 2, we treat the h machines there as just

one machine, leading to that the processing time of a product at Stage 2 is  =
𝜇

ℎ
 time units.

Figure 1. An AGMS.

We ensure that
𝛼

𝑔
 <  should hold, otherwise some machines at the second stage have

to be interrupted from time to time due to the setups for M1i, iℕg. In that case, the problem

is similar to schedule a single machine. For such a scheduling problem, there are extensive

Figure 1. An AGMS.

We ensure that α
g < β should hold, otherwise some machines at the second stage

have to be interrupted from time to time due to the setups for M1i, i∈Ng. In that case, the
problem is similar to schedule a single machine. For such a scheduling problem, there are
extensive studies [34–40]. Thus, to ensure the non-interruption requirement of machines at
the second stage, it should satisfy α

g < β when the system is designed. By the experience
of the authors with some companies in China, this is true for AGMSs. With α

g < β and the
non-interruption constraint, it is a great challenge to maximize the productivity by finding
a feasible schedule for processing multiple products, which is the aim of this work.

Machines 2023, 11, 292 5 of 19

3.2. Properties of the System

Due to there being many glass products for automotives, in an AGMS, the number of
machines at the first stage is much less than the number of product types to be produced.
Moreover, the total number of products to be produced for a scheduling horizon is much
greater than the number of products in a batch. To maximize the throughput of an AGMS,
the key is that one should properly allocate the batches to the machines at the first stage
and sequence them for each M1i, i∈Ng. Suppose that η(i) batches are allocated to M1i, i∈Ng.
Let BHij, i∈Ng and j∈Nη(i), denote the j-th one in the η(i) batches with its batch size being
bij. Without loss of generality, it is assumed that, at time zero, the system starts to process
batch BHi1, i∈Ng. We use Tij to denote the completion time of batch BHij, i∈Ng and j∈Nη(i).
Then, we have

Tij = α × ∑j
d=1 bid + (j− 1)× ffi, i ∈ Ng and j ∈ Nη(i) (1)

Note that Tiη (i) gives the time when M1i, i∈Ng, completes its allocated batches. Let ϑit
be the average production rate of M1i, i∈Ng, in [0, t], i.e., the average number of products
completed by M1i per unit time in [0, t]; and Tmin = min(Tiη (i)| i∈Ng). The following lemma
can be obtained.

Lemma 1. If ∑
g
i=1 ϑit ≥ 1

β′ ,

1

ℕ

∀
∈

t

1

ℕ

∀
∈ (0, Tmin], then Stage 2 can operate uninterruptedly during

(0, Tmin].

Proof. With ϑit being the average production rate of M1i, i∈Ng, in [0, t], the average
production rate of Stage 1 in [0, t] is ∑

g
i=1 ϑit. Notice that the maximal production rate of

Stage 2 is 1
β . Thus, if ∑

g
i=1 ϑit ≥ 1

β′ ∀t ∈ (0, Tmin], then, at any time point in (0, Tmin], the
production rate of Stage 1 is greater than or equal to that of Stage 2. That is to say that there
are always products for Stage 2 to process and no machine needs to stop in (0, Tmin], i.e.,
the lemma holds. �

With Lemma 1, we obtain the uninterrupted operation condition of Stage 2. In practice,
due to significant setup time at Stage 1, if some machines at Stage 1 are switching from
processing one batch to another, it may result in Stage 1 being unable to feed enough
products to the machines at Stage 2 (the bottleneck), leading to some machines at Stage 2
being unable to keep continuously working. To solve this problem, similar to the basic
idea of the drum-buffer-rope [41,42], buffers (the inventory) can be used to protect the
bottleneck such that the uninterrupted operation condition of Stage 2 shown in Lemma 1
is satisfied. Therefore, it is important to schedule the batches to be processed at Stage 1.
Moreover, it is necessary to determine the minimal size of each batch such that Stage 2 can
continuously work without interruption if the sizes of all batches are the same. Thus, for
more general cases, it is possible to find a method to schedule the batches to be processed
at Stage 1 so as to protect the bottleneck by the inventory.

Suppose that all the machines at Stage 1 process batches with the same size in a paced
way. In other words, the size of all batches to be processed are same and all the machines
at Stage 1 start to process a batch at the same time. In this way, all the machines switch
from producing a type of product to another type at the same time as well. Then, we
can determine the minimal size of each batch denoted by Θ such that Stage 2 can operate
continuously with no interruption.

Lemma 2. Suppose that all the g machines at Stage 1 perform the product processing and switching
operations in a paced way and the size of the batches to be processed are same. Then, if the size of
each batch is no less than Θ = δ

g×β−α Stage 2 can operate uninterruptedly.

Proof. When the g machines at the first stage start to process a batch at the same time, then
the inventory between Stages 1 and 2 should increase over time due to α

g < β. Assume

Machines 2023, 11, 292 6 of 19

that after t0 time units elapse, a batch at each machine at Stage 1 is just completed. At this
time, every one of the g machines switches from processing one batch to another exactly
at the same time. Then, the inventory between the two stages decreases over time since
Stage 2 continuously consumes the inventory. After δ time units elapse, the inventory
reaches zero. In this way, there are always products for Stage 2 to produce such that it
cannot be interrupted since the g machines at Stage 1 start to process a batch at the same
time, leading to the inventory between Stages 1 and 2 increasing over time. This means
that in this situation, the size of the batches is minimal. The inventory between Stages 1
and 2 changes periodically over time, as shown in Figure 2. Thus, we have that during
time t0, each machine at Stage 1 can produce Θ = t0

α products, i.e., a batch. In total, Stage 1
produces g× t0

α products. During time t0 + δ, Stage 2 just consumes t0+δ
β products. Note

that g× t0
α = t0+δ

β and t0 = αΘ, leading to Θ = δ
g×β−α Therefore, the lemma holds. �

Machines 2023, 11, x FOR PEER REVIEW 6 of 20

Lemma 2. Suppose that all the g machines at Stage 1 perform the product processing and switching

operations in a paced way and the size of the batches to be processed are same. Then, if the size of

each batch is no less than  =
𝛿

𝑔×𝛽−𝛼
, Stage 2 can operate uninterruptedly.

Proof. When the g machines at the first stage start to process a batch at the same time, then

the inventory between Stages 1 and 2 should increase over time due to
𝛼

𝑔
 < . Assume that

after t0 time units elapse, a batch at each machine at Stage 1 is just completed. At this time,

every one of the g machines switches from processing one batch to another exactly at the

same time. Then, the inventory between the two stages decreases over time since Stage 2

continuously consumes the inventory. After  time units elapse, the inventory reaches

zero. In this way, there are always products for Stage 2 to produce such that it cannot be

interrupted since the g machines at Stage 1 start to process a batch at the same time, lead-

ing to the inventory between Stages 1 and 2 increasing over time. This means that in this

situation, the size of the batches is minimal. The inventory between Stages 1 and 2 changes

periodically over time, as shown in Figure 2. Thus, we have that during time t0, each ma-

chine at Stage 1 can produce  =
𝑡0


 products, i.e., a batch. In total, Stage 1 produces 𝑔

𝑡0



products. During time t0 + , Stage 2 just consumes
𝑡0+


 products. Note that 𝑔

𝑡0


=

𝑡0+



and t0 = , leading to  =
𝛿

𝑔×𝛽−𝛼
. Therefore, the lemma holds. □

Figure 2. The changes of the inventory between Stages 1 and 2 over time.

Notice that  > 0 since
𝛼

𝑔
 <  results in  < g. With Lemmas 1 and 2, to develop a

method such that Stage 2 can operate uninterruptedly, we have the following result for

one of the cases.

Theorem 1. Given that BHij, iℕg and jℕ(i), is the j-th batch in the processing sequence for M1i,

for t  (0, Tmin], ∑ 𝜗𝑖𝑡
𝑔
𝑖=1 

1

𝛽
 holds if bij  , jℕ(i) and iℕg.

Proof. With
𝛼

𝑔
 < , as illustrated in Figure 3, before the completion of the first batch, the

production rate of M1i is
1

𝛼
 >

1

𝑔𝛽
, at time t1  [0, Ti1], iℕg.

