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Abstract: This paper discusses an observer-based control problem for uncertain Takagi–Sugeno
Fuzzy Singular Systems (T-SFSS) subject to passivity performance constraints. Through the Parallel
Distributed Compensation (PDC) approach and the Proportional Derivative (PD) control scheme,
an observer-based fuzzy controller is constructed to achieve the stability of the considered system.
An unlimited positive definite matrix is utilized to construct the Lyapunov function and derive
sufficient stability conditions to develop a relaxed design method. Moreover, some technologies,
such as the Schur complement, projection lemma, and Singular Value Decomposition (SVD), are
applied to convert the conditions to Linear Matrix Inequality (LMI) form. Therefore, the convex
optimization algorithm is used to solve the LMI conditions to find feasible solutions. The observer-
based fuzzy controller is established with the obtained solutions to guarantee stability and passivity
performance for the uncertain nonlinear singular systems. Finally, two examples are provided to
verify the availability of the proposed fuzzy control approach.

Keywords: Takagi–Sugeno fuzzy systems; proportional derivative control; observer-based fuzzy
control; passivity performance constraint

1. Introduction

The singular system, also called a differential-algebraic system or an implicit system,
has been broadly studied for many years because it is widely applied to describe impulse
behaviors in numerous dynamical systems. Some practical systems can be represented as
singular systems, such as bio-economic systems [1], electrical circuit systems [2], and DC
motors [3]. The impulse behaviors may stop the system from working and are not generally
expected to appear. Moreover, the stability analysis of singular systems is more intricate
than one of the classical systems because the consideration of the properties as regular and
impulse-free is ensured by [4]. Therefore, the singular system can be stabilized [5] when
the system has a unique solution or a controller eliminates the impulse behavior. Due to the
above problem, the stabilization issues of linear singular systems have been investigated
by [6–8] to achieve, respectively, robust control, passive control, and event-triggered control.
In those research studies, the scholars guarantee the admissibility of the systems by the
state feedback controller.

In fact, most practical systems are described by complex nonlinear dynamic equations.
As is well known, linear control theories can only be used to solve control problems for
the local dynamic of nonlinear systems. Therefore, the stability analysis and synthesis of
nonlinear singular systems are worth discussing. The Takagi–Sugeno (T-S) fuzzy modeling
approach [9] has been widely applied to represent complex nonlinear dynamics. With
the T-S fuzzy model, linear control theories can solve the stability problems of nonlinear
systems [10–22]. According to the T-S fuzzy modeling approach, the nonlinear singular
systems are separated into several linear subsystems through the fuzzy sets and IF–THEN
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rules. To deal with the control problem of T-S Fuzzy Singular Systems (T-SFSS) in [10–12],
a fuzzy controller was designed using the Parallel Distributed Compensation (PDC) tech-
nique [13]. The concept of PDC is that the fuzzy controller is constructed with the same
membership function as the model. Moreover, some uncertainties have naturally arisen
when modeling errors or aging components have occurred. Uncertainty usually brings
inaccurate signal transmission and poor control performance. Therefore, the robust control
issue is always investigated to guarantee the stability of systems with admissible uncer-
tainty. In addition, the external disturbance effect on systems is usually caused by external
factors that lead to instability. Thus, the issues with robust control and passive control
cannot be easily ignored for practical operation. To deal with the problem caused by
external disturbance, passivity theory [14–17] is applied to achieve attenuation of the effect
of disturbance.

For the practical control problem [23–26], the full states of physical systems are not
always measurable. Thus, observer theory [27–29] provides an effective approach for
estimating unmeasured states. To discuss the stability analysis of T-SFSS, the observer-
based controller design method, such as state feedback and output feedback for T-SFSS,
was also investigated in [29–32]. According to the above methods [29–31], two portions
were proposed to discuss the admissibility of T-SFSS. The first portion is for ensuring that
the considered system is regular and impulse-free, and the other portion is for analyzing the
stability of the considered systems. To reduce the procedure of ensuring the admissibility
of T-SFSS, the Proportional Derivative (PD) control method was applied in [11,12,33–35].
Referring to Remark 1 of [34], one can realize that the derivative state of the PD controller
can mainly eliminate the singularity of singular systems. Therefore, the Observer-Based
PD (OBPD) fuzzy controller design method was developed in [36,37] for T-SFSS. However,
there is conservatism in the positive definite matrix chosen by [36]. In the literature [36],
the positive definite matrix is limited to a diagonal case so that stability conditions can
be successfully transferred into the Linear Matrix Inequality (LMI) form. Apparently, the
limitation increases conservatism in the calculation seeking feasible solutions. Thus, an
important issue for decreasing the conservatism of stability conditions is investigated in
this paper.

According to the above motivations, a relaxed OBPD fuzzy controller design method
is proposed such that the uncertain nonlinear singular system with external disturbances
achieves asymptotical stability and passivity. Based on the T-S fuzzy modeling method, the
nonlinear singular system is represented by uncertain T-SFSS with external disturbances.
To reduce the complexity of discussing the admissibility of the considered system, the
OBPD fuzzy controller is designed by using the PDC concept. In addition, the stability
conditions are converted into LMI form by the Schur complement, projection lemma [38],
and the Singular Value Decomposition (SVD) [29] technique. Then, the conditions can
be effectively calculated by a convex optimization algorithm [39] to find the controller
gains and the observer gains. The main contributions of this paper can be summarized as
follows: (1) The proposed control design method is more realistic than [36] because the
perturbations and external disturbances are considered, and (2) the stability conditions of
this paper are more relaxed than [36] because the positive definite matrix in this paper is
not required to be a diagonal case. Finally, two examples are applied to demonstrate the
effectiveness of the proposed control method.

