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Abstract: When the wind direction changes, rotating the sail to keep it at the optimal angle of attack
can effectively utilize offshore wind resources to improve the ship’s energy efficiency. The hydraulic
system usually drives the slewing of the sail onboard. The functioning, as well as the safety of
hydraulic system will be directly affected in case of leakage failure occurs. Therefore, the leakage fault
diagnosis is essential to improve the sail-assisted effect as well as the reliability of the sail slewing
system. In this paper, a novel wavelet packet transform (WPT)–fuzzy pattern recognition (FPR) based
leakage fault diagnosis method is proposed. In order to analyze the different leakage fault features
of the hydraulic system, a simulation model is established, and its effectiveness is verified by the
hydraulic testbed. Then, the sensitive feature of flow and pressure signal for different leakage faults
is extracted by a WPT-based method. On this basis, an FPR-based leakage fault diagnosis method
is proposed. The diagnosis results show that the proposed method has an accuracy of 94% for nine
leakage fault modes. This work contributes to realizing the greenization of the shipping industry by
improving the utilization rate of offshore wind resources.

Keywords: sail-assisted technology; slewing hydraulic system; leakage fault diagnosis; wavelet
packet transform; fuzzy pattern recognition

1. Introduction

As one of the critical ways for global trade, maritime transportation accounts for 80%
of the global trade volume [1] but also emits many pollutants. The International Maritime
Organization (IMO) has made further restrictions on the emissions of ships [2–4]. At least
40% carbon emission intensity of ships should be reduced by 2030, and make efforts to
reduce 70% compared with the level in 2008 [5]. The shipping industry is currently facing
the challenges of increasingly stringent environmental protection regulations [6]. One of
the effective means of response is the use of green and clean energy.

IMO Marine Environmental Protection Commission (MEPC) proposed that wind energy
is a green energy source, and the use of wind energy to assist the thrust of ships can effectively
reduce ship energy consumption [7,8]. Sail-assisted navigation is the main form of wind
energy utilization on ships [9,10]. In order to ensure the best thrust effect, the sail should
keep at an optimal rotation position as the wind direction changes. The rotation of the sail is
usually driven by a hydraulic system. Leakage is the most common failure in the hydraulic
system [11,12]. The leakage failure is usually concealed and complicated. Therefore, the
maintenance cost of equipment can be reduced, and the reliability of the system can be
improved by a high-accuracy diagnosis method for the sail slewing hydraulic system [13,14].

Research on the diagnosis of hydraulics has been conducted by many scholars, and
many methods were proposed [15–17], such as model diagnosis method and data-based
diagnostic method [18]. The model-based fault diagnosis method is to build a highly
accurate simulation model based on the mechanism of the diagnostic object to perform
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the cause of the fault analysis [19]. This diagnostic method has high requirements for
the accuracy of the model. Kumar et al. [20] analyzed the state of failure by constructing
a dynamic model of the hydraulic column plunger pump to monitor the health of the
device. Nie et al. [21] analyzed the loss of internal leakage by establishing a fluid power
model of friction in the plunger pump. These studies have promoted the possibility of
the model diagnosis method in practical applications, but the model established by these
scholars is aimed at a single device and is not suitable for large mechanical systems.

The working status of the device is reflected by extracting the hidden features of the
data through the intelligent algorithm in data-based diagnosis method [22]. Zhu et al. [23]
established a Particle Swarm Optimization (PSO) based Convolutional Neural Network
(CNN) model and identified the faulty state of the hydraulic plunger pump by sound signals.
Jiang et al. [24] conducted time-frequency decomposition and de-noising of the original signal
to realize real-time fault diagnosis. Yafei et al. [25] decomposed vibration signals of piston
pumps by the Extreme-point Symmetric Mode Decomposition method (ESMD) to diagnose
internal wear faults. Vibration signal fault features of centrifugal pumps are extracted through
Continuous Wavelet Transform (CWT) by ALTobi et al. [26]. They trained the extracted feature
data by using the back-propagated Multi-Layer feedforward Perceptron-neural network
(MLP-BP), achieving high diagnostic performance. Muralidharan et al. [27] diagnosed five
different fault states of a centrifugal pump with SVM and Extreme Learning Machine (ELM)
by extracting features with different wavelet generating functions. A fault detection model is
established with FPR by Huo et al. [28] for equipment under harsh working conditions. The
real-time running state of equipment can be monitored.

With the progress of sensor technology, various sensors are installed on the ship. It’s
convenient to get the hydraulic system pressure and flow onboard [29]. The signal acquired
by the sensor needs to be decomposed in the time-frequency domain for analysis. As
a classical time-frequency analysis method, Empirical Mode Decomposition (EMD) can
decompose the original signal into multiple Intrinsic Mode Functions (IMF) for easy analysis
and processing. Kumar et al. [30] conducted EMD for bearing vibration signals. The original
multi-component signals are divided into multiple single-component signals IMF, and
the first three IMFs of bearings under different working conditions are extracted as the
input of the K-Nearest Neighbor (K-NN) classifier, finally achieving relatively excellent
diagnostic performance. Grover et al. [31] used the EMD method to preprocess the original
vibration data, extracted six types of statistical features, and proposed a fault diagnosis
method consisting of five stacked integrators. By comparing with traditional integrated
classifiers, the effectiveness of this method was proved. However, the EMD method has
the problem of mode mixing. In order to solve this problem, scholars have proposed
many improved methods, including Ensemble Empirical Mode Decomposition (EEMD) and
parameter adaptive Variational Mode decomposition (VMD). Shifat et al. [32] used EEMD
to decompose the collected motor vibration signals, selected IMF according to the similarity
index to facilitate fault frequency location, then used Principal Component Analysis (PCA)
technology to reduce the characteristic dimensions, and used KNN’s supervised machine
learning technology for classification. This method is feasible for early fault diagnosis.
Miao et al. [33] proposed an improved parameter adaptive VMD to design a new indicator of
integrated kurtosis by utilizing kurtosis and envelope spectrum kurtosis. By iterating, modes
with more fault information are selected as candidate modes for the final diagnosis decision,
and the residual signals after each decomposition are reconstructed through filtering. This
method is helpful in extracting weak fault information for compound fault diagnosis.
Xie et al. [34] proposed a multi-scale multi-layer perceptron (MSMLP) hybrid bearing fault
diagnosis method based on complementary integrated Empirical Mode decomposition
(CEEMD) in combination with the characteristics of large noise and small samples of
mechanical equipment data. CEEMD was used to decompose bearing vibration signals.
The IMF with the highest correlation is selected and finally input into the MSMLP model
for classification. Through comparison, it is found that this method has higher diagnostic
accuracy than other methods. Although these methods are of great significance for solving



Machines 2023, 11, 286 3 of 24

the problem of compound fault diagnosis, due to their weak noise suppression ability [35],
the results of direct decomposition are often difficult to reach the expected goal. Table 1
shows the analysis of different methods for fault diagnosis.