As illustrated in Figure 3, it follows from (1) that, at time Tiu + , 1  u  (i)  1, (i) 

2, and iℕg, the average production rate of M1i can be calculated as

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝑇𝑖𝑢+𝛿
 =

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝛼×∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +𝑢×𝛿

With bij  , iℕg and jℕ(i), ∑ 𝑏𝑖𝑗
𝑢
𝑗=1  u   holds. Notice that a > 0, b > 0, and c > 0

are constants, so, we can obtain a monotonically increasing function f1(x) =
𝑎𝑥

𝑏𝑥+𝑐
. Then,

with constants , u, and , another monotonically increasing function f2(x) =
𝑥

𝛼𝑥+𝑢𝛿
 can be

Figure 2. The changes of the inventory between Stages 1 and 2 over time.

Notice that Θ > 0 since α
g < β results in α < gβ. With Lemmas 1 and 2, to develop a

method such that Stage 2 can operate uninterruptedly, we have the following result for one
of the cases.

Theorem 1. Given that BHij, i

1

ℕ

∀
∈

1

ℕ

∀
∈

g and j

1

ℕ

∀
∈

1

ℕ

∀
∈

η(i), is the j-th batch in the processing sequence for M1i,
for

1

ℕ

∀
∈

t

1

ℕ

∀
∈ (0, Tmin], ∑

g
i=1 ϑit ≥ 1

β holds if bij ≥ Θ,

1

ℕ

∀
∈

j

1

ℕ

∀
∈

1

ℕ

∀
∈

η (i) and

1

ℕ

∀
∈

i

1

ℕ

∀
∈

1

ℕ

∀
∈

g.

Proof. With α
g < β, as illustrated in Figure 3, before the completion of the first batch, the

production rate of M1i is 1
α > 1

gβ , at time t1 ∈ [0, Ti1], i∈Ng.

Machines 2023, 11, x FOR PEER REVIEW 7 of 20

obtained. Replace x by u   in f2(x), resulting in f2(u  ) =
1

𝑔𝛽
. Since x = ∑ 𝑏𝑖𝑗

𝑢
𝑗=1  u  ,

f2(∑ 𝑏𝑖𝑗
𝑢
𝑗=1) 

1

𝑔𝛽
 holds, resulting in

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝑇𝑖𝑢+𝛿
 

1

𝑔𝛽
, implying that, at time Tiu + , iℕg, (i) 

2, and 1  u  (i)  1, the production rate of M1i is no less than
1

𝑔𝛽
.

As illustrated in Figure 3, it follows from (1) that, at any time t2  (Tiu + , Ti(u+1)], iℕ
g, (i)  2, and 1  u  (i)  1, the average production rate of M1i can be calculated as

∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +(

𝑡2−𝑇𝑖𝑢−𝛿

𝛼
)

𝑡2
 =

∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +(

𝑡2−𝑇𝑖𝑢−𝛿

𝛼
)

𝛼×[∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +(

𝑡2−𝑇𝑖𝑢−𝛿

𝛼
)]+𝑢×𝛿

Since ∑ 𝑏𝑖𝑗
𝑢
𝑗=1 + (

𝑡2−𝑇𝑖𝑢−𝛿

𝛼
) > ∑ 𝑏𝑖𝑗

𝑢
𝑗=1  u   holds, we have f2(∑ 𝑏𝑖𝑗

𝑢
𝑗=1 + (

𝑡2−𝑇𝑖𝑢−𝛿

𝛼
)) >

1

𝑔𝛽
, i.e.,

∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +(

𝑡2−𝑇𝑖𝑢−𝛿

𝛼
)

𝑡2
 >

1

𝑔𝛽
. Hence, at time t2, Tiu +  < t2  Ti(u+1), iℕg, (i)  2, and 1  u 

(i)  1, the production rate of M1i is greater than
1

𝑔𝛽
.

As illustrated in Figure 3, it follows from (1) that, at any time t3  (Tiu, Tiu + ), iℕg,

(i)  2, and 1  u  (i)  1, the average production rate of M1i can be calculated as

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝑡3
 =

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝛼×∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +(𝑢−1)×𝛿+𝑡3−𝑇𝑖𝑢

Due to 0 < t3  Tiu < , we have

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝑡3
 =

∑ 𝑏𝑖𝑗
𝑢
𝑗=1

𝛼×∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +(𝑢−1)×𝛿+𝑡3−𝑇𝑖𝑢

 >
∑ 𝑏𝑖𝑗

𝑢
𝑗=1

𝛼×∑ 𝑏𝑖𝑗
𝑢
𝑗=1 +𝑢×𝛿

 = f2(∑ 𝑏𝑖𝑗
𝑢
𝑗=1) 

1

𝑔𝛽

Hence, at time t3, Tiu < t3 < Tiu + , iℕg, (i)  2, and 1  u  (i)  1, the production rate

of M1i is greater than
1

𝑔𝛽
.

Therefore, by summarizing the production rates of the g machines, we conclude that,

at any time during (0, Tmin], ∑ 𝜗𝑖𝑡
𝑔
𝑖=1 

1

𝛽
, or the total production rate of Stage 1 is greater

than or equal to
1

𝛽
 for any t  (0, Tmin]. □

BHi1
M1i

Time

: Setup time : processing time

BHi2 BHi3 BHi((i)-1) BHi(i)

t1 t2 t3

Ti1



Ti2 Ti3 Ti((i)-1)

   

Ti((i))Ti((i)-2)

Figure 3. Illustration for Theorem 1.

In this case, to ensure that the machines at Stage 2 can operate uninterruptedly, it

requires that the number of products in any batch should be greater or equal to . By the

conditions given in Theorem 1, it implies that before any changeover for product switch-

ing, there is enough inventory in the buffer between the two stages such that Stage 2 can-

not be starved during the setup time . Furthermore, by Theorem 1, it can be concluded

that, if the conditions given in Theorem 1 are satisfied, different batch sequences do not

affect the production rate of Stage 2, since it is always in operation no matter how the

batches are sequenced. However, there may be batches with size less than . It raises a

question if Stage 2 can operate uninterruptedly if batches with size less than exist. The

following theorem presents an answer to it.

Figure 3. Illustration for Theorem 1.

Machines 2023, 11, 292 7 of 19

As illustrated in Figure 3, it follows from (1) that, at time Tiu + δ, 1 ≤ u ≤ η(i) − 1,
η(i) ≥ 2, and i∈Ng, the average production rate of M1i can be calculated as

∑u
j=1 bij

Tiu + δ
=

∑u
j=1 bij

α×∑u
j=1 bij + u× δ

With bij ≥ Θ, i∈Ng and j∈Nη (i), ∑u
j=1 bij ≥ u × Θ holds. Notice that a > 0, b > 0, and

c > 0 are constants, so, we can obtain a monotonically increasing function f 1(x) = ax
bx+c . Then,

with constants α, u, and δ, another monotonically increasing function f 2(x) = x
αx+uδ can be

obtained. Replace x by u × Θ in f 2(x), resulting in f 2(u × Θ) = 1
gβ . Since x = ∑u

j=1 bij ≥ u

× Θ, f 2(∑u
j=1 bij) ≥ 1

gβ holds, resulting in
∑u

j=1 bij
Tiu+δ ≥

1
gβ , implying that, at time Tiu + δ, i∈Ng,

η(i) ≥ 2, and 1 ≤ u ≤ η(i) − 1, the production rate of M1i is no less than 1
gβ .

As illustrated in Figure 3, it follows from (1) that, at any time t2 ∈ (Tiu + δ, Ti(u+1)],
i∈Ng, η(i) ≥ 2, and 1 ≤ u ≤ η(i) − 1, the average production rate of M1i can be calculated as

∑u
j=1 bij +

(
t2−Tiu−δ

α

)
t2

=
∑u

j=1 bij +
(

t2−Tiu−δ
α

)
α×

[
∑u

j=1 bij +
(

t2−Tiu−δ
α

)]
+ u× δ

Since ∑u
j=1 bij +

(
t2−Tiu−δ

α

)
> ∑u

j=1 bij ≥ u×Θ holds, we have f 2(∑u
j=1 bij +

(
t2−Tiu−δ

α

)
)

> 1
gβ , i.e.,

∑u
j=1 bij+

(
t2−Tiu−δ

α

)
t2

> 1
gβ . Hence, at time t2, Tiu + δ < t2 ≤ Ti(u+1), i∈Ng, η(i) ≥ 2, and

1 ≤ u ≤ η(i) − 1, the production rate of M1i is greater than 1
gβ .