This paper is organized as follows. In Section 2, the uncertain nonlinear singular
system with external disturbances is represented by the T-S fuzzy model. In Section 3, some
sufficient conditions for the considered system are derived. In Section 4, two examples
are applied to illustrate the applicability of the proposed control method. In Section 5, the
conclusion is given for this paper.

Notation: I represents the identity matrix with approximate dimension. ℵ⊥ represents
the null-space matrix of ℵ. ℵT = ℵ−1 denotes the orthogonal matrix. <nx and <nx×nu rep-
resent the nx-dimensional vector and the nx × nu-dimensional matrix, respectively. sym{ϕ}
denotes the shorthand of ϕ + ϕT. ∗ denotes the symmetric term in the matrix. ℵ

(
hij
)



Machines 2023, 11, 280 3 of 19

denotes the shorthand of
n
∑

i=1

n
∑

j=1
hihj{ℵ}, and ℵ(hi) denotes the shorthand of

n
∑

i=1
hi{ℵ}.

rank(ℵ) denotes the rank of ℵ. 03×3 represents the 3× 3-dimensional matrix.

2. System Descriptions and Problem Statements

In this section, the complex nonlinear singular system considered with uncertainty and ex-
ternal disturbance is expressed by the following uncertain T-SFSS with external disturbances.

Plant Rule i:
IF q1(t) is Mi1 and . . . and qr(t) is Mir, THEN

E
.
x(t) = (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t) + (Di + ∆Di(t))w(t) (1a)

z(t) = Czix(t) + Jiw(t) (1b)

y(t) = Cyx(t) (1c)

where q(t) =
[
q1(t) q2(t) · · · qr(t)

]
are the premise variables; Mir is the fuzzy set;

r is the number of premise variables; i = 1, 2 . . . , m and m are the number of rules;
x(t) ∈ <nx is the state vector; u(t) ∈ <nu is the control input vector; w(t) ∈ <nw is the
external disturbance vector; y(t) ∈ <ny is the measured output vector; and z(t) ∈ <nz is
the output vector. Ai ∈ <nx×nx , Bi ∈ <nx×nu , Cy ∈ <ny×nx , Di ∈ <nx×nw , Czi ∈ <nz×nx ,
and Ji ∈ <nz×nw are constant matrices. E ∈ <nx×nx is a constant matrix with rank(E) < nx.
∆Ai(t) ∈ <nx×nx , ∆Bi(t) ∈ <nx×nu , and ∆Di(t) ∈ <nx×nw are the unknown matrices
expressing uncertainties, which are represented as ∆Ai, ∆Bi, and ∆Di in the following
context for simplicity and are constructed as[

∆Ai ∆Bi ∆Di
]
=
[
HAi∆(t)WAi HBi∆(t)WBi HDi∆(t)WDi

]
(2)

where HAi, HBi, HDi, WAi, WBi, and WDi are real constant matrices with appropriate
dimensions and ∆(t) is the unknown time-varying function satisfying ∆T(t)∆(t) ≤ I.

Furthermore, the overall T-S fuzzy model is constructed as follows:

E
.
x(t) =

m

∑
i=1

hi(q(t)){(Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t) + (Di + ∆Di)w(t)} (3a)

z(t) =
m

∑
i=1

hi(q(t))(Czix(t) + Jiw(t)) (3b)

y(t) = Cyx(t) (3c)

where hi(q(t)) =

r
∏

l=1
Mil(ql(t))

m
∑

i=1

r
∏

l=1
Mil(ql(t))

, hi(q(t)) ≥ 0,
m
∑

i=1
hi(q(t)) = 1 and Mil(ql(t)) is the grade of

the membership of ql(t) in Mil .
For simplification, hi(q(t)) , hi is defined in the following context. For unmeasurable

states, the PD fuzzy observer is constructed as follows:
Observer Rule i:
IF q1(t) is Mi1 and . . . and qr(t) is Mir THEN

E
.
x̂(t) = Ai x̂(t) + Biu(t) + Lpi(y(t)− ŷ(t)) + Ldi

( .
y(t)−

.
ŷ(t)

)
(4a)

ŷ(t) = Cy x̂(t) (4b)
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where x̂(t) ∈ <nx is the estimated state vector and ŷ(t) ∈ <ny is the estimated output vector.
The matrices Lpi and Ldi are the observer gains. Then, the overall fuzzy observer can be
further expressed as follows:

E
.
x̂(t) =

m

∑
i=1

hi

{
Ai x̂(t) + Biu(t) + Lpi(y(t)− ŷ(t)) + Ldi

( .
y(t)−

.
ŷ(t)

)}
(5a)

ŷ(t) = Cy x̂(t) (5b)

Based on the concept of PDC, the OBPD fuzzy controller is constructed in the follow-
ing form.

Controller Rule i:
IF q1(t) is Mi1 and . . . and qr(t) is Mir THEN

u(t) = −Fpi x̂(t)− Fdi
.
x̂(t) (6)

where Fpi and Fdi are controller gains. Then, the overall fuzzy controller can be represented
as follows:

u(t) =
m

∑
i=1

hi

{
−Fpi x̂(t)− Fdi

.
x̂(t)

}
(7)

The following assumptions are given to ensure the stability issue of System (3). As-
sumption 1 is to ensure the observability and controllability of System (3). For convenience,
we assume that the output matrix C can be represented by SVD in Assumption 2.