Table 1. Analysis of different methods for fault diagnosis.

Methods Target Device Fault Type Analytic Signal Effectiveness Reference

PSO-CNN Hydraulic
plunger pump

Swash plate wear, slipper
wear, spring fault Acoustical signal 99.76% [23] Zhu et al.

(2022)

EWT,1D-CNN Plunger pump
Swash plate wear, slipper

wear, spring fault,
slipper loose

Vibration signal,
Pressure signal 99.51% [24] Jiang et al.

(2021)

ESMD-RFs Axial plunger
pump Internal wear Vibration signal 97.14% [25] Yafei et al.

(2021)

CWT-MLP-BP Centrifugal pump Bearing misalignment,
imbalance, impeller loose Vibration signal 99.5% [26] ALTobi et al.

(2019)

FPR-FCM Rolling element
bearing

Inner ring fault, rotor fault,
outer ring fault Vibration signal 95% [28] Huo et al.

(2020)

EMD-KNN Rolling element
bearing Bearing fault Vibration signal 83.33% [30] Kumar et al.

(2022)
EMD-Bagging,
Random Forest,

Boosting, Voting,
Stacking

Rolling element
bearing

Inner ring fault,
outer ring fault Vibration signal 92.63% [31] Grover et al.

(2020)

EEMD-KNN Electric machine Electric machine
performance degradation Vibration signal 98% [32] Shifat et al.

(2020)

IPAVMD Bearing Inner ring fault,
outer ring fault Vibration signal Not

mentioned
[33] Miao et al.

(2019)

CEEMD-MSMLP Rolling element
bearing

Inner ring fault,
outer ring fault, roller fault,

bearing degradation
Vibration signal 99% [34] Xie et al.

(2022)

WPT-SVM Reversing valve,
hydraulic cylinder

Leakage in reversing valve
and hydraulic cylinder Pressure signal 97.5% [36] Ma et al.

(2022)

Studies mentioned above mainly focused on vibration and noise signals to perform
diagnosis analysis. Nevertheless, due to the harsh working environment and complex
system structure, as well as the alternating wind load, effective noise signals and vibration
signals for the sail slewing hydraulic system are hard to get. Therefore, the studies men-
tioned are not suitable for performing fault diagnosis for the sail slewing hydraulic system.
WPT is suitable for extracting and recognizing the feature of pressure and flow signals in
sail slewing hydraulic systems, as its high accuracy and strong time-frequency localization
decomposition ability. Ma et al. [36] decomposed the pressure signals in the hydraulic
lifting system by wavelet packet, extracted signal features such as wavelet packet entropy
and energy variance, and used the extracted features to train the SVM multi-classification
diagnosis model, achieving good diagnostic results and proving the effectiveness of fault
feature extraction by wavelet packet decomposition. In FPR, the membership function is
used as the measure of the sample and template, which can effectively reflect the overall
features of the pattern, and has a strong ability to eliminate interference, noise, or distor-
tion in the sample. Consequently, this paper proposed a WPT-FPR-based fault diagnosis
method to diagnose three critical equipment leakage with pressure and flow signal of the
sail slewing hydraulic system.

This paper has two contributions:

(1) An AMESim simulation model of sail slewing hydraulic testbed is established. The
comparison of pressure, rotation speed, as well as rotation angle between the simula-
tion model and testbed verified the effectiveness of the model. The established model
can effectively analyze the running states of the sail slewing hydraulic system.
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(2) A WPT-FPR-based method for leakage fault diagnosis of sail slewing hydraulic system
is proposed. Different leakage fault diagnosis of the reversing valve, speed regulating
valve, and the hydraulic motor is realized with high accuracy. It is of great significance
to improve the energy efficiency level of the sail-assisted ship as well as the reliability
of the sail slewing hydraulic system.

The remainder of this paper is organized as follows: Section 2 introduces the fault
diagnosis method, including the modeling of the sail slewing hydraulic system, the fault
feature extraction method, as well as FPR-based diagnosis method. Section 3 presents
a case study, including the model effectiveness verification, operation analysis, and leakage
fault feature of the sail slewing hydraulic system testbed. Section 4 discusses the fault
diagnosis results of 10 different fault modes and the limitations of the present work. Finally,
the conclusions and future work are given in Section 5.

2. Method

Figure 1 shows the process of the proposed method: First, an AMESim simulation
model is established, the rotation speed and angle of the sail slewing gear are measured
from a torque sensor, and the inlet pressure of the hydraulic motor is measured from
a pressure sensor of sail slewing testbed is used to verify the effectiveness of the model.
Then, different leakage conditions are set to simulate the leakage fault states.
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Figure 1. Process of the diagnosis method.

Secondly, the flow and pressure signals of reversing valve, speed regulation valve, and
hydraulic motor are decomposed by four-layer WPT to extract the leakage fault features,
and the fault feature set is established.

Then, the membership function and fuzzy set of different leakage modes are calculated,
and the fault diagnosis is performed by calculating the lattice closeness degree of the fault
test set based on FPR.
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Finally, a fault diagnosis case of a sail slewing hydraulic testbed shows the result of
the proposed method.

2.1. Modelling of the Sail Slewing Hydraulic System

A sail slewing hydraulic testbed was established according to the actual system of
a ship. The schematic diagram is shown in Figure 2. The slewing movement of the sail is
controlled by reversing valve, and the slewing speed of the sail is controlled by the speed
regulating valve.
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AMESim is a large simulation platform used for the simulation analysis of hydraulic
systems, through which the simulation of the hydraulic system can be carried out conve-
niently. Figure 3 shows the AMESim simulation model of the testbed. Flow and pressure
sensors are used to monitor the operating status of the hydraulic system. State performance
and different leakage faults can be simulated by adjusting the parameters of the model.
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2.2. Fault Feature Extraction Method

Lots of information are contained in the flow and pressure signals of the sail slewing
hydraulic system [37], and the components contained in these signals, such as the energy
of each frequency band, will change once a leakage fault occurs. Therefore, the sensitive
feature parameters of internal leakage can be extracted by decomposing the signal.