As illustrated in Figure 3, it follows from (1) that, at any time t3 ∈ (Tiu, Tiu + δ), i∈Ng,
η(i) ≥ 2, and 1 ≤ u ≤ η(i) − 1, the average production rate of M1i can be calculated as

∑u
j=1 bij

t3
=

∑u
j=1 bij

α×∑u
j=1 bij + (u− 1)× δ + t3 − Tiu

Due to 0 < t3 − Tiu < δ, we have

∑u
j=1 bij

t3
=

∑u
j=1 bij

α×∑u
j=1 bij + (u− 1)× δ + t3 − Tiu

>
∑u

j=1 bij

α×∑u
j=1 bij + u× δ

= f2

(
∑u

j=1 bij

)
≥ 1

gβ

Hence, at time t3, Tiu < t3 < Tiu + δ, i∈Ng, η(i) ≥ 2, and 1≤ u ≤ η(i) − 1, the production
rate of M1i is greater than 1

gβ .
Therefore, by summarizing the production rates of the g machines, we conclude that,

at any time during (0, Tmin], ∑
g
i=1 ϑit ≥ 1

β , or the total production rate of Stage 1 is greater

than or equal to 1
β for any t ∈ (0, Tmin]. �

In this case, to ensure that the machines at Stage 2 can operate uninterruptedly, it
requires that the number of products in any batch should be greater or equal to Θ. By the
conditions given in Theorem 1, it implies that before any changeover for product switching,
there is enough inventory in the buffer between the two stages such that Stage 2 cannot
be starved during the setup time δ. Furthermore, by Theorem 1, it can be concluded that,
if the conditions given in Theorem 1 are satisfied, different batch sequences do not affect
the production rate of Stage 2, since it is always in operation no matter how the batches
are sequenced. However, there may be batches with size less than Θ. It raises a question if
Stage 2 can operate uninterruptedly if batches with size less than Θ exist. The following
theorem presents an answer to it.

Theorem 2. Given that BHij, i

1

ℕ

∀
∈

1

ℕ

∀
∈

g and j

1

ℕ

∀
∈

1

ℕ

∀
∈

η(i), is the j-th batch in the processing sequence for
M1i, then for any t

1

ℕ

∀
∈ (0, Tmin], ∑

g
i=1 ϑit ≥ 1

β holds if ∑s
j=1 bij ≥ s × Θ,

1

ℕ

∀
∈

i

1

ℕ

∀
∈

1

ℕ

∀
∈

and

1

ℕ

∀
∈

s

1

ℕ

∀
∈

1

ℕ

∀
∈

η (i)−1.

Machines 2023, 11, 292 8 of 19

Proof. Similar to Theorem 1, at time t4 ≤ Ti1, i∈Ng, the production rate of M1i is 1
α > 1

gβ . It
follows from (1) that, at any time t5 ∈ [Tiu + δ, Ti(u+1)], i∈Ng, η(i) ≥ 2, and 1 ≤ u ≤ η(i) − 1,
the average production rate of M1i can be calculated as

∑u
j=1 bij +

(
t5−Tiu−δ

α

)
t5

=
∑u

j=1 bij +
(

t5−Tiu−δ
α

)
α×

[
∑u

j=1 bij +
(

t5−Tiu−δ
α

)]
+ u× δ

Due to ∑u
j=1 bij +

(
t5−Tiu−δ

α

)
≥∑u

j=1 bij ≥ u×Θ, by Theorem 1, f 2(∑u
j=1 bij +

(
t5−Tiu−δ

α

)
)

≥ 1
gβ , i.e.,

∑u
j=1 bij+

(
t5−Tiu−δ

α

)
t5

≥ 1
gβ holds. Hence, at time t5, Tiu + δ ≤ t5 ≤ Ti(u+1), i∈Ng,

η(i)≥ 2, and 1≤ u≤ η(i)− 1, the production rate of M1i is no less than 1
gβ .

It follows from (1) that, at any time t6 ∈ (Tiu, Tiu + δ), i∈Ng, η(i)≥ 2, and 1 ≤ u ≤ η(i) − 1,
the average production rate of M1i can be calculated as

∑u
j=1 bij

t6
=

∑u
j=1 bij

α×∑u
j=1 bij + (u− 1)× δ + t6 − Tiu

.

Just as Theorem 1, with 0 < t6 − Tiu < δ, we can obtain

∑u
j=1 bij

t6
>

∑u
j=1 bij

α×∑u
j=1 bij + u× δ

= f2

(
∑u

j=1 bij) ≥
1

gβ

Hence, at time t6 with Tiu < t6 < Tiu + δ, i∈Ng, η(i) ≥ 2, and 1 ≤ u ≤ η(i) − 1, the
production rate of M1i is greater than 1

gβ , resulting in that, during (0, Tmin], ∑
g
i=1 ϑit ≥ 1

β , or

the total production rate of Stage 1 is no less than 1
β for any t ∈ (0, Tmin]. �

In this case, there exist schedules such that when some machines at Stage 1 execute
setup activities, there are enough products that have been processed at Stage 1 in the buffer
between the stages such that Stage 2 cannot be starved. Then, we examine the case that the
batch size of every batch is less than Θ. In this case, we have the following result.

Theorem 3. Given that BHij,

1

ℕ

∀
∈

i

1

ℕ

∀
∈

1

ℕ

∀
∈

g and

1

ℕ

∀
∈

j

1

ℕ

∀
∈

1

ℕ

∀
∈

η(i) with η(i)≥ 2, is the j-th batch in the processing
sequence for M1i, then interruptions of Stage 2 cannot be avoided in time interval (0, Tmin] if
bij < Θ,

1

ℕ

∀
∈

i

1

ℕ

∀
∈

1

ℕ

∀
∈

g,

1

ℕ

∀
∈

j

1

ℕ

∀
∈

1

ℕ

∀
∈

η(i) with η(i) ≥ 2.

Proof. It follows from (1) that, at time Tiu + δ, i∈Ng, η(i) ≥ 2, and 1 ≤ u ≤ η(i) − 1, the
production rate of M1i can be calculated as

∑u
j=1 bij

Tiu + δ
=

∑u
j=1 bij

α×∑u
j=1 bij + u× δ

.

With bij < Θ, ∀i∈Ng, ∀j∈Nη (i), and η(i) ≥ 2, ∑u
j=1 bij < u × Θ holds. It follows from Theorem

1 that f 2(∑u
j=1 bij) < f 2(u × Θ) = 1

gβ holds, resulting in that, at time Tiu + δ, i∈Ng, η(i) ≥ 2,

and 1 ≤ u ≤ η(i) − 1, the production rate of M1i is less than 1
gβ , leading to ∑

g
i=1 ϑit < 1

β ,
t = Tiu + δ. This means that Stage 2 should be starved for some time in (0, Tmin], or the
theorem holds. �

In this case, during the time when some machine is performing setups, there are
not enough products in the buffer between the two stages for Stage 2 to process such
that Stage 2 has to stop. Up until now, we have examined the existence of a feasible
schedule and established the corresponding conditions. It should be pointed out that, to
satisfy the condition given in Theorem 2, one needs to properly schedule the batches to be

Machines 2023, 11, 292 9 of 19

produced. Thus, to solve the scheduling problem of AGMSs, based on Theorems 1 and 2,
we present a two-step method to find an optimal schedule by developing a mathematical
programming model.

4. Two-Step Solution Method

With the above schedule existence conditions, this section presents a two-step solution
method. First, at Step 1, we propose an ILP model to allocate the batches to different
machines at Stage 1. Then, the batches to be produced by each machine at Stage 1 are
sequenced at Step 2 to obtain the optimal solution.

4.1. Formulating the ILP

To effectively schedule the addressed AGMS, we need to allocate the batches to
different machines at Stage 1 to balance the workloads and make a schedule feasible. As
discussed above, batch size is crucial to find a feasible schedule. Thus, we partition the
batches into two parts. Let Θ = δ

g×β−α . Then, the set of batches with their sizes being
greater or equal to Θ forms the first part called Batch Type 1 and denoted by BT1, and the
other batches form the other part called Batch Type 2 and denoted by BT2. Assume that
|BT1| = n and |BT2| = m such that we have in total n + m batches to be produced. We
number the batches in BT1 and BT2 by consecutive integer numbers such that their index
sets are denote as Nn and Nm, respectively. Further, let Oi ≥ Θ, i∈Nn, be the batch size of
the i-th batch in BT1 and Φj < Θ, j∈Nm, the batch size of the j-th batch in BT2.