Assumption 1 [36]. System (3) is completely controllable and completely observable if the following
equalities are satisfied:

rank
([

sE−Ai Bi
])

= rank
([

E Bi
])

= nx and rank
([

sE−Ai
Cy

])
= rank

([
E

Cy

])
= nx

where ∀s ∈ C+, C+ is the open right half of the complex plane. �

Assumption 2 [29]. If the matrix Cy ∈ <ny×nx has full row rank, the singular value decomposition
of matrix Cy is described as

Cy = U
[
Q 0

]
VT

where U ∈ <ny×ny and V ∈ <nx×nx are orthogonal matrices and Q ∈ <ny×ny is a diagonal
matrix with positive diagonal elements. �

In defining the estimation error function e(t) = x(t)− x̂(t), the following relationship
is easily derived by using (3a) and (5a):

E
.
e(t) = E

.
x(t)− E

.
x̂(t)

=
m
∑

i=1
hi{(Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t) + (Di + ∆Di)w(t)

−
(

Ai x̂(t) + Biu(t) + Lpi
(
y(t)−Cy x̂(t)

)
+ Ldi

( .
y(t)−Cy

.
x̂(t)

))}
=

m
∑

i=1

m
∑

j=1
hihj

{(
∆Ai − ∆BiFpj

)
x(t) +

(
Ai + ∆BiFpj − LpiCy

)
e(t)

−∆BiFdj
.
x(t)+

(
∆BiFdj − LdiCy

) .
e(t) + (Di + ∆Di)w(t)

}
(8)

Based on (3a) and (8), the following augmented system can be directly inferred:[
E 0
0 E

][ .
x(t)
.
e(t)

]
=

m
∑

i=1

m
∑

j=1
hihj

{[
Ai + ∆Ai − BiFpj − ∆BiFpj BiFpj + ∆BiFpj

∆Ai − ∆BiFpj Ai + ∆BiFpj − LpiCy

][
x(t)
e(t)

]
+

[
−BiFdj − ∆BiFdj BiFdj + ∆BiFdj
−∆BiFdj ∆BiFdj − LdiCy

][ .
x(t)
.
e(t)

]
+

[
Di + ∆Di
Di + ∆Di

]
w(t)

} (9)
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The following equation can be further obtained by organizing (9):

~
ERij

(
hij
) .
x̃(t) =

~
ARij

(
hij
)

x̃(t) +
~
Di(hi)w(t) (10)

where x̃(t) =
[
xT(t) eT(t)

]T,
~
ERij = ERij +

~
HBi∆(t)

~
WBDij, ERij =

[
E + BiFdj −BiFdj

0 E + LdiCy

]
,

~
HBi =

[
HBi
HBi

]
,

~
WBDij =

[
WBiFdj −WBiFdj

]
,

~
ARij = ARij +

~
HAi∆(t)

~
WAi +

~
HBi∆(t)

~
WBPij,

ARij =

[
Ai −BiFpj BiFpj

0 Ai −LpiCy

]
,

~
HAi =

[
HAi
HAi

]
,

~
WAi =

[
WAi 0

]
,

~
WBPij =

[
−WBiFpj WBiFpj

]
,

~
Di = DRi +

~
HDi∆(t)WDi, DRi =

[
Di
Di

]
and

~
HDi =

[
HDi
HDi

]
.

Based on Assumption 1, ERij is rendered full rank and invertible with controller gain
Fdj and observer gain Ldi. Therefore, one can find the following equation from (10):

.
x̃(t) =

~
E
−1

Rij
(
hij
)( ~

ARij
(
hij
)

x̃(t) +
~
Di(hi)w(t)

)
(11)

According to (11), the regularity and nonimpulsiveness of (10) can be certainly guar-
anteed by Fdj and Ldi.

To attenuate the disturbance effect on the system, Definition 1 for passivity is proposed.

Definition 1 [17]. If there exist the given constant matrices S1, S2 ≥ 0, and S3 satisfying the
following inequality, then the system is passive with the external disturbance w(t) and output z(t)
for all terminal time tp > 0:

2
∫ tp

0
zT(t)S1w(t)dt >

∫ tp

0
zT(t)S2z(t)dt +

∫ tp

0
wT(t)S3w(t)dt (12)

�

Furthermore, an effective method for dealing with perturbations in the augmented
system (10) is provided as follows.

Lemma 1 [11]. Given real appropriate dimension matrices H, W, and ∆(t) with ∆T(t)∆(t) ≤ I
and a scalar ε > 0 , one can find the result as follows:

sym{H∆(t)W} ≤ εHHT + ε−1WTW (13)

�

In order to convert the stability conditions into LMI form, the following lemma
is provided.

Lemma 2 [38]. Given the matrices Ψ ∈ <mΨ×mΞ , Λ ∈ <mΛ×mΞ and symmetric matrix
Ξ ∈ <mΞ×mΞ that satisfy rank(Ψ) < mΞ and rank(Λ) < mΞ, if and only if there exists any
matrix Π such that

Ξ + ΨTΠΛ + ΛTΠTΨ < 0 (14a)

then the following inequalities are held:

ΨT
⊥ΞΨ⊥ < 0 and ΛT

⊥ΞΛ⊥ < 0 (14b)

where Ψ⊥ and Λ⊥ are the null-space matrices of Ψ and Λ, respectively. �
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3. Stability Conditions Derivation for the T-S Fuzzy Singular System

In this section, the stability criterion for the closed-loop system (11) is proposed to
guarantee asymptotical stability and passivity. Furthermore, the derived conditions are
converted into LMI form.