The decomposition algorithm of wavelet packet is
p2i−1

j (t) = ∑
k

H(k− 2t)pi
j−1(t)

p2i
j (t) = ∑

k
G(k− 2t)pi

j−1(t)
(1)

where, pi
j(t) is the ith wavelet packet node (j, i) on 2j decomposition scale, t = 1, 2, . . . , 2J−j;

i = 1, 2, . . . , 2j; J = log2N, H(t) and G(t) are low-pass and high-pass filter respectively.
The reconstruction algorithm can be expressed as:

pi
j(t) = 2

[
∑
k

H(t− 2k)p2i−1
j+1 (t) + ∑

k
G(t− 2k)p2i

j+1(t)

]
(2)

In addition, multi-resolution analysis can be achieved when scaling factors j change.
Daubechies wavelet (compactly supported set orthogonal wavelet) is the most used

wavelet basis function for wavelet analysis. The db4 and db6 wavelets have advantages for
the analysis of the high-frequency transient signal. Therefore, the db4 and db6 wavelets are
selected to process the flow and pressure signals of the sail slewing hydraulic system.

The decomposition layer is a certain division of the frequency range. The increase
in the number of decomposition layers helps to analyze the characteristic information
contained in high-frequency signals. However, with the increase in the number of decom-
position layers, the calculation amount of data also increases. The four-layer wavelet packet
decomposition can effectively extract the signal features reflecting internal leakage with
less calculation amount, which is suitable to sail slewing hydraulic systems. Four-layer
WPT is used to decompose the signals, as shown in Figure 4.
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After decomposition, the flow and pressure signal are reconstructed as follows,

S0,0 = S4,0 + S4,1 + S4,2 + S4,3 + S4,4 + . . . + S4,14 + S4,15 (3)

where S0,0 is the signal before decomposition, Si,j is the reconstructed signal of the (i,j) sub
band, i = 4, j = 0, 1, 2, . . . , 2i− 1. Quantized energy values are:

E(i,j) =
∫ T

0

∣∣∣S(i,j)(t)
∣∣∣2dt =

n

∑
k=0

∣∣∣x(j,k)

∣∣∣2 (4)
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where Ei,j is the energy corresponding to Si,j, k is the signal points in Si,j, (k = 0, 1, 2,..., n), xj,k
is each signal point’s amplitude, and T is signal acquisition time length. The quantization
value E of total wavelet packet energy is,

E =
2i−1

∑
j=0

Ei,j (5)

M =

[
Ei,0

E
,

Ei,1

E
,

Ei,2

E
, . . . ,

Ei,j

E

]
(6)

where M is the feature vector.
The energy entropy statistical analysis of the signal to be identified in all frequency

bands of the energy distribution, which is defined as:

WE = −
n

∑
i=1

Pi log Pi (7)

Pi =
Ei

n
∑

i=1
Ei

(8)

where WE is the energy entropy, Pi is ith sub-band percentage, Ei is the energy of ith sub-band.

2.3. FPR-Based Diagnosis Method

The information should be interpreted and classified after the fault features are ob-
tained. The target objects can be classified by constructing the membership function of the
fuzzy set in the FPR method. The membership function represents the fuzzy concept prop-
erty of the target fuzzy set and quantifies the fuzzy property to facilitate the mathematical
operation and analysis.

U is the set containing all objects to be identified. The interior of U can be divided
into n fuzzy mode A1, A2, . . . . . . An, every target object included in U contains p feature
indicators. The features of these indicators and targets are one-to-one correspondence.
When all the targets to be identified in U are represented in the form of fuzzy set B, target B
is divided into a category Ai with the highest degree of approximation in accordance with
the nearest principle.

Set A1, A2, . . . . . . An as n fuzzy mode, B is a fuzzy object, If ko ∈ {1, 2, . . . , n}
exists, that

N
(

B, Ak0

)
= max

1≤i≤n
{N(B, Ai)} (9)

It is believed that the fuzzy object B is a priority to the fuzzy mode Ai, of which N is
the proximity function. The degree of closeness represents the degree of approximation
between two fuzzy subsets. The higher the closeness, the more similar they are. Lattice
closeness is selected in this paper to calculate the closeness.

As for the fuzzy set, if X refers to the all-discussion objects within a certain range,
fuzzy set A on the domain X is a mapping of [0,1], that is,

µA : X → [0, 1] (10)

where µA(x) is the degree of membership of x to A when x belongs to X. The greater the
µA(x) is, the higher probability of x being classified as a fuzzy set A. The fuzzy set is usually
expressed as a vector:

A = (µA(x1), µA(x2), . . . , µA(xn)) (11)
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In order to express the vagueness as well as show the specific objective content
contained behind the evaluation index, the ambiguity of the selected fuzzy set needs to
be minimized. The minimum ambiguity method and triangular membership function is
selected in this paper to construct the membership function of the hydraulic system leaking
fault, as shown in Figure 5. The establishment method of triangular membership functions
is as follows.

A(x) =


0

(x− a)/(m− a)
(b− x)/(b−m)

0

i f
i f
i f
i f

x ≤ a
x ∈ (a, m]
x ∈ (m, b)

x ≥ b

(12)
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Based on the principle of minimum ambiguity, when the median number is taken,
the vagueness is the smallest, so a, b, and m are the signal energy entropy corresponding
to minimum leakage, maximum leakage, and medium digit number, respectively. The
membership function is obtained according to the different modes of leakage.

3. Case Study
3.1. Study Object

A sail slewing hydraulic system equipped on a large bulk carrier is selected as the
research object. According to the parameters of ship and sail, as well as the schematic
diagram of sail slewing hydraulic, a sail slewing hydraulic testbed is built at a ratio of 10:1,
as shown in Figure 6.
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The magnetic particle brake is used to simulate the loading of wind resistance moment.
The torque sensor, pressure sensor, and flow sensor are used to collect the operating
parameters of the system. Due to its compact structure and ease of installation, a CT60
turbine flowmeter is used to measure the flow rate of the testbed. It has a measuring flow
range of 3~60 L/min, a maximum working pressure of up to 42 MPa, and an accuracy
error of ±1% FS. A 520 series relative pressure transmitter is used to measure the inlet and
outlet pressure of the hydraulic motor. It has a pressure range of 0.25~60 MPa, a working
ambient temperature of −30~85 ◦C, and a dynamic response time of less than 2 ms. The
TL303 speed torque sensor can measure speed and torque at the same time, which is used
to measure the speed and angle of sail slewing gear as well as the input wind resistance
moment. It has an accuracy of ±0.5% FS, a frequency response of 100 µs, an operating
temperature of −10~50 ◦C, and a frequency signal output range of 5 kHz~15 kHz.