By Theorem 2, ∑
g
i=1 ϑit ≥ 1

β holds for any t ∈ (0, Tmin], if ∑s
j=1 bij ≥ s × Θ, ∀i∈Ng and

∀s∈Nη (i)−1. In this case, by Lemma 1, we are sure that a feasible schedule can be found.
However, in some cases, ∑s

j=1 bij ≥ s × Θ may not hold for any i∈Ng and s∈Nη (i)−1. In this
case, to ensure that a feasible schedule can be found, we need to add some extra products
into the assigned batches so as to make the conditions given in Theorem 2 satisfied. Without
loss of generality, we assume that extra products are added into BHi1 for any machine i∈Ng
at Stage 1 and the number of products added to M1i is ξi. Then, based on Theorem 2, we
present the ILP as follows. The symbols for this model are given in the Nomenclature.

ILP: minimize Γ (2)

S. t. ∑g
i=1 xij = 1, j ∈ Nn, (3)

∑g
i=1 yij = 1, j ∈ Nm, (4)

1 ≥ ∑m
w=1 ziw, i ∈ Ng, (5)

∑m
w=1 ziw ≥ yij, j ∈ Nm and i ∈ Ng, (6)

yij ≥ zij, j∈Nm and i∈Ng, (7)

∑m
j=1

[
yij ×

(
Φj × α + δ

)]
+ξi × α− δ + ∑n

j=1

[
xij ×

(
Oj × α + δ

)]
≤ Γ, i ∈ Ng, (8)

∑m
j=1

[(
yij − zij

)
×Φj

]
+ ζi + ∑n

j=1

(
xij ×Oj

)
≥∑m

j=1

[(
yij − zij

)
×Θ

]
+ ∑n

j=1

(
xij ×Θ

)
(9)

In the above ILP, Γ presents the completion time of all batches at Stage 1. Thus,
Objective (2) optimizes the total completion time. Constraints (3) and (4) ensure that a batch
in both BT1 and BT2 is allocated to a single machine. Constraints (5) and (6) state that one
of batches in BT2 allocated to M1i, i∈Ng, should be put at the last position for producing.
Constraint (7) says that if no batch in BT2 is allocated to M1i, i∈Ng, i.e., yij = 0, i∈Ng and
j∈Nm, then we have zij = 0, i∈Ng and j∈Nm. Constraint (8) enforces that the total completion
time of batches that are allocated to M1i should not be longer than Γ. For Constraint (9), two
cases exist and they are Case 1: ∑m

w=1 ziw = 0; and Case 2: ∑m
w=1 ziw = 1. For the former, it

follows from Constraint (6) that yij = 0, j∈Nm, holds, implying that M1i produces no batches
in BT2. Hence, according to Theorem 1, the production rate of M1i is always greater or

Machines 2023, 11, 292 10 of 19

equal to 1
gβ . For the latter, if ∑m

j=1
[(

yij − zij
)
×Φj

]
+ ξi + ∑n

j=1
(
xij ×Oj

)
≥ ∑n

j=1
(
xij ×Θ

)
+

∑m
j=1
[(

yij − zij
)
×Θ

]
, i∈Ng, by Theorem 2, the satisfaction of Constraint (9) implies that

the production rate of M1i is no less than 1
gβ all the time. Therefore, Constraint (9) ensure

that the obtained solution is feasible even batches in BT2 are produced by M1i, i∈Ng.

4.2. Batch Sequencing for Machines at Stage 1

With the above developed ILP, batches are allocated to each machine at Stage 1 without
determining their sequence for feasibility. Thus, based on the solution obtained by solving
the ILP, we need to sequence the batches allocated to each machine such that the conditions
given in Theorem 2 are met to ensure the feasibility of a solution. Assume that, by solving
the ILP, the set of batches allocated to M1i, i∈Ng, is Λi. We have |Λi| = η(i) if zij = 0,
otherwise |Λi| = η(i)−1 if zij = 1. Then, Algorithm 1 is used to sequence the batches for
M1i, i∈Ng, such that the conditions given in Theorem 2 are ensured.

Algorithm 1: Batch sequencing for M1i, i∈Ng, based on the solution of ILP.

Input: η(i), Θ, and Λi, i∈Ng
Output: BHij, i∈Ng and j∈Nη (i)−1

1: Λi
′ = ∅ /*initialize the sequenced batches*/;

2: Choose a batch in Λi and set it to be BHi1 such that ξi + bi1 ≥ Θ;
3: Λi

′ ←Λi
′ ∪{BHi1};

4: Λi ←Λi\{BHi1};
5: s = 2;
6: While s ≤ η(i) − 1
7: Choose a batch in Λi and set it to be BHis such that ξi + ∑s

j=1 bij ≥ s ×Θ;
8: Λi

′ ←Λi
′ ∪{BHis};

9: Λi ←Λi\{BHis};
10: s = s +1;
11: End;

In Algorithm 1, Statement 2 ensures that when the first batch BHi1 is determined, we
have ξi + bi1 ≥ Θ, i.e., the conditions given in Theorem 2 are met. Then, by Statements
6–11 in Algorithm 1, it ensures that, with every batch being added, the conditions given
in Theorem 2 are met. After performing Statement 11, it results in Λi = ∅ or |Λi| = 1. If
Λi = ∅, we can conclude that zij = 1. In this case, all the batches have been sequenced. If
|Λi| = 1, we simply put the remaining batch in Λi at the last position. In this way, we
obtain a feasible schedule.

Let us analyze the worst-case running time of the algorithm. There are two situations
as follows.

Situation 1. If no batch in BT2 is allocated to M1i (i.e., zij = 0), initially, there are η(i) batches
in Λi. At this time, the running time of Statements 2 and 7 can be treated as a constant since ξi
+ ∑s

j=1 bij ≥ s × Θ should be held no matter which batches in Λi is selected based on Theorem 1.
Thus, the running time of performing Statements 6–11 is O(η(i)), leading to the worst-case running
time of the algorithm is O(η(i)).

Situation 2. If zij = 1 holds, initially, there are η(i)− 1 batches in Λi. Thus, the worst-case running
time of Statement 2) is O(η(i) − 1) = O(η(i)). By performing Statement 6–11, it needs to make a
selection for η(i) − 2 times. From the first time to the last time, the worst-case running time of the
selections by performing Statement 7) is O(η(i) − 2), O(η(i) − 3), . . . , O(1), respectively. Thus,
the worst-case running time of performing Statements 6–11 is O((η(i)−2+1)(η(i)−2)

2) = O((η(i))2).

From the above analysis, the computational complexity of this algorithm is O((η(i))2)
for the worst-case. Note that, to obtain a feasible solution, Statement 2 requires to choose
a batch such that ξi + bi1 ≥ Θ holds, while Statement 7 needs to choose a batch such that

Machines 2023, 11, 292 11 of 19

ξi + ∑s
j=1 bij ≥ s × Θ holds. It raises a question whether we can find such batches in

performing these two statements. The following result answers this question.

Theorem 4. Given a solution Λi from the ILP, Algorithm 1 can find a feasible schedule.

Proof. Given Λi obtained by solving the ILP, it follows from Constraint (9) that no matter
how the batches in Λi are sequenced, we have ξi + ∑

η(i)−1
j=1 bij ≥ (η(i) − 1) × Θ, i∈ Ng.

Hence, executing Statement 2 can find a batch in Λi as BHi1 to make inequality ξi + bi1 ≥ Θ
hold. Then, after Statements 3–5 are executed, we repeatedly execute Statements 6–10.
Assume that when we execute Statement 7 with s = k, 2 ≤ k ≤ η(i) − 1, there is no batch
in Λi to make ξi + ∑k

j=1 bij ≥ k × Θ satisfied. This implies that the size of every batch in

the current Λi is less than Θ due to that ξi + ∑k−1
j=1 bij ≥ (k − 1) × Θ holds. Moreover, no

matter how we sequence the remaining batches in the current Λi, we ξi + ∑d
j=1 bij < d × Θ,

k ≤ d ≤ η(i) − 1 must hold, which contradicts the inequality ξi + ∑
η(i)−1
j=1 bij ≥ (η(i) − 1)

× Θ, i∈Ng. Thus, there is no problem for executing Statement 7) in Algorithm 1 and the
theorem holds. �

It follows from Theorem 2 and the above discussion that, by the ILP and Algorithm 1
together, we can obtain a schedule such that the production rate of M1i is no less than 1

gβ at

any time and the total production rate of Stage 1 is no less than 1
β at any time in (0, Tmin].