Theorem 1. Given the matrices S1,S2 ≥ 0, and S3, the closed-loop system (11) is asymptotically
stable and passive if there exist the matrices P = PT > 0, Fpj, Fdj, Lpi, Ldi, and R, and a scalar ε
such that the following stability conditions are satisfied:sym

{
−ET

RijΠ
−1
}
+ Γ1ij P + Π−TARij + Π−TERij + Γ2ij Π−TDRi

∗ −2P + Γ3ij Γ4i
∗ ∗ Γ5i + ε−1WT

DiWDi

 < 0 (15)

where Γ1ij = ε

(
Π−T

~
HBi

~
H

T
BiΠ

−1 + Π−T
~
HAi

~
H

T
AiΠ

−1 + Π−T
~
HDi

~
H

T
DiΠ

−1
)

+ ε−1
~

W
T

BDij
~

WBDij,

Γ2ij = ε−1
(

~
W

T

BPij
~

WBPij +
~

W
T

BDij
~

WBPij +
~

W
T

BPij
~

WBDij +
~

W
T

BDij
~

WBDij +
~

W
T

Ai
~

WAi

)
+

~
C

T

ziS2
~
Czi,

Γ3ij = −ε−1
(

~
W

T

BDij
~

WBPij +
~

W
T

BDij
~

WBDij

)
, Γ5i = JT

i S2Ji +S3− JT
i S1−ST

1 Ji, Γ4i =
~
C

T

ziS2Ji−
~
C

T

ziS1, Π =

[
VRVT 0
∗ αVRVT

]
, P =

[
P1 P3
∗ P2

]
and

~
Czi =

[
Czi 0

]
.

Proof. Let us choose the following Lyapunov function:

V(x̃(t)) = x̃T(t)Px̃(t) (16)

Based on the augmented system (11), the following derivative of the Lyapunov func-
tion (16) is inferred:

.
V(x̃(t)) =

.
x̃

T
(t)Px̃(t) + x̃T(t)P

.
x̃(t)

=

(
~
E
−1

Rij
(
hij
) ~
ARij

(
hij
)

x̃(t) +
~
E
−1

Rij
(
hij
) ~
Di(hi)w(t)

)T

Px̃(t)

+x̃T(t)P
(

~
E
−1

Rij
(
hij
) ~
ARij

(
hij
)

x̃(t) +
~
E
−1

Rij
(
hij
) ~
Di(hi)w(t)

)
=

[
x̃(t)
w(t)

]T
 sym

{
P

~
E
−1

Rij
(
hij
) ~
ARij

(
hij
)}

P
~
E
−1

Rij
(
hij
) ~
Di(hi)

∗ 0

[ x̃(t)
w(t)

]
(17)

For nonzero external disturbance, that is, w(t) 6= 0, the following performance function
is defined with zero initial condition:

Γ(z, w, t) =
∫ tp

0
(
zT(t)S2z(t) + wT(t)S3w(t)− 2zT(t)S1w(t)

)
dt

=
∫ tp

0

(
zT(t)S2z(t) + wT(t)S3w(t)− 2zT(t)S1w(t) +

.
V(x̃(t))

)
dt−V

(
x
(
tp
))

≤
∫ tp

0

(
zT(t)S2z(t) + wT(t)S3w(t)− 2zT(t)S1w(t) +

.
V(x̃(t))

)
dt

=
∫ tp

0 G(z, w, t)dt

(18)

where
G(z, w, t) = zT(t)S2z(t) + wT(t)S3w(t)− 2zT(t)S1w(t) +

.
V(x̃(t)) (19)

Substituting (3b) and (17) into (19), one can obtain

G(z, w, t) =
[

x̃(t)
w(t)

]T

Φij
(
hij
)[ x̃(t)

w(t)

]
(20)
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where Φij

(
hij

)
=

sym
{

P
~
E
−1
Rij

(
hij

) ~
ARij

(
hij

)}
+

~
C

T

zi(hi)S2
~
Czi(hi) P

~
E
−1
Rij

(
hij

) ~
Di

(
hij

)
+ Γ4i(hi)

∗ Γ5i(hi)

.

According to the assumptions
n
∑

i=1
hi = 1 and 0 ≤ hi ≤ 1, Condition (15) can be

rewritten as the following inequality:
sym

{
−ET

Rij
(
hij
)
Π−1

}
+Γ1ij

(
hij
) P + Γ2ij

(
hij
)

+Π−T(ARij
(
hij
)
+ ERij

(
hij
)) Π−TDRi(hi)

∗ −2P + Γ3ij
(
hij
)

Γ4i(hi)

∗ ∗ Γ5i(hi) + ε−1WT
Di(hi)WDi(hi)

 < 0 (21)

Applying Lemma 1, the following inequalities can be obtained from (21):

sym


 Π−T

~
HBi(hi)
0
0

∆(t)

 −
~

W
T

BDij
(
hij
)

~
W

T

BPij
(
hij
)
+

~
W

T

BDij
(
hij
)

0


T

≤ ε

 Π−T
~
HBi(hi)
0
0


 Π−T

~
HBi(hi)
0
0


T

+ ε−1

 −
~

W
T

BDij
(
hij
)

~
W

T

BPij
(
hij
)
+

~
W

T

BDij
(
hij
)

0


 −

~
W

T

BDij
(
hij
)

~
W

T

BPij
(
hij
)
+

~
W

T

BDij
(
hij
)

0


T (22a)

sym


 Π−T

~
HAi(hi)
0
0

∆(t)

 0
~

W
T

Ai(hi)
0


T


≤ ε

 Π−T
~
HAi(hi)
0
0


 Π−T

~
HAi(hi)
0
0


T

+ ε−1

 0
~

W
T

Ai(hi)
0


 0

~
W

T

Ai(hi)
0


T (22b)

sym


 Π−T

~
HDi(hi)
0
0

∆(t)

 0
0

WT
Di(hi)

T


≤ ε

 Π−T
~
HDi(hi)
0
0


 Π−T

~
HDi(hi)
0
0


T

+ ε−1

 0
0

WT
Di(hi)

 0
0

WT
Di(hi)

T (22c)

Therefore, one can find that the following inequality can be satisfied by (21) and (22):
sym

{
−ET

Rij
(
hij
)
Π−1

}
+

¯
Γ1ij
(
hij
) P +

¯
Γ2ij
(
hij
)

+Π−T(ARij
(
hij
)
+ ERij

(
hij
)) Π−TDRi(hi)

+Π−T
~
HDi∆(t)

~
WDi

∗ −2P + Γ3ij
(
hij
)

Γ4i(hi)

∗ ∗ Γ5i(hi)

 < 0 (23)

where
¯
Γ11
(
hij
)

= sym
{
−Π−T

~
HBi(hi)∆(t)

~
WBDij

(
hij
)}

and

¯
Γ12(h) = Π−T

~
HBi(hi)∆(t)

(
~

WBPij
(
hij
)
+

~
WBDij

(
hij
))

+ Π−T
~
HAi(hi)∆(t)

~
WAi(hi).