The controller collects the signals and transmits the signals of various sensors to the
computer in real-time through the CAN bus for display and storage. At the same time, after
obtaining the input control signal, the controller controls the working state of the loader,
reversing valve, and speed regulating valve, respectively, to adjust the wind resistance
moment, the rotation direction, and the speed of the hydraulic motor in real-time, and
achieve the precise control of the sail slewing angle and speed.

Table 2 shows the sail slewing testbed and simulation model parameters.

Table 2. Parameter of sail slewing hydraulic testbed and simulation model.

Equipment Picture Parameter Value

Hydraulic pump
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3.2. Model Effectiveness Verification of Simulation Model

When the ship course or true wind direction changes, the sail needs to rotate to a new
position according to the sail control strategy to achieve the best-assisted thrust effect.
Figure 7 shows the control signal of the speed regulating valve. There are three stages
to complete the slewing operation within 18 s. For the starting stage, the control signal
controls the speed regulating valve from the neutral position to fully open in 3 s. The speed
regulating valve keeps fully open for 12 s at the constant speed stage, and the hydraulic
motor keeps uniform rotation. For the stop stage, the control signal controls the speed
regulating valve from fully open to a neutral position in 3 s, and the rotary speed of the
hydraulic motor gradually decreases to stop.
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The noncoincidence of the radial force bearing point and slewing point of the sail
leads to the wind resistance moment, as is shown in Figure 8.
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Figure 8. Sail force analysis diagram.

Where Vs is the wind caused by ship motion, Vf is true wind, V is relative wind, L is
the lifting force of the sail, D is the resistance force of the sail, α is the attack angle of the
sail, l is the distance between radial force bearing point and slewing point of the sail.

The wind resistance moment Mwind is calculated by the equation as follows

Mwind = (L cos α + D sin α)l (13)
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The sail slewing hydraulic system needs to overcome wind resistance moment to
realize the rotation operation. Considering the safety of the sail-assisted ship, the maximum
working wind speed of the sail is 26 m/s. The wind resistance moment of the target sail is
calculated at the wind speed of 26 m/s according to the sail’s aerodynamic performance.
The wind resistance moment of different attack angles is reduced as an input signal for the
sail slewing hydraulic testbed, as shown in Figure 9.
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Figure 9. Wind resistance moment input signal.

The wind resistance moment was input into the loader in the form of a function,
running the testbed and simulation model with the same input signal, and the operation
results were compared and analyzed. The running time was set to 20 s, and the simulation
time interval was set to 0.1 s. Figure 10 shows the rotation speed of the sail. For the
actual hydraulic system, after receiving the control signal, the maximum rotation speed
of 1.02 r/min is reached at 3.2 s, the maximum rotation speed sustains for 12 s, and the
deceleration starts at 12.2 s and stops at 18.2 s. For the simulation model, when the
maximum speed of 1.01 r/min is reached at 3 s, the maximum speed also sustains 12 s and
stops at 18 s. It can be found that the rotation speed of the model and the actual hydraulic
system are basically consistent.
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The system pressure is shown in Figure 11. For the actual hydraulic system, the
pressure reaches the maximum pressure of 1.46 MPa from 0 in 5 s. For the simulation
model, the maximum pressure reaches 1.42 MPa at 4.9 s, and the minimum pressure at the
constant speed stage is 1.1 MPa, which also drops to 0 at 18 s.
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Figure 12 shows the rotation angle of the hydraulic system. For the actual hydraulic
system, in the starting stage, the rotation angle slowly increases to 10◦; in the constant
speed stage, the sail rotates to 80◦; after the rotation stops, the final rotation angle is 92◦.
The simulation model, it is consistent with the actual hydraulic system in the starting stage
and constant speed stage. After the rotation stops, the final rotation angle is 93.7◦.
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The results comparison is shown in Table 3. Due to the inertia effect of actual hydraulic
components, the simulation model is 0.2 s faster than the actual testbed to reach maximum
speed. Other than that, the simulation model has an accuracy of more than 97% on other
comparison results, such as rotational speed, pressure, and rotational angle, et al. This
proves the simulation model is effective in performing operation analysis of leakage fault.
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Table 3. Comparison of simulation and the actual system.

Item Actual System Simulation Model Deviation Accuracy

Time to reach maximum speed 3.2 s 3.0 s 0.2 s 93.8%
Constant speed duration 12.0 s 12.0 s 0 100.0%

Maximum speed 1.02 r/min 1.01 r/min 0.01 r/min 99.0%
Time to deceleration 12.2 s 12.0 s 0.2 s 98.4%

Stop time 18.2 s 18.0 s 0.2 s 98.9%
Time to reach maximum pressure 5.0 s 4.9 s 0.1 s 98.0%

Maximum pressure 1.46 MPa 1.42 MPa 0.04 MPa 97.3%
Minimum pressure at constant speed stage 1.07 MPa 1.10 MPa 0.03 MPa 97.2%

Time when the pressure drops to zero 18.0 s 18.0 s 0 100.0%
Rotation angle in starting stage 10◦ 10◦ 0 100.0%

Rotation angle in constant speed stage 80◦ 80◦ 0 100.0%
Rotation angle when stop 92.0◦ 93.7◦ 1.7◦ 98.2%

3.3. Operation Analysis of Leakage Fault Based on Simulation Model

In the sail slewing hydraulic system, reversing valve and speed regulating valve will
be affected by hydraulic shock and vibration, which will cause the radial clearance between
the valve core and sleeve to expand, then lead to internal leakage, as shown in Figure 13.

Machines 2023, 11, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 13. Leakage caused by internal clearance. 

The internal clearance will cause the hydraulic oil leaks from high-pressure side (P1) 
to low-pressure side (P2), thus resulting in abnormal function of hydraulic components. 

3.3.1. Reversing Valve 
Different radial leakage clearances of reversing valve are set in Table 4. 

Table 4. Leakage clearance of reversing valve. 