Hence, according to Lemma 1, Stage 2 can operate uninterruptedly in (0, Tmin].
Note that the ILP together with Algorithm 1 forms a two-step solution method.

Figure 4 demonstrates how the two-step solution method is applied to solve a real problem.
Specifically, given the batches to be produced, they are partitioned into two parts (i.e., BT1
and BT2) at first. Then, the developed ILP is used to assign the batches to the machines at
Stage 1. At last, Algorithm 1 is responsible for sequencing the batches for each machine
at Stage 1. In this way, an optimal and feasible schedule is obtained such that Stage 2 can
operate uninterruptedly.

Machines 2023, 11, x FOR PEER REVIEW 12 of 20

Figure 4. The flowchart of the proposed two-step solution method.

Remark 1. In this work, for the addressed AGMS, we first analyze the properties of the system

and establish the existence condition of feasible solutions by presenting Theorems 1–3. Then, based

on the conditions, we develop a two-step solution approach that is implemented by the ILP and

Algorithm 1 together. Notice that the problem may be solved in an integrated way by using math-

ematical programming without establishing the solution existence conditions. However, by doing

so, many more binary variables are introduced into the model, resulting in greater difficulty in

finding a solution. Thus, by the proposed two-step approach, we greatly reduce the computational

burden such that we can find a solution even for large-size application problems, which is demon-

strated by the experimental results given in the next section.

5. Experimental Results

This section uses a real-life AGMS from a company in China as a case problem for

validation. As previously described, this AGMS contains five processing steps with the

first step and Steps 2–5 forming Stages 1 and 2, respectively; and Stage 2 is the bottleneck

and cannot be interrupted. In the experiments, without loss of generality, we just treat

Step 2 as the second stage.

For this AGMS, three and five machines are configured for Steps 1 and 2 (g = 3 and h

= 5), respectively. It takes 30 s ( = 30 s) for machine M1i, i  ℕ3, to complete a product at

Figure 4. The flowchart of the proposed two-step solution method.

Machines 2023, 11, 292 12 of 19

Remark 1. In this work, for the addressed AGMS, we first analyze the properties of the system and
establish the existence condition of feasible solutions by presenting Theorems 1–3. Then, based on the
conditions, we develop a two-step solution approach that is implemented by the ILP and Algorithm
1 together. Notice that the problem may be solved in an integrated way by using mathematical
programming without establishing the solution existence conditions. However, by doing so, many
more binary variables are introduced into the model, resulting in greater difficulty in finding a
solution. Thus, by the proposed two-step approach, we greatly reduce the computational burden
such that we can find a solution even for large-size application problems, which is demonstrated by
the experimental results given in the next section.

5. Experimental Results

This section uses a real-life AGMS from a company in China as a case problem for
validation. As previously described, this AGMS contains five processing steps with the first
step and Steps 2–5 forming Stages 1 and 2, respectively; and Stage 2 is the bottleneck and
cannot be interrupted. In the experiments, without loss of generality, we just treat Step 2 as
the second stage.

For this AGMS, three and five machines are configured for Steps 1 and 2 (g = 3 and
h = 5), respectively. It takes 30 s (α = 30 s) for machine M1i, i ∈ N3, to complete a product at
Step 1, while it takes 55 s (µ = 55 s) for machine M2i, i ∈ N5, to complete a product at Step 2.
It takes 1800 s (δ = 1800 s) to complete setup for M1i, i ∈ N3, while it does not need setup
for Step 2. Hence, we obtain α

g = 10 s < β = 11 s and Θ = δ
g×β−α = 600. Usually, during a

scheduling horizon, we have no more than 100 batches for producing and the batch size
falls in the interval [50, 1150]. For this case problem, we also have the following property.
Let Ω denote the batch size for an arbitrary batch. Then, we have Ω mod 5 = 0 or Ω mod
10 = 0. With batch size in [50, 1150], batches whose size is less than 600 exist for producing.
Then, according to the above parameters, numerical experiments are performed and results
are presented to validate the proposed approach.

In the experiments, we use CPLEX to solve the ILP presented in this paper on a laptop
with twelve Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz. The time taken for finding
a solution depends on how many batches to be scheduled. When we need to schedule
a small number of batches, we can obtain an optimal solution by an exact solution way.
However, if there are a large number of batches to schedule, an exact solution method is
not efficient and often impossible to find an optimal solution in a given limited time. Let ζ
be the number of batches for the AGMS to produce. Given a ζ in [11, 30], we use CPLEX to
solve 30 cases and we randomly generate the batch size in [50, 1150] for each case. In total,
we generate 600 cases to test the developed ILP.

By experiments, for the cases with ζ ∈ [11, 24], optimal solutions can be obtained by
the developed ILP for all the cases within 3600 s, while for the cases with ζ ∈ [25, 30], within
3600 s, only parts of these cases can be solved such that optimal solutions are obtained.
Experimental results for problems with ζ ∈ [11, 24] and ζ ∈ [25, 30] are summarized in
Tables 1 and 2, respectively. Note that Numsolved and Numunsolved represent the number of
cases that the ILP can and cannot solve within 3600 s, respectively. For the unsolved cases
with ζ ∈ [25, 30] as shown in Table 2, CPLEX can obtain a solution with a gap between the
obtained solution and the lower bound of an optimal one. Such results are summarized in
Table 3. From Table 3, we can observe that the gaps are less than 1.5%, implying that CPLEX
can obtain very good solutions if optimal solutions cannot be obtained within 3600 s.

Machines 2023, 11, 292 13 of 19

Table 1. Experimental results for cases with ζ ∈ [11, 24].

ζ
ILP

Ave. Running Time (s) Numsolved

11 0.15 30

12 0.19 30

13 0.35 30

14 0.17 30

15 0.20 30

16 1.15 30

17 0.58 30

18 0.90 30

19 22.73 30

20 4.64 30

21 7.02 30

22 122.98 30

23 224.28 30

24 118.15 30

Table 2. Experimental results for problems with ζ ∈ [25, 30].

ζ
ILP

Numsolved Ave. Running Time (s) Numunsolved Running Time (s)

25 27 366.66 3 3600

26 19 298.31 11 3600

27 23 356.15 7 3600

28 15 124.76 15 3600

29 18 257.70 12 3600

30 18 98.07 12 3600

Table 3. Gaps between current solutions and lower bounds of optimal solutions.

ζ
ILP

Numunsolved Average Gap Maximum Gap

25 3 1.17% 1.7789%

26 11 1.019% 2.2558%

27 7 0.0094% 0.1115%

28 15 0.8524% 5.2856%

29 12 0.3864% 2.6207%

30 12 0.0083% 0.0106%

For much larger size cases (i.e., ζ > 30), to save time in the experiments, we set a
condition to terminate the running of CPLEX as follows by observing the gap between
the current solution and a lower bound of an optimal solution. The running of CPLEX
terminates if such a gap is less than 1% or this gap cannot be achieved within 3600 s. In
this way, we test the proposed approach as follows. Given a ζ > 30, 30 experiments (i.e.,
30 cases) are carried out for the ILP. In the experiments, we limit the batches to be produced

Machines 2023, 11, 292 14 of 19

being no more than 110 that it is less than 100 in practice. Thus, a total of 2400 cases are
generated to test the proposed method.

In the experiments, when a case cannot be solved within 3600 s even for achieving a
gap of 1%, a gap between the current solution and the lower bound of an optimal one can
be obtained when CPLEX terminates according to the termination condition. Thus, given a
ζ, 30 gaps for 30 randomly generated cases can be obtained so as to obtain a boxplot for
each ζ ∈ [31, 110]. In this way, in total, we have 80 boxplots for different situations with
different ζ ∈ [31, 110] and they are shown in Figure 5. From the boxplots, we can intuitively
know the central location and dispersion range of the gaps for each situation, and if the
gaps obtained by the ILP for different situations are stable, i.e., check if the ILP can obtain
good solutions for different situations stably.