The inequality (23) can also be rewritten as follows:

Ξ + sym
{

ΨTΠ−1Λ
}
< 0 (24)
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where Ξ =

0 P 0
∗ −2P + Γ3ij

(
hij
)

Γ4i(hi)
∗ ∗ Γ5i(hi)

, ΨT =


−

~
E

T

Rij
(
hij
)

~
A

T

Rij
(
hij
)
+

~
E

T

Rij
(
hij
)

~
D

T

i (hi)

 and

Λ =
[
I 0 0

]
.

According to Lemma 2, the following inequalities can be obtained from (24):

ΨT
⊥ΞΨ⊥ < 0 and ΛT

⊥ΞΛ⊥ < 0 (25)

where ΨT
⊥ =

 ~
A

T

Rij
(
hij
)~
E
−T

Rij
(
hij
)
+ I I 0

~
D

T

i (hi)
~
E
−T

Rij
(
hij
)

0 I

 and ΛT
⊥ =

[
0 I 0

]
. Based on the definitions

ΨT
⊥, Ξ and ΛT

⊥, the inequalities in (25) can be directly formulated as the following equations:

ΨT
⊥ΞΨ⊥ =

sym
{

P
~
E
−1

Rij
(
hij
) ~
ARij

(
hij
)}

+
~
C

T

zi(hi)S2
~
Czi(hi) P

~
E
−1

Rij
(
hij
) ~
Di(hi) + Γ4i(hi)

∗ Γ5i(hi)

 (26a)

and

ΛT
⊥ΞΛ⊥ = −2P +

~
C

T

zi(hi)S2
~
Czi(hi) (26b)

Obviously, if Condition (15) of Theorem 1 is held, ΨT
⊥ΞΨ⊥ < 0 and ΛT

⊥ΞΛ⊥ < 0 can
be guaranteed. Furthermore, ΨT

⊥ΞΨ⊥ < 0 implies Φij(h) < 0 such that G(z, w, t) < 0
is obtained from (20). Therefore, passive performance of the closed-loop system (11) is
achieved by satisfying Condition (15). To analyze the stability of the closed-loop system
(11), the following inequality can be obtained from (19) with G(z, w, t) < 0 and by assuming
w(t) = 0:

.
V(x(t)) < −xT(t)

~
C

T

ziS2
~
Czix(t) (27)

Since S2 ≥ 0,
.

V(x(t)) < 0 can be directly inferred by (27), the system (11) is asymp-
totically stable and passive due to satisfying Condition (15). The proof of Theorem 1 is
completed. �

However, the stability condition in Theorem 1 cannot be directly calculated by the
convex optimization algorithm owing to the existence of bilinear terms. To apply the
convex optimization algorithm, Condition (15) is converted into LMI problems by the
Schur complement and Assumption 2 in the following theorem:

Theorem 2. Given the matrices U, Q, V, S1, S2 ≥ 0, S3 and a scalar α, the closed-loop system

(11) is asymptotically stable and passive if there exist matrices R =

[
Z11 0
Z21 Z22

]
, Ydj, Ypj, Kdi,

Kpi,
~
P1 =

~
P

T

1 > 0,
~
P2 =

~
P

T

2 > 0,
~
P3 and a scalar ε such that

Ω1ij Ω2ij Ω3ij Ω4i
∗ Ω5i Ω6ij Ω7i
∗ ∗ Ω8 03×3
∗ ∗ ∗ Ω9

 < 0 f or i, j = 1, 2, . . . , n (28)
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where Ω1ij =


−sym

{
EVRVT +BiYdj

}
αBiYdj

~
P1 +AiVRVT−BiYpj
+EVRVT +BiYdj

∗ −sym
{

αEVRVT + αKdiCy
} ~

P
T
3

∗ ∗ −2
~
P1

,

Ω2ij =



~
P3 + αBiYpj − αBiYdj Di εHBi

~
P2 + αAiVRVT + αEVRVT

−αKpiCy + αKdiCy
Di εHBi

−2
~
P3

VRTVTCT
ziS2Ji

−VRTVTCT
ziS1

0

,

Ω3ij =

εHAi εHDi −YT
djW

T
Bi

εHAi εHDi +αYT
djW

T
Bi

0 0 −YT
pjW

T
Bi + YT

djW
T
Bi

, Ω4i =

 0 0 0
0 0 0

VRTVTWT
Ai 0 VRTVTCT

zi
√

S2

,

Ω5i =

−2
~
P2 0 0
∗ Γ5i 0
∗ ∗ −εI

, Ω6ij =

0 0 αYT
pjW

T
Bi − αYT

djW
T
Bi

0 0 0
0 0 0

, Ω7i =

0 0 0
0 WT

Di 0
0 0 0

,

Ω8 =

−εI 0 0
∗ −εI 0
∗ ∗ −εI

 and Ω9 =

−εI 0 0
∗ −εI 0
∗ ∗ −I

.