Leakage clearance (mm) 0.01 0.02 0.03 0.05 0.1 
Label H1 H2 H3 H4 H5 

Figure 14 shows the difference in the final rotation angle under five different leakage 
clearances. Leakage clearance has no effect on the final stopping time of the sail, which is 
18s. However, with the increase in leakage clearance, the final rotation angle gradually 
decreases, from 93.7° corresponding to the minimum leakage state (H1) to 92.4° corre-
sponding to the maximum leakage state (H5). This means adverse effects on the control 
accuracy of the sail will be caused by leakage in reversing valve. 

 
Figure 14. The rotation angle of leakage in reversing valve. 

The leakage flow of reversing valve under five leakage clearances is in Figure 15. In 
the minimum leakage state (H1), the leakage amount is almost zero, and the sail can nor-
mally rotate to the set angle. However, when the clearance increases, the leakage flow will 
also increase gradually. At this time, the rotation of the sail is greatly affected, and the sail 
cannot reach the set angle, which will reduce the use effect of the sail. 

Figure 13. Leakage caused by internal clearance.

The internal clearance will cause the hydraulic oil leaks from high-pressure side (P1)
to low-pressure side (P2), thus resulting in abnormal function of hydraulic components.

3.3.1. Reversing Valve

Different radial leakage clearances of reversing valve are set in Table 4.

Table 4. Leakage clearance of reversing valve.

Leakage clearance (mm) 0.01 0.02 0.03 0.05 0.1

Label H1 H2 H3 H4 H5

Figure 14 shows the difference in the final rotation angle under five different leakage
clearances. Leakage clearance has no effect on the final stopping time of the sail, which is
18 s. However, with the increase in leakage clearance, the final rotation angle gradually
decreases, from 93.7◦ corresponding to the minimum leakage state (H1) to 92.4◦ corre-
sponding to the maximum leakage state (H5). This means adverse effects on the control
accuracy of the sail will be caused by leakage in reversing valve.
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Figure 14. The rotation angle of leakage in reversing valve.

The leakage flow of reversing valve under five leakage clearances is in Figure 15. In the
minimum leakage state (H1), the leakage amount is almost zero, and the sail can normally
rotate to the set angle. However, when the clearance increases, the leakage flow will also
increase gradually. At this time, the rotation of the sail is greatly affected, and the sail
cannot reach the set angle, which will reduce the use effect of the sail.
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3.3.2. Speed Regulating Valve

Different radial leakage clearances of speed-regulating valves are set in Table 5.

Table 5. Speed regulating valve leakage clearance.

Leakage clearance (mm) 0.01 0.02 0.03 0.05 0.1

Label F1 F2 F3 F4 F5

Figure 16 shows the difference in the final rotation angle under five different leakage
clearances. Leakage clearance has no effect on the final stopping time of the sail. However,
with the increase in leakage clearance, the final rotation angle of the sail in the whole
operation process gradually decreases, from 93.6◦ corresponding to the minimum leakage
state (F1) to 93.1◦ corresponding to the maximum leakage state (F5). This shows that the
leakage of the speed regulating valve will also bring adverse effects on the control accuracy
of the sail, but not as much as the impact of the reversing valve.
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Figure 16. The rotation angle of leakage in speed regulating valve.

Figure 17 shows the leakage flow of the speed-regulating valve under five leakage
clearances. In the minimum leakage state (F1), the leakage amount is almost zero, and the
sail can normally rotate to the set angle. When the clearance increases, the leakage flow
will gradually increase. At this time, the rotation of the sail is greatly affected, and the sail
cannot be rotated to the set position, which will reduce the use effect of the sail. Meanwhile,
as for the same clearance, the speed-regulating valve leakage is smaller than the reversing
valve leakage, indicating that the influence of the speed-regulating valve leakage on the
rotation performance of the sail is less than the reversing valve.
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3.3.3. Hydraulic Motor

When the leakage of the hydraulic motor increases gradually due to wear and vibra-
tion, its volumetric efficiency will decrease. Therefore, different volumetric efficiencies are
set for the hydraulic motor in the model, as shown in Table 6. In order to facilitate the
analysis of the final influence on the rotor rotation process, the simulation time is extended
until the motor stops completely.

Table 6. Volume efficiency of hydraulic motor.

Volumetric efficiency(%) 99 98 95 90 85

Label M1 M2 M3 M4 M5
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Figure 18 shows the difference in the final rotation angle under five different volumetric
efficiencies. With the increase in hydraulic motor leakage, the time to stop the rotation also
extended correspondingly, from 18 s corresponding to the minimum leakage state (M1) to
20 s corresponding to the maximum leakage state (M5), which indicates that the increase in
hydraulic motor leakage will lead to hysteresis of the system response. If the control signal
also 18 s to stop rotation, the leakage of the hydraulic motor will cause the sail cannot to
rotate to the set angle.
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3.4. Leakage Fault Feature

One flow signal and two pressure signals are used in this paper. The energy distri-
bution of the four-layer sub-band of flow and pressure signal of reversing valve, speed
regulating valve, and hydraulic motor are extracted under different leakage states, and
the db4 and db6 wavelet packet energy entropy are calculated. The fault features of the
wavelet packet are shown in Table 7.

Table 7. Signal fault feature.

Signal Feature Name Reversing Valve
Label

Speed Regulating
Valve Label

Hydraulic
Motor Label

Flow
db4 wavelet entropy a1 a2 a3
db6 wavelet entropy b1 b2 b3

Pressure 1
db4 wavelet entropy c1 c2 c3
db6 wavelet entropy d1 d2 d3

Pressure 2
db4 wavelet entropy e1 e2 e3
db6 wavelet entropy f1 f2 f3

The leakage fault feature group Xi = [ai, bi, ci, di, ei, fi] (i = 1, 2, 3) can be built to
perform fault diagnosis.

Figure 19 shows the fault feature of the flow signal and pressure signal under five
different leakage clearances in reversing valve. Energy entropy on both sides of the
hydraulic motor decreases with the increase in leakage clearance, which indicates that
wavelet band energy near the hydraulic actuator has a large attenuation degree when the
reversing valve leaks.

Figure 20 shows the fault feature of the flow signal and pressure signal under five
different leakage clearances in the speed regulating valve. Energy entropy on both sides
of the hydraulic motor increases with the increased clearance, which indicates that the
leakage will lead to the complicated flow state of hydraulic oil, resulting in a more uneven
distribution of the wavelet band energy of flow, pressure, and other signals.
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Figure 20. Fault feature of leakage in speed regulating valve.