Machines 2023, 11, x FOR PEER REVIEW 15 of 20

Figure 5. The boxplots for all values of   [31, 110].

To understand the reason behind the data analysis results, we also try to analyze the

ILP. For real application problems from an AGMS in China, the size of the ILP is directly

affected by the number of batches to be produced since the number of machines at Step 1

is determined. Then, by adjusting the number of batches in BT1 and BT2, the changes of

the number of variables and constraints of the ILP are shown in Figures 6 and 7, respec-

tively. From Figures 6 and 7, we can observe that the number of variables and constraints

are linear with the number of batches for producing. This means that for real application

problems, as the number of batches increases, the number of variables or constraints in-

creases linearly rather than exponentially. This leads to the fact that even if the size of the

problems increases, the ILP is still applicable for obtaining good solutions.

Figure 6. The number of variables of the developed ILP for different cases.

Figure 5. The boxplots for all values of ζ ∈ [31, 110].

It follows from the boxplots that for 91.25% of (or 73) situations (boxplots), the median
number is no more than 0.5%. For the rest of the seven situations, the median number is
just a little larger than 0.5%. This means that for each situation, the median number of gaps
is relatively small. Further, from Figure 5, we can intuitively know that most of the gaps
for each situation are no more than 1%. Meanwhile, by observing the shapes of boxplots,
the gaps obtained by the ILP are quite small and stable for different situations. Further,
we observe that it can solve 96.83% of the cases by the ILP for a gap of 1% within 3600 s,
while only 3.17% of the cases (i.e., 76 cases) cannot be solved. For these unsolved cases,
we have that the average gap of these cases is 2.1827% and the maximum gap is 4.9416%.
Therefore, based on the data analysis for the much larger size problems, good solutions for
different situations can be obtained by CPLEX within a reasonable time, i.e., the established
approach is efficient and effective in terms of practical applications.

To understand the reason behind the data analysis results, we also try to analyze the
ILP. For real application problems from an AGMS in China, the size of the ILP is directly
affected by the number of batches to be produced since the number of machines at Step 1 is
determined. Then, by adjusting the number of batches in BT1 and BT2, the changes of the
number of variables and constraints of the ILP are shown in Figures 6 and 7, respectively.
From Figures 6 and 7, we can observe that the number of variables and constraints are linear
with the number of batches for producing. This means that for real application problems,
as the number of batches increases, the number of variables or constraints increases linearly
rather than exponentially. This leads to the fact that even if the size of the problems
increases, the ILP is still applicable for obtaining good solutions.

Machines 2023, 11, 292 15 of 19

Machines 2023, 11, x FOR PEER REVIEW 15 of 20

Figure 5. The boxplots for all values of   [31, 110].

To understand the reason behind the data analysis results, we also try to analyze the

ILP. For real application problems from an AGMS in China, the size of the ILP is directly

affected by the number of batches to be produced since the number of machines at Step 1

is determined. Then, by adjusting the number of batches in BT1 and BT2, the changes of

the number of variables and constraints of the ILP are shown in Figures 6 and 7, respec-

tively. From Figures 6 and 7, we can observe that the number of variables and constraints

are linear with the number of batches for producing. This means that for real application

problems, as the number of batches increases, the number of variables or constraints in-

creases linearly rather than exponentially. This leads to the fact that even if the size of the

problems increases, the ILP is still applicable for obtaining good solutions.

Figure 6. The number of variables of the developed ILP for different cases. Figure 6. The number of variables of the developed ILP for different cases.

Machines 2023, 11, x FOR PEER REVIEW 16 of 20

Figure 7. The number of constraints of the developed ILP for different cases.

As we have emphasized in the Introduction, if the problem is formulated by a math-

ematical programming model without the established feasibility conditions, we need to

identify all the products for sequencing instead of just identifying the batches, leading to

a huge number of binary variables being necessary to form the model. However, by the

proposed two-step solution method, to formulate the ILP, we need to identify and allocate

the batches only so that there are much fewer binary variables and constraints. Hence, the

computational complexity for solving the problem is greatly reduced. Moreover, by Al-

gorithm 1, we can efficiently sequence the batches for producing by a machine. This is

why the proposed method can find good solutions within a reasonable time.

In practice, often a mid-term schedule is generated for an AGMS and this is hierar-

chically carried out in a two-step way, as follows:

(1) At the first step, according to the customer orders, a relatively rough schedule is de-

veloped for a relatively long-time horizon that typically lasts for a month. This sched-

uling horizon is divided into several uniform slots with each slot lasting for 5–7 days.

Then, with the capacity of the AGMS considered, this schedule determines the

batches to be produced in each time slot by using simple heuristic algorithms, such

that the batches can be produced by the due date.

(2) At the second step, detailed schedules are generated to realize the rough schedule for

each time slot. Such detailed schedules are also called short-term schedules. For each

detailed schedule, it needs to schedule all the activities in an AGMS just as performed

in this paper such that the process constraints are satisfied and the productivity of

the system is maximized to optimize the profit.

In this way, a mid-term schedule is formed by the rough schedule and the detailed

schedules together. Such a mid-term schedule is repeatedly updated to govern the opera-

tion of an AGMS and this is the routine work for an AGMS. It can be seen from the devel-

opment of the scheduling method presented in this paper, it is not an easy job to generate

a detailed schedule for an AGMS. However, in practice, currently this job is done manu-

ally by the production engineers. This is a great burden for such an engineer. Moreover,

it is very hard to manually generate a detailed schedule to satisfy process constraints and

optimize productivity. The proposed approach in this paper provides an effective way to

solve this problem.

6. Conclusions

It is well known that auto models are greatly diversified, leading to a great number

of glass products for autos such that automotive glass manufacturing becomes an im-

portant part of the automotive industry. An AGMS can be treated as a two-stage flow-

Figure 7. The number of constraints of the developed ILP for different cases.

As we have emphasized in the Introduction, if the problem is formulated by a math-
ematical programming model without the established feasibility conditions, we need to
identify all the products for sequencing instead of just identifying the batches, leading to
a huge number of binary variables being necessary to form the model. However, by the
proposed two-step solution method, to formulate the ILP, we need to identify and allocate
the batches only so that there are much fewer binary variables and constraints. Hence,
the computational complexity for solving the problem is greatly reduced. Moreover, by
Algorithm 1, we can efficiently sequence the batches for producing by a machine. This is
why the proposed method can find good solutions within a reasonable time.

In practice, often a mid-term schedule is generated for an AGMS and this is hierarchi-
cally carried out in a two-step way, as follows:

(1) At the first step, according to the customer orders, a relatively rough schedule is
developed for a relatively long-time horizon that typically lasts for a month. This
scheduling horizon is divided into several uniform slots with each slot lasting for
5–7 days. Then, with the capacity of the AGMS considered, this schedule determines
the batches to be produced in each time slot by using simple heuristic algorithms,
such that the batches can be produced by the due date.

Machines 2023, 11, 292 16 of 19

(2) At the second step, detailed schedules are generated to realize the rough schedule for
each time slot. Such detailed schedules are also called short-term schedules. For each
detailed schedule, it needs to schedule all the activities in an AGMS just as performed
in this paper such that the process constraints are satisfied and the productivity of the
system is maximized to optimize the profit.

In this way, a mid-term schedule is formed by the rough schedule and the detailed
schedules together. Such a mid-term schedule is repeatedly updated to govern the operation
of an AGMS and this is the routine work for an AGMS. It can be seen from the development
of the scheduling method presented in this paper, it is not an easy job to generate a detailed
schedule for an AGMS. However, in practice, currently this job is done manually by the
production engineers. This is a great burden for such an engineer. Moreover, it is very
hard to manually generate a detailed schedule to satisfy process constraints and optimize
productivity. The proposed approach in this paper provides an effective way to solve
this problem.