Proof. Applying the Schur complement to (15), one can find the following inequality:[
Θ1ij Θ2ij
∗ Θ3

]
< 0 (29)

where Θ1ij =


−sym

{
ET

RijΠ
−1
}

P + Π−T
(

ARij + ERij

)
Π−TDRi εΠ−T

~
HBi εΠ−T

~
HAi

∗ −2P Γ4i 0 0
∗ ∗ Γ5i 0 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

,

Θ2ij =


εΠ−T

~
HDi −

~
W

T

BDij 0 0 0

0
~

W
T

BPij +
~

W
T

BDij
~

W
T

Ai 0
~
C

T

zi
√

S2

0 0 0 WT
Di 0

0 0 0 0 0
0 0 0 0 0


and

Θ3 =


−εI 0 0 0 0
∗ −εI 0 0 0
∗ ∗ −εI 0 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −I

.

By pre- and postmultiplying diag
{

ΠT, ΠT, I, I, I, I
}

and its transposed matrix on (29),
the following inequality can be inferred by defining Ydj = FdjVRVT and Ypj = FpjVRVT:

^
Θ1ij +=1i

^
Θ2ij +=2i

^
Θ3ij

^
Θ4i

∗
^
Θ5i

^
Θ6ij

^
Θ7i

∗ ∗ Ω8 03×3
∗ ∗ ∗ Ω9

 < 0 (30)
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where
^
Θ1ij =


−sym

{
EVRVT + BiYdj

}
αBiYdj

~
P1 + (Ai + E)VRVT

−BiYpj + BiYdj

∗ −sym
{

αEVRVT} ~
P

T

3

∗ ∗ −2
~
P1

,

^
Θ2ij =



~
P3 + αBiYpj
−αBiYdj

Di εHBi

~
P2 + α(Ai + E)VRVT Di εHBi

−2
~
P3

VRTVTCT
ziS2Ji

−VRTVTCT
ziS1

0

,
^
Θ5i =

−2
~
P2 0 0
∗ Γ5i 0
∗ ∗ −εI

,

^
Θ3ij =

εHAi εHDi −YT
djW

T
Bi

εHAi εHDi αYT
djW

T
Bi

0 0 −YT
pjW

T
Bi + YT

djW
T
Bi

,
^
Θ6ij =

0 0 αYT
pjW

T
Bi − αYT

djW
T
Bi

0 0 0
0 0 0

,

^
Θ4i =

 0 0 0
0 0 0

VRTVTWT
Ai 0 VRTVTCT

zi
√

S2

,
^
Θ7i =

0 0 0
0 WT

Di 0
0 0 0

,

=1i =

0 0 0
∗ −sym

{
αLdiCyVRVT} 0

∗ ∗ 0

, =2i =

 0 0 0
α
(
Ldi − Lpi

)
CyVRVT 0 0

0 0 0

,

~
P1 = ΠTP1Π,

~
P2 = ΠTP2Π and

~
P3 = ΠTP3Π.

To convert the above elements into linear variables such that (30) becomes LMI form,
the following relationship can be derived according to Assumption 2. Note that V and U
are the orthogonal matrices:

CyVRVT = U
[
Q 0

]
VTV

[
Z11 0
Z21 Z22

]
VT =

^
RCy (31)

where
^
R = UQZ11Q−1UT.

Based on (31), the following inequality can be obtained from (30):
^
Θ1ij + ä1i

^
Θ2ij + ä2i

^
Θ3ij

^
Θ4i

∗
^
Θ5i

^
Θ6ij

^
Θ7i

∗ ∗ Ω8 03×3
∗ ∗ ∗ Ω9

 < 0 (32)

where ä11 =


0 0 0

∗ −sym
{

αLdi
^
RCy

}
0

∗ ∗ 0

 and ä12 =

 0 0 0

−αLpi
^
RCy + Ldi

^
RCy 0 0

0 0 0

.

By defining Kdi = Ldi
^
R and Kpi = Lpi

^
R, the condition of this theorem can be obtained

from (32). In addition, the inequality (32) is equivalent to the condition of Theorem 2. The
proof of Theorem 2 is completed. �

Obviously, if the feasible solutions satisfy Conditions (28) in Theorem 2, Theorem 1 can
also be held by those solutions. Based on the obtained solutions, the gains

Fdj = Ydj
(
VRVT)−1, Fpj = Ypj

(
VRVT)−1, Ldi = Kdi

^
R
−1

and Lpi = Kpi
^
R
−1

are found
to establish the OBPD fuzzy controller (7).

Remark 1. In many existing papers [33–35], the PD control schemes have validated efficiency in
the control of singular systems. However, only a few works focus on the observer-based PD control
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method. Although the T-S fuzzy-model-based OBPD controller was developed in [36,37], the effect of
the external disturbance has not been considered. Existing papers [10,32,34] show that the singular
system with disturbance is also a critical control issue. Therefore, a stability analysis process has
been successfully developed in Theorem 1 to solve the control problems of both uncertainty and
disturbance in the nonlinear singular systems. In addition, the stability conditions are efficiently
transferred into the LMI form in Theorem 2 by applying some derivation methods.

4. Simulation Results

According to the proposed OBPD fuzzy controller design method, the control prob-
lems of nonlinear singular systems with uncertainties and disturbances can be solved
simultaneously. In this section, the simulation results of two examples are provided to
verify the applicability and effectiveness of the design method.