Figure 21 shows the wavelet packet energy entropy of the flow signal and pressure
signal under five different leakage clearance sizes in a hydraulic motor. When leakage
occurs in the hydraulic motor, the wavelet packet entropy of pressure signals and flow
signals on both sides of the hydraulic motor increases to varying degrees with the increase
in leakage degree, indicating that leakage of the hydraulic motor has an impact on the flow
state of hydraulic oil on both sides, which will aggravate the disorder of energy distribution.

Due to the increased clearance and flow of leakage, the state of the hydraulic oil in
the pipeline also changes, and the flow state is more disordered. It shows that the energy
entropy is an effective feature of the leakage failure of the sail slewing hydraulic system.
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4. Results and Discussion

10 different fault modes are set in this paper, as shown in Table 8.
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Table 8. Hydraulic system leakage fault mode.

Fault Mode

Reversing
Valve

Clearance
(mm)

Label

Speed
Regulating

Valve
Clearance

(mm)

Label

Hydraulic
Motor

Volumetric
Efficiency

(%)

Label

Normal <0.02 A <0.02 A >95 A
Minor leakage 0.02–0.05 B1 0.02–0.05 C1 90–95 D1

Moderate leakage 0.05–0.10 B2 0.05–0.10 C2 80–90 D2
Severe leakage >0.10 B3 >0.10 C3 <80 D3

According to the FPR method in Section 2.3, the membership functions of the reversing
valve, speed regulating valve, and hydraulic motor, as well as the fuzzy set of the leakage
fault mode, are calculated. According to the principle of minimum ambiguity, the median
number is selected to calculate its fuzzy set.

For reversing valve and speed regulating valve, the clearance is 0.01 mm for normal
mode. The clearance is 0.035 mm for minor leakage mode, the clearance is 0.075 mm for
moderate leakage mode, and the clearance is 0. 550 mm for severe leakage mode.

Tables 9 and 10 are the membership function and fuzzy set of the reversing valve.

Table 9. Membership function of leakage fault in reversing valve.

Label Membership Function

a1
H1(x) =


0(

x− 1.234× 10−2)/2.344× 10−2(
7.228× 10−2 − x

)
/3.650× 10−2

0

x ≤ 1.234× 10−2

x ∈
(
1.234× 10−2, 3.578× 10−2]

x ∈
(
3.578× 10−2, 7.228× 10−2)

x ≥ 7.228× 10−2

b1
H2(x) =


0(

x− 1.084× 10−2)/3.725× 10−2(
6.482× 10−2 − x

)
/1.673× 10−2

0

x ≤ 1.084× 10−2

x ∈
(
1.084× 10−2, 4.809× 10−2]

x ∈
(
4.809× 10−2, 6.482× 10−2)

x ≥ 6.482× 10−2

c1
H3(x) =


0(

x− 9.929× 10−4)/2.54× 10−2(
7.799× 10−2 − x

)
/5.16× 10−2

0

x ≤ 9.929× 10−4

x ∈
(
9.929× 10−4, 2.639× 10−2]

x ∈
(
2.639× 10−2, 7.799× 10−2)

x ≥ 7.799× 10−2

d1
H4(x) =


0(

x− 1.364× 10−3)/2.708× 10−2(
7.821× 10−2 − x

)
/4.977× 10−2

0

x ≤ 1.364× 10−3

x ∈
(
1.364× 10−3, 2.844× 10−2]

x ∈
(
2.844× 10−2, 7.821× 10−2)

x ≥ 7.821× 10−2

e1
H5(x) =


0(

x− 1.053× 10−2)/3.321× 10−2(
5.523× 10−2 − x

)
/1.149× 10−2

0

x ≤ 1.053× 10−2

x ∈
(
1.053× 10−2, 4.374× 10−2]

x ∈
(
4.374× 10−2, 5.523× 10−2)

x ≥ 5.523× 10−2

f1
H6(x) =


0(

x− 1.133× 10−2)/1.915× 10−2(
4.802× 10−2 − x

)
/1.754× 10−2

0

x ≤ 1.133× 10−2

x ∈
(
1.133× 10−2, 3.048× 10−2]

x ∈
(
3.048× 10−2, 4.802× 10−2)

x ≥ 4.802× 10−2
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Table 10. Fuzzy set of leakage faults in reversing valve.

Label Membership Degree a1 b1 c1 d1 e1 f1

A µ1 0.19781 0.71668 0.43527 0.42636 0.62924 0.75775
B1 µ2 0.28423 0.92235 0.75734 0.72789 0.90403 0.90416
B2 µ3 0.42708 0.95474 0.66166 0.70517 0.95396 0.94678
B3 µ4 1.00000 0.42896 0.13411 0.09850 0.42599 0.40686

Tables 11 and 12 are the membership function and fuzzy set of the speed regulating valve.

Table 11. Membership function of leakage fault in speed regulating valve.

Label Membership Function

a2
G1(x) =


0(

x− 2.842× 10−2)/4.291× 10−2

(1.267− x)/1.196

0

x ≤ 2.842× 10−2

x ∈
(
2.842× 10−2, 7.133× 10−2]

x ∈
(
7.133× 10−2, 1.267

)
x ≥ 1.267

b2
G2(x) =


0(

x− 3.656× 10−2)/2.185× 10−2

(1.467− x)/1.409

0

x ≤ 3.656× 10−2

x ∈
(
3.656× 10−2, 5.841× 10−2]

x ∈
(
5.841× 10−2, 1.467

)
x ≥ 1.467

c2
G3(x) =


0(

x− 4.821× 10−2)/8.12× 10−3(
6.644× 10−1 − x

)
/6.08× 10−1

0

x ≤ 4.821× 10−2

x ∈
(
4.821× 10−2, 5.633× 10−2]

x ∈
(
5.633× 10−2, 6.644× 10−1)

x ≥ 6.644× 10−1

d2
G4(x) =


0(

x− 4.881× 10−2)/8.86× 10−3(
6.811× 10−1 − x

)
/6.23× 10−1

0

x ≤ 4.881× 10−2

x ∈
(
4.881× 10−2, 5.767× 10−2]

x ∈
(
5.767× 10−2, 6.811× 10−1)

x ≥ 6.811× 10−1

e2
G5(x) =


0(

x− 4.168× 10−2)/1.395× 10−2

(1.504− x)/1.448

0

x ≤ 4.168× 10−2

x ∈
(
4.168× 10−2, 5.563× 10−2]

x ∈
(
5.563× 10−2, 1.504

)
x ≥ 1.504

f2
G6(x) =


0(

x− 2.454× 10−2)/1.776× 10−2

(1.700− x)/1.658

0

x ≤ 2.454× 10−2

x ∈
(
2.454× 10−2, 4.230× 10−2]

x ∈
(
4.230× 10−2, 1.700

)
x ≥ 1.700

Table 12. Fuzzy set of leakage faults in speed regulating valve.