6. Conclusions

It is well known that auto models are greatly diversified, leading to a great number of
glass products for autos such that automotive glass manufacturing becomes an important
part of the automotive industry. An AGMS can be treated as a two-stage flow-shop. In an
AGMS, there are strict process constraints: (1) setup with significant time is necessary for
the machines at Stage 1; and (2) the machines at the second stage cannot be interrupted.
Furthermore, an AGMS operates in customization mode such that there are frequent
changeovers for producing different product types. These properties make the scheduling
problem of AGMS very challenging. This work investigates this challenging problem
by establishing feasible schedule existence conditions. With the conditions, a two-step
approach is developed to solve the problem. At the first step, an ILP model is built to
allocate the batches to machines at Stage 1. Then, a simple algorithm is given to sequence
the batches for each machine. Thanks to the conditions, the size of the ILP is significantly
reduced such that good solutions can be obtained in a reasonable time even for large
application problems. Extensive experiments are also used to demonstrate the efficiency
and effectiveness of the developed approach. For small-size problems, with the number
of batches being no more than 24, by CPLEX, ILP can find optimal solutions within 3600
s. For problems with larger sizes, it fails to obtain optimal solutions for all cases within
3600 s. Nevertheless, we set 3600 s as the longest time for obtaining a solution and a gap
of 1% for the lower bound of solutions. Then, results show that CPLEX can solve 96.83%
cases. Moreover, we can obtain good solutions with the maximum gap 4.9416% for the
unsolved cases.

Work in process has important effects on the cost for an AGMS. Hence, it is meaningful
to minimize the temporary inventory between the stages. However, we do not take this
factor into consideration. In the future, we aim to extend the proposed approach by
considering this factor.

Author Contributions: Conceptualization, Y.Q. and N.W.; methodology, Y.Q. and Z.L.; software,
Y.Q.; validation, A.-A.E.-T., H.K.; formal analysis, Y.Q.; investigation, N.W. and H.K.; resources, N.W.;
writing—original draft preparation, Y.Q.; writing—review and editing, N.W., Z.L. and A.M.A.-A.;
supervision, N.W.; funding acquisition, A.M.A.-A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Plan for Science, Technology and Innovation
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, under
Grant 2-17-01-001-0008.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Machines 2023, 11, 292 17 of 19

Nomenclature

Abbreviations:
AGMS Automotive glass manufacturing system
BT1 Batch Type 1
BT2 Batch Type 2
ILP Integer linear program
PVB Polyvinyl Butyral
TMFS Two-machine flow shop
TSFS Two-stage flow-shop
TSFFS Two-stage flexible flow-shop
Notation:
BHij The j-th processed batch at M1i
bij Batch size of the j-th batch (i.e., BHij) to be processed at M1i
f 1(x) = a × x/(b × x + c), a > 0, b > 0, and c > 0
f 2(x) = x/(α × x + u × δ)
g The number of machines at Stage 1
h The number of machines at Stage 2
M1i The i-th machine at Stage 1
M2j The j-th machine at Stage 2
m The number of batches in BT2 whose batch size is smaller than Θ

Nk = {1, 2, . . . , k}
Numsolved The number of cases that ILP can solve within 3600 s
Numunsolved The number of cases that ILP cannot solve within 3600 s
Oi (≥ Θ) The size of the i-th batch in BT1
Tij Time point when BHij has just been completed at M1i
Tmin = min(Tiη (i)| i∈Ng)
α Time units to complete a product by a machine at Stage 1
β = µ/h
δ Setup time for a machine at Stage 1
Θ = δ/(gβ − α)
η(i) The number of processed batches at M1i

Λi
Set of batches assigned to M1i obtained by solving an ILP except the one belonging
to BT2 with zij = 1

µ Processing time of a machine at Stage 2
ϑit Average productivity at M1i during time interval [0, t]
ζ The number of batches to be scheduled
Φj (< Θ) The size of the j-th batch in BT2
Variables in the developed ILP:
xij Binary variable, 1 if the j-th batch in BT1 is processed at M1i, zero otherwise
yij Binary variable, 1 if the j-th batch in BT2 is processed at M1i, zero otherwise

zij
Binary variable, 1 if the j-th batch with size Φj is processed at M1i at last,
zero otherwise

ξi
Integer variable representing the number of extra products to be processed at M1i
with their type being same as the one in BHi1

Γ Time needed to complete the processing of all batches at Stage 1

References
1. Gharbi, A.; Ladhari, T.; Msakni, M.K.; Serairi, M. The two-machine flow-shop scheduling problem with sequence-independent

setup times: New lower bounding strategies. Eur. J. Oper. Res. 2013, 231, 69–78. [CrossRef]
2. Lee, T.; Loong, Y. A review of scheduling problem and resolution methods in flexible flow shop. Int. J. Ind. Eng. Comput. 2019,

10, 67–88. [CrossRef]
3. Zhao, Z.; Zhou, M.; Liu, S. Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial. IEEE Trans. Autom. Sci.

Eng. 2022, 19, 1941–1959. [CrossRef]
4. Vasilis, S.; Nikos, N.; Kosmas, A.; Dimitris, M. A toolbox of agents for scheduling the paint shop in bicycle industry. Procedia

CIRP 2022, 107, 1156–1161. [CrossRef]
5. Rooeinfar, R.; Raissi, S.; Ghezavati, V. Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval

preventive maintenance: A hybrid approach of simulation and metaheuristic algorithms. Simulation 2019, 95, 509–528. [CrossRef]

http://doi.org/10.1016/j.ejor.2013.05.031
http://doi.org/10.5267/j.ijiec.2018.4.001
http://doi.org/10.1109/TASE.2021.3062994
http://doi.org/10.1016/j.procir.2022.05.124
http://doi.org/10.1177/0037549718809542

Machines 2023, 11, 292 18 of 19

6. Li, J.; Bai, S.; Duan, P.; Sang, H.; Han, Y.; Zheng, Z. An improved artificial bee colony algorithm for addressing distributed flow
shop with distance coefficient in a prefabricated system. Int. J. Prod. Res. 2019, 57, 6922–6942. [CrossRef]

7. Missaoui, A.; Ruiz, R. A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times
and due date windows. Eur. J. Oper. Res. 2022, 303, 99–113. [CrossRef]

8. Fattahi, P.; Hosseini, S.M.H.; Jolai, F. A mathematical model and extension algorithm for assembly flexible flow shop scheduling
problem. Int. J. Adv. Manuf. Technol. 2013, 65, 787–802. [CrossRef]

9. Umam, M.S.; Mustafid, M.; Suryono, S. A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop
scheduling problem. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7459–7467. [CrossRef]

10. Lalas, C.; Mourtzis, D.; Papakostas, N.; Chryssolouris, G. A Simulation-Based Hybrid Backwards Scheduling Framework for
Manufacturing Systems. Int. J. Comput. Integr. Manuf. 2006, 19, 762–774. [CrossRef]

11. Papakostas, N.; Chryssolouris, G. A Scheduling Policy for Improving Tardiness Performance. Asian Int. J. Sci. Technol. 2009,
2, 79–89.

12. Miyata, H.H.; Nagano, M.S. The blocking flow shop scheduling problem: A comprehensive and conceptual review. Expert Syst.
Appl. 2019, 137, 130–156. [CrossRef]

13. Tosun, Ö.; Marichelvam, M.K.; Tosun, N. A literature review on hybrid flow shop scheduling. Int. J. Adv. Oper. Manag. 2020, 12,
156–194. [CrossRef]

14. Mirabi, M.; Fatemi Ghomi, S.M.T.; Jolai, F. A two-stage hybrid flowshop scheduling problem in machine breakdown condition.
J. Intell. Manuf. 2013, 24, 193–199. [CrossRef]

15. Gupta, D.; Goel, S.; Mangla, N. Optimization of production scheduling in two stage flow shop scheduling problem with m
equipotential machines at first stage. Int. J. Syst. Assur. Eng. Manag. 2021, 13, 1162–1169. [CrossRef]

16. Chen, Z.; Zheng, X.; Zhou, S.C.; Liu, C.; Chen, H.P. Quantum-inspired ant colony optimization algorithm for a two-stage
permutation flow shop with batch processing machines. Int. J. Prod. Res. 2019, 58, 5945–5963. [CrossRef]

17. Zheng, X.; Zhou, S.C.; Xu, R.; Chen, H.P. Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant
colony optimization algorithm. Int. J. Prod. Res. 2019, 58, 4103–4120. [CrossRef]

18. Dong, J.; Pan, H.; Ye, C.; Tong, W.; Hu, J. No-wait two-stage flowshop problem with multi-task flexibility of the first machine.
Inf. Sci. 2021, 544, 25–38. [CrossRef]