Example 1. In the first example, a numerical system is applied to provide the comparison re-
sults between [29] and the proposed method. To begin the simulation, the nonlinear system with
uncertainties and external disturbances is presented as follows:

(1+(a + ∆a(t))cos(θ(t)))
..
θ(t) = −b

.
θ

3
(t) + cθ(t) + du(t) + ew(t) (33)

where u(t) and w(t) are the control input and the external disturbance of the system,
respectively, and ∆a(t) is the parameter uncertainty. Note that the derivative of θ(t) is
assumed to satisfy

∣∣∣ .
θ(t)

∣∣∣ < ψ and ψ = 2. Referring to [29], the state variables are selected

as x(t) =
[
x1(t) x2(t) x3(t)

]T with x1(t) = θ(t), x2(t) =
.
θ(t), and x3(t) =

..
θ(t). Then,

System (33) can be further expressed in the following nonlinear singular system with the
parameters set by a = −1, b = c = e = 1 and d = 10:1 0 0

0 1 0
0 0 0

 .
x(t) =

0 1 0
0 0 1
1 −x2

2(t) −1 + (1− ∆a(t))cos(x1(t))

x(t) +

 0
0
10

u(t) +

0
0
1

w(t) (34)

In System (34), the uncertainty ∆a(t) = −0.05∆(t) is selected in the same manner
as [29]. Note that the uncertain variable ∆(t) is considered a random number that is
distributed from −1 to 1. To provide the comparison results, the uncertain variable is
selected as ∆(t) = sin(t) for the simulation. Thus, the corresponding singular T-S fuzzy
model for (34) can be obtained as follows with the effects of uncertainty and disturbance:

E
.
x(t) =

3

∑
i=1

hi(x(t)){(Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t) + (Di + ∆Di)w(t)} (35a)

z(t) =
3

∑
i=1

hi(x(t)){Czix(t) + Jiw(t)} (35b)

y(t) = Cx(t) (35c)

where E =

1 0 0
0 1 0
0 0 0

, A1 =

0 1 0
0 0 1
1 −6 −2

, A2 =

0 1 0
0 0 1
1 0 4

, A3 =

0 1 0
0 0 1
1 0 −2

,

C =

1 0 0
0 1 0
1 0 1

, and Bi =

 0
0
10

, Di =

0
0
1

, Czi =

0.01
0
0

T

, Ji = 1 for i = 1, 2, 3. As

with [29], the uncertain matrices are also given in the form of ∆A1 = ∆A3 =

0 0 0
0 0 0
0 0 −0.05sin(t)

,
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∆A2 =

0 0 0
0 0 0
0 0 0.25sin(t)

, ∆Bi =

0
0
0

. Because [24] has not considered the uncertainty of

the external disturbance signal, the matrix ∆Di =

0
0
0

 is selected. For Model (35), the

membership functions are designed as h1(x(t)) = x2
2(t)/6, h2(x(t)) = 1 + cos(x1(t))/6,

h3(x(t)) = 1− h1(x(t))− h2(x(t)), 0 ≤ hi(x(t)) ≤ 1 and
3
∑

i=1
hi(x(t)) = 1. Moreover, the

uncertain matrices can be constructed via (2) with the following matrices:

HA1 = HA2 = HA3 =

 0
0

0.05

, HB1 = HB2 = HB3 =

 0
0

0.05

, WT
A1 = WT

A3 =

 0
0
−1


WT

A2 =

 0
0
5

, WB1 = WB2 = 0 and ∆(t) = sin(t)

Setting the parameters S1 = 1, S2 = 0.9, S3 = 0.9, and α = 5, the following gains can be
obtained by solving Conditions (28) in Theorem 2 with the convex optimization algorithm:

Fp1 =
[
−1.0956 −4.9096 −4.0418

]
, Fp2 =

[
−0.6234 −2.5771 −1.9427

]
,

Fp3 =
[
−0.5645 −2.3952 −2.2973

]
, Fd1 =

[
−0.9345 −3.8055 −3.2875

]
,

Fd2 =
[
−0.5525 −2.1040 −1.8056

]
, Fd3 =

[
−0.3931 −1.5719 −1.4619

]
,

Lp1 =

 15.1004 −15.0483 −16.2141
8.2802 −2.1318 −10.5743
84.8822 −135.8518 −111.5003

, Lp2 =

 0.9000 6.7415 2.6351
11.2592 −5.9748 −14.0905
46.1297 −85.4462 −64.5283

,

Lp3 =

 11.4828 −11.0003 −11.9841
22.0844 −22.1788 −28.5242
53.8103 −72.7526 −69.4987

, Ld1 =

 3.7345 −0.7978 −4.0273
1.7485 1.3605 −2.0298

52.9920 −78.1460 −71.2967

,

Ld2 =

 −5.4107 12.1361 8.3712
3.5772 −0.7662 −4.1240

37.0494 −53.5829 −50.1338

 and Ld3 =

 0.1886 0.5714 −0.0247
12.3996 −13.8451 −15.9581
23.8485 −35.1426 −32.2594



(36)

Moreover, by setting the parameter setting v2 = 0.5 for the design method in [29], the
following gains of [29] can be obtained without considering the time-delay effect:

F1 =
[
−0.1922 0.1448 −0.2512

]
, F2 =

[
−3.0749 −2.5993 −0.1868

]
, F3 =

[
−3.0251 −2.5574 −0.7777

]
,

L1 =

 1.8840 0.1987 −0.3231
−2.4221 5.9303 2.5168
−1.1335 −4.6284 2.6351

,

L2 =

 0.7806 1.4658 0.7349
−1.3456 4.5332 1.5419
−8.5308 1.6126 10.3188

 and L3 =

 2.0545 1.4648 −0.4529
−1.4005 4.5966 1.6913
−1.3389 1.4239 2.8166


(37)