Label Membership Degree a2 b2 c2 d2 e2 f2

A µ5 0.85383 0.74469 0.90152 0.92327 0.45305 0.57371
C1 µ6 0.94039 0.89652 0.98428 0.99581 0.79696 0.84253
C2 µ7 0.99912 0.99919 0.99978 1.00000 0.99966 0.99915
C3 µ8 0.93575 0.94112 0.97731 0.97578 0.95730 0.96556

For the hydraulic motor, the volumetric efficiency is 97.5% for normal mode. The
volumetric efficiency is 92.5% for minor leakage mode, the volumetric efficiency is 85% for
moderate leakage mode, and the volumetric efficiency is 40% for severe leakage mode.
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Tables 13 and 14 are the membership function and fuzzy set of the hydraulic motor.

Table 13. Membership function of leakage fault in the hydraulic motor.

Label Membership Function

a3
M1(x) =


0(

x− 6.483× 10−2)/3.053× 10−2(
1.476× 10−1 − x

)
/5.224× 10−2

0

x ≤ 6.483× 10−2

x ∈
(
6.483× 10−2, 9.536× 10−2]

x ∈
(
9.536× 10−2, 1.476× 10−1)

x ≥ 1.476× 10−1

b3
M2(x) =


0(

x− 5.273× 10−2)/2.930× 10−2(
1.517× 10−1 − x

)
/6.967× 10−2

0

x ≤ 5.273× 10−2

x ∈
(
5.273× 10−2, 8.203× 10−2]

x ∈
(
8.203× 10−2, 1.517× 10−1)

x ≥ 1.517× 10−1

c3
M3(x) =


0(

x− 5.543× 10−2)/3.57× 10−3(
6.942× 10−2 − x

)
/1.042× 10−2

0

x ≤ 5.543× 10−2

x ∈
(
5.543× 10−2, 5.900× 10−2]

x ∈
(
5.900× 10−2, 6.942× 10−2)

x ≥ 6.942× 10−2

d3
M4(x) =


0(

x− 5.629× 10−2)/7.94× 10−3(
7.840× 10−2 − x

)
/1.417× 10−2

0

x ≤ 5.629× 10−2

x ∈
(
5.629× 10−2, 6.423× 10−2]

x ∈
(
6.423× 10−2, 7.840× 10−2)

x ≥ 7.840× 10−2

e3
M5(x) =


0(

x− 4.796× 10−2)/6.134× 10−2(
2.136× 10−1 − x

)
/1.043× 10−1

0

x ≤ 4.796× 10−2

x ∈
(
4.796× 10−2, 1.093× 10−1]

x ∈
(
1.093× 10−1, 2.136× 10−1)

x ≥ 2.136× 10−1

f3
M6(x) =


0(

x− 3.469× 10−2)/6.44× 10−2(
2.051× 10−1 − x

)
/1.06× 10−1

0

x ≤ 3.469× 10−2

x ∈
(
3.469× 10−2, 9.909× 10−2]

x ∈
(
9.909× 10−2, 2.051× 10−1)

x ≥ 2.051× 10−1

Table 14. Fuzzy set of leakage faults in the hydraulic motor.

Label Membership Degree a3 b3 c3 d3 e3 f3

A µ9 0.04186 0.03215 0.00239 0.05109 0.01827 0.01525
D1 µ10 0.19022 0.15388 0.04383 0.11509 0.10795 0.09527
D2 µ11 0.37159 0.33588 0.20130 0.22610 0.25946 0.23933
D3 µ12 0.78059 0.75628 0.76191 0.77896 0.63631 0.54486

For the leakage fault to be identified, the six-wavelet packet energy feature groups Xi
of the flow and pressure signals under the fault state are obtained, respectively, and the
corresponding membership function, as well as the fuzzy set, are calculated. Then, the
lattice closeness degree set N under the fuzzy set of leakage faults is to be identified, and
the fuzzy set of different leakage states of reversing valve, speed-regulating valve, and the
hydraulic motor is calculated. By comparison, the maximum value in the lattice closeness
degree set N can be obtained, and the leakage mode pointed by the maximum value is the
diagnosis result of the leakage fault to be identified.

Table 15 shows the leakage fault test set, which is randomly simulated by the model.
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Table 15. Composition of the test set.

Leakage Fault Mode Sign Quantity

Normal A 150
Minor leakage in reversing valve B1 50

Moderate leakage in reversing valve B2 50
Severe leakage in reversing valve B3 50

Minor leakage in speed regulating valve C1 50
Moderate leakage in speed regulating valve C2 50

Severe leakage in speed regulating valve C3 50
Minor leakage in hydraulic motor D1 50

Moderate leakage in hydraulic motor D2 50
Severe leakage in hydraulic motor D3 50

Figure 22 shows the diagnosis results. Only 36 sets are misdiagnosed among 600 leak-
age sets.

Machines 2023, 11, x FOR PEER REVIEW 24 of 28 
 

 

For the leakage fault to be identified, the six-wavelet packet energy feature groups Xi 

of the flow and pressure signals under the fault state are obtained, respectively, and the 

corresponding membership function, as well as the fuzzy set, are calculated. Then, the 

lattice closeness degree set N under the fuzzy set of leakage faults is to be identified, and 

the fuzzy set of different leakage states of reversing valve, speed-regulating valve, and the 

hydraulic motor is calculated. By comparison, the maximum value in the lattice closeness 

degree set N can be obtained, and the leakage mode pointed by the maximum value is the 

diagnosis result of the leakage fault to be identified. 

Table 15 shows the leakage fault test set, which is randomly simulated by the model. 

Table 15. Composition of the test set. 