19. Jemmali, M.; Hidri, L.; Alourani, A. Two-stage hybrid flowshop scheduling problem with independent setup times. Int. J. Simul.
Model. 2022, 21, 5–16. [CrossRef]

20. Lei, D.M.; Xi, B.J. Diversified teaching-learning-based optimization for fuzzy two-stage hybrid flow shop scheduling with setup
time. J. Intell. Fuzzy Syst. 2021, 41, 4159–4173. [CrossRef]

21. Gerpott, F.T.; Lang, S.; Reggelin, T.; Zadek, H.; Chaopaisarn, P.; Ramingwong, S. Integration of the A2C algorithm for production
scheduling in a two-stage hybrid flow shop environment. Procedia Comput. Sci. 2022, 200, 585–594. [CrossRef]

22. Han, J.-H.; Lee, J.-Y. Heuristics for a two-stage assembly-type flow shop with limited waiting time constraints. Appl. Sci.-Basel
2021, 11, 11240. [CrossRef]

23. Pourhejazy, P.; Cheng, C.Y.; Ying, K.C.; Nam, N.H. Meta-Lamarckian-based iterated greedy for optimizing distributed two-stage
assembly flowshops with mixed setups. Ann. Oper. Res. 2022. [CrossRef]

24. Talens, C.; Fernandez-Viagas, V.; Perez-Gonzalez, P.; Framinan, J.M. New efficient constructive heuristics for the two-stage
multi-machine assembly scheduling problem. Comput. Ind. Eng. 2020, 140, 106223. [CrossRef]

25. Zhang, Z.; Tang, Q. Integrating flexible preventive maintenance activities into two-stage assembly flow shop scheduling with
multiple assembly machines. Comput. Ind. Eng. 2021, 159, 107493. [CrossRef]

26. An, Y.J.; Kim, Y.D.; Choi, S.W. Minimizing makespan in a two-machine flowshop with a limited waiting time constraint and
sequence-dependent setup times. Comput. Oper. Res. 2016, 71, 127–136. [CrossRef]

27. Kalczynski, P.J.; Kamburowski, J. An empirical analysis of heuristics for sovling the two-machine flow shop problem with release
times. Comput. Oper. Res. 2012, 39, 2659–2665. [CrossRef]

28. Liu, P.; Lu, X. A best possible on-line algorithm for two-machine flow shop scheduling to minimize makespan. Comput. Oper. Res.
2014, 51, 251–256. [CrossRef]

29. Agrebi, I.; Jemmali, M.; Alquhayz, H.; Ladhari, T. Metaheuristic algorithms for the two-machine flowshop scheduling problem
with release dates and blocking constraint. J. Chin. Inst. Eng. 2021, 44, 573–582. [CrossRef]

30. Schaller, J.; Valente, J. Branch-and-bound algorithms for minimizing total earliness and tardiness in a two-machine permutation
flow shop with unforced idle allowed. Comput. Oper. Res. 2019, 109, 1–11. [CrossRef]

31. Bank, M.; Fatemi Ghomi, S.M.T.; Jolai, F.; Behnamian, J. Two-machine flow shop total tardiness scheduling problem with
deteriorating jobs. Appl. Math. Model. 2012, 36, 5418–5426. [CrossRef]

32. Cheng, M.; Tadikamalla, P.R.; Shang, J.; Zhang, S. Bicriteria hierarchical optimization of two-machine flow shop scheduling
problem with time-dependent deteriorating jobs. Eur. J. Oper. Res. 2014, 234, 650–657. [CrossRef]

33. Qiao, Y.; Wu, N.Q.; He, Y.F.; Li, Z.W.; Chen, T. Adaptive genetic algorithm for two-stage hybrid flow-shop scheduling with
sequence-independent setup time and no-interruption requirement. Expert Syst. Appl. 2022, 208, 1–13. [CrossRef]

34. Fridman, I.; Pesch, E.; Shafransky, Y. Minimizing maximum cost for a single machine under uncertainty of processing times. Eur.
J. Oper. Res. 2020, 286, 444–457. [CrossRef]

http://doi.org/10.1080/00207543.2019.1571687
http://doi.org/10.1016/j.ejor.2022.02.019
http://doi.org/10.1007/s00170-012-4217-x
http://doi.org/10.1016/j.jksuci.2021.08.025
http://doi.org/10.1080/09511920600678827
http://doi.org/10.1016/j.eswa.2019.06.069
http://doi.org/10.1504/IJAOM.2020.108263
http://doi.org/10.1007/s10845-011-0553-1
http://doi.org/10.1007/s13198-021-01411-5
http://doi.org/10.1080/00207543.2019.1661535
http://doi.org/10.1080/00207543.2019.1642529
http://doi.org/10.1016/j.ins.2020.06.052
http://doi.org/10.2507/IJSIMM21-1-577
http://doi.org/10.3233/JIFS-210764
http://doi.org/10.1016/j.procs.2022.01.256
http://doi.org/10.3390/app112311240
http://doi.org/10.1007/s10479-022-04537-2
http://doi.org/10.1016/j.cie.2019.106223
http://doi.org/10.1016/j.cie.2021.107493
http://doi.org/10.1016/j.cor.2016.01.017
http://doi.org/10.1016/j.cor.2012.01.011
http://doi.org/10.1016/j.cor.2014.06.014
http://doi.org/10.1080/02533839.2021.1933600
http://doi.org/10.1016/j.cor.2019.04.017
http://doi.org/10.1016/j.apm.2011.12.010
http://doi.org/10.1016/j.ejor.2013.09.033
http://doi.org/10.1016/j.eswa.2022.118068
http://doi.org/10.1016/j.ejor.2020.03.052

Machines 2023, 11, 292 19 of 19

35. Ghaleb, M.; Taghipour, S.; Sharifi, M.; Zolfagharinia, H. Integrated production and maintenance scheduling for a single degrading
machine with deterioration-based failures. Comput. Ind. Eng. 2020, 143, 106432. [CrossRef]

36. Goldengorin, B.; Romanuke, V. Online heuristic for the preemptive single machine scheduling problem to minimize the total
weighted tardiness. Comput. Ind. Eng. 2021, 155, 107090. [CrossRef]

37. Luo, W.C.; Xu, Y.; Tong, W.T.; Lin, G.H. Single-machine scheduling with job-dependent machine deterioration. J. Sched. 2019, 22,
691–707. [CrossRef]

38. Mor, B.; Mosheiov, G. Minmax due-date assignment on a two-machine flowshop. Ann. Oper. Res. 2021, 305, 191–209. [CrossRef]
39. Perez-Gonzalez, P.; Framinan, J.M. Single machine interfering jobs problem with flowtime objective. J. Intell. Manuf. 2018, 29,

953–972. [CrossRef]
40. Wan, L.; Yuan, J. Single-machine scheduling with operator non-availability to minimize total weighted completion time. Inf. Sci.

2018, 445–446, 1–5. [CrossRef]
41. Telles, E.S.; Lacerda, D.P.; Morandi, M.I.W.; Piran, F.A.S. Drum-buffer-rope in an engineering-to-order system: An analysis of an

aerospace manufacturer using data envelopment analysis (DEA). Int. J. Prod. Econ. 2020, 222, 107500. [CrossRef]
42. Telles, E.S.; Lacerda, D.P.; Morandi, M.I.W.; Ellwanger, R.; Souza, F.B.; Piran, F.S. Drum-Buffer-Rope in an engineering-to-order

productive system: A case study in a Brazilian aerospace company. J. Manuf. Technol. Manag. 2022, 33, 1190–1209. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cie.2020.106432
http://doi.org/10.1016/j.cie.2020.107090
http://doi.org/10.1007/s10951-019-00622-w
http://doi.org/10.1007/s10479-021-04212-y
http://doi.org/10.1007/s10845-015-1141-6
http://doi.org/10.1016/j.ins.2018.03.005
http://doi.org/10.1016/j.ijpe.2019.09.021
http://doi.org/10.1108/JMTM-10-2021-0420

	Introduction
	Literature Review
	Scheduling Analysis
	System Description
	Properties of the System

	Two-Step Solution Method
	Formulating the ILP
	Batch Sequencing for Machines at Stage 1

	Experimental Results
	Conclusions
	References