Leakage Fault Mode Sign Quantity 

Normal A 150 

Minor leakage in reversing valve B1 50 

Moderate leakage in reversing valve B2 50 

Severe leakage in reversing valve B3 50 

Minor leakage in speed regulating valve C1 50 

Moderate leakage in speed regulating valve C2 50 

Severe leakage in speed regulating valve C3 50 

Minor leakage in hydraulic motor D1 50 

Moderate leakage in hydraulic motor D2 50 

Severe leakage in hydraulic motor D3 50 

Figure 22 shows the diagnosis results. Only 36 sets are misdiagnosed among 600 leak-

age sets. 

 

Figure 22. Diagnosis results. 

Figure 23 shows the diagnosis distribution and accuracy of the proposed method. 

Figure 22. Diagnosis results.

Figure 23 shows the diagnosis distribution and accuracy of the proposed method.
Machines 2023, 11, x FOR PEER REVIEW 25 of 28 
 

 

 

Figure 23. Diagnosis distribution and accuracy of all fault modes. 

As can be seen from Figure 23, the no leakage condition of reversing valve, speed 

regulating valve, and hydraulic motor are categorized to normal mode (A), and only 6 

sets are misdiagnosed among 150 sets, with an accuracy of 96%. The same accuracy occurs 

in minor leakage in reversing valve (B1) and severe leakage in the speed regulating valve 

(C3); 2 sets are misdiagnosed among 50 sets. For reversing valves, the diagnosis accuracy 

of moderate leakage (B2) is lower than minor leakage (B1) and severe leakage (B3) because 

the fault feature of B2 is close to B1 and B3. Its more easily misidentified by the fuzzy 

pattern recognition method. The same situation occurs for the speed-regulating valve and 

hydraulic motor. That means the selection of membership function and fuzzy set for dif-

ferent leakage modes is critical to the diagnosis results. 

The overall diagnostic accuracy of the entire test set fault mode is 94%. The proposed 

method is of great significance for practical applications in improving the reliability of the 

sail slewing hydraulic system. In addition, a small sample of flow and pressure signals is 

enough for good fault diagnosis results. 

This paper also has the following limitations that can be improved: (1) The operation 

analysis of leakage fault was conducted on a single component. Simultaneous failure of 

multiple components may occur in the sail slewing hydraulic system, which will result in 

the coupling of fault characteristics and increase the difficulty of leakage fault feature ex-

traction. (2) A minimum ambiguity method and triangular membership function is se-

lected to construct the fuzzy set of the leaking fault. The diagnosis accuracy of moderate 

leakage fault mode may be improved by optimizing the selection of membership function 

and fuzzy set. 

5. Conclusions 

To effectively diagnose the leakage fault of the sail slewing hydraulic system, a wave-

let packet transform-fuzzy pattern recognition method is proposed. A simulation model 

of the sail slewing hydraulic testbed is established, and the effectiveness of the model is 

verified by comparing rotational speed, system pressure, and slewing angle between the 

simulation and the actual testbed. After that, the wavelet packet energy entropy is selected 

as the fault feature, and the fault feature set was established with a four-layer wavelet 

packet transform method. Finally, a fuzzy pattern recognition-based fault diagnosis 

Figure 23. Diagnosis distribution and accuracy of all fault modes.



Machines 2023, 11, 286 22 of 24

As can be seen from Figure 23, the no leakage condition of reversing valve, speed
regulating valve, and hydraulic motor are categorized to normal mode (A), and only 6 sets
are misdiagnosed among 150 sets, with an accuracy of 96%. The same accuracy occurs in
minor leakage in reversing valve (B1) and severe leakage in the speed regulating valve
(C3); 2 sets are misdiagnosed among 50 sets. For reversing valves, the diagnosis accuracy
of moderate leakage (B2) is lower than minor leakage (B1) and severe leakage (B3) because
the fault feature of B2 is close to B1 and B3. Its more easily misidentified by the fuzzy
pattern recognition method. The same situation occurs for the speed-regulating valve
and hydraulic motor. That means the selection of membership function and fuzzy set for
different leakage modes is critical to the diagnosis results.

The overall diagnostic accuracy of the entire test set fault mode is 94%. The proposed
method is of great significance for practical applications in improving the reliability of the
sail slewing hydraulic system. In addition, a small sample of flow and pressure signals is
enough for good fault diagnosis results.

This paper also has the following limitations that can be improved: (1) The operation
analysis of leakage fault was conducted on a single component. Simultaneous failure of
multiple components may occur in the sail slewing hydraulic system, which will result
in the coupling of fault characteristics and increase the difficulty of leakage fault feature
extraction. (2) A minimum ambiguity method and triangular membership function is
selected to construct the fuzzy set of the leaking fault. The diagnosis accuracy of moderate
leakage fault mode may be improved by optimizing the selection of membership function
and fuzzy set.

5. Conclusions

To effectively diagnose the leakage fault of the sail slewing hydraulic system, a wavelet
packet transform-fuzzy pattern recognition method is proposed. A simulation model of the
sail slewing hydraulic testbed is established, and the effectiveness of the model is verified
by comparing rotational speed, system pressure, and slewing angle between the simulation
and the actual testbed. After that, the wavelet packet energy entropy is selected as the fault
feature, and the fault feature set was established with a four-layer wavelet packet transform
method. Finally, a fuzzy pattern recognition-based fault diagnosis method is proposed by
calculating the triangular membership function and fuzzy set of different leakage faults.

The diagnosis results of 600 test sets under four leakage modes for reversing valve,
speed regulating valve, and hydraulic motor in the case study show the proposed method
has a better diagnosis effect for minor and severe leakage mode than moderate leakage
mode, with overall diagnostic accuracy of 94%. The proposed method can diagnose internal
leakage faults for sail slewing hydraulic systems with high accuracy. Only a small sample
of flow and pressure signals is enough for good fault diagnosis results. The proposed
method can be easily applied to sail-assisted ships. Therefore, the proposed method is of
great significance to promote the development of green ships by improving the reliability
of the sail slewing hydraulic system.

Although the proposed method can effectively achieve the diagnosis of different
leakage faults, this paper only applied the triangular membership function to construct
a fuzzy set. Some other types of membership functions, such as the trapezoid function or
Gaussian function, can be further studied to explore whether the diagnosis accuracy can be
improved. Furthermore, the mutual interference between simultaneous faults of multiple
components is not fully considered in this paper. Therefore, the coupling of multiple faults
occurring at the same time will be considered in future research.
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