In the design method [29], the observer-based fuzzy controller is designed only with
proportional state feedback. It is worth noting that the OBPD fuzzy controller in this paper
can solve the stability analysis problem of the singular T-S fuzzy model more efficiently.
Then, the observer-based fuzzy controller is given for [29] as follows:

u(t) =
3

∑
i=1

hi{−Fi x̂(t)} (38)
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Given the initial conditions x(0) =
[
−1.5 −0.75 0.17

]T and x̂(0) =
[
0 0 0

]T,
the state responses of the nonlinear singular system (34) are obtained in Figures 1–3 by
applying the OBPD Fuzzy Controller (7) with Gains (36) and Fuzzy Controller (38) with
Gains (37), respectively. The figures show that the settling time obtained by the proposed
design method is much better than the method in [29] despite the overshoot being slightly
bigger. In order to verify the passive performance introduced in Definition 1, the following
value is obtained based on the simulation results:∫ tp

0 zT(t)z(t)dt +
∫ tp

0 wT(t)w(t)dt

2
∫ tp

0 zT(t)w(t)dt
= 0.9049 (39)
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Figure 3. System responses of x3(t) in Example 1 [29].

According to Definition 1, with the setting of matrices S1 = 1, S2 = 0.9, and S3 = 0.9,
it is obvious that the value in (39), which is smaller than 1.111, successfully satisfies the
passive constraint in (12). That is, the attenuation performance of System (34) can be
achieved with the external disturbance input energy. Because the passive constraint in
(12) is satisfied, one can also see that the smoother responses of the system in (34) can be
guaranteed by applying the fuzzy controller in (7).

Based on the comparison results in Example 1, it can be said that the proposed OBPD
fuzzy controller design method can provide better control performance for the nonlinear
singular system. Moreover, a more efficient stability analysis process can also be developed
with the construction of a PD state feedback controller.

Example 2. The effectiveness of the proposed design method has been verified in Example 1. To
further demonstrate the applicability and feasibility, the simulation results of a single-species bio-
economic system are presented in the second example. Referring to [1], the following nonlinear
system can be given by considering the economic interest of harvest effort in an immature population:

.
x1(t) =

(
− ζα

r2
− ηc

ρ

)
x1(t) + ζx2(t)− c

ρ x3(t)− ηx2
1(t)− x1(t)x3(t) + w(t) (40a)

.
x2(t) = αx1(t)− r2x2(t) (40b)

0 = ρ

(
ζα

r2
− r1 − α− ηc

ρ

)
x1(t) + ρx1(t)x3(t)−m + u(t) (40c)

where x1(t) = Θ1(t)− c
ρ , x2(t) = Θ2(t)− αc

ρr2
and x3(t) = E(t)− ζαρ−αρr2−ρr1r2−ηcr2

ρr2
. Θ1(t)

and Θ2(t), respectively, represent the population density of juvenile species and adult
species; u(t) represents a policy for adjusting the tax; ρ represents price constant per the
individual population; c represents the cost coefficient; and m represents the economic
interest of harvesting. Referring to [1], it is known that the bio-economic system has an
equilibrium when m = 0. More detail on the physical meaning of system parameters can
be found in [1].

According to [1], the operating points are chosen as x1(t) ∈ [−10, 10], and the system
coefficients are selected as ζ = 0.15, r1 = 0.2, r2 = 0.1, α = 0.5, η = 0.001, ρ = 1, and
c = 40. To obtain more precise control performance, the problem of modeling error is also
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considered as the uncertain factor in the system. Then, the following T-S fuzzy model in
(40) can be constructed:

E
.
x(t) =

2

∑
i=1

hi(x(t)){(Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t) + (Di + ∆Di)w(t)} (41a)

z(t) =
2

∑
i=1

hi(x(t)){Czix(t) + Jiw(t)} (41b)

y(t) = Cx(t) (41c)

where E =

1 0 0
0 1 0
0 0 0

, A1 =

−0.78 0.15 −30
0.5 −0.1 0

0.01 0 −10

, A2 =

−0.8 0.15 −50
0.5 −0.1 0

0.01 0 10

,

Bi =

0
0
1

, C =

[
1 1 0
0 0 1

]
, Cz =

[
1 0 0

]
, Di =

1
0
0

, Ji = 1 for i = 1, 2,

∆A1 =

−0.006sin(t) 0.002sin(t) 0
−0.015sin(t) 0.005sin(t) 0

0 0 0

, ∆A2 =

 0.015sin(t) −0.006sin(t) 0
−0.005sin(t) 0.002sin(t) 0

0 0 0

,

∆B1 =

 0
0

−0.003sin(t)

, ∆B2 =

 0
0

0.004sin(t)

, ∆D1 =

0.015sin(t)
0
0

 and

∆D2 =

0.01sin(t)
0
0

. The membership functions of the fuzzy model in (41) are con-

sidered as h1(x(t)) = 1
2

(
1− x1(t)

10

)
and h2(x(t)) = 1− h1(x(t)). To develop the proposed

design method, the following matrices are selected for uncertainties in the form of (2):

HA1 =

 0.02
0.05

0

, HA2 =

 −0.03
0.01

0

, HB1 =

 0
0

0.01

, HB2 =

 0
0

0.02

, HD1 =

 0.03
0
0

, HD2 =

 0.05
0
0

, WT
A1 =

 −0.3
0.1
0

,

WT
A2 =

 −0.5
0.2
0

, WB1 = −0.3, WB2 = 0.2, WD1 = 0.5, WD2 = 0.2 and ∆(t) = sin(t)

By setting the matrices S1 = 1, S2 = 0.8, S3 = 0.8, and α = 0.5, the following gains
can be obtained by solving Conditions (28) of Theorem 2:

Fp1 = 105 ×
[

0.0226 0.0226 −1.1679
]
, Fp2 = 105 ×

[
0.0256 0.0256 −1.3219

]
,

Fd1 = 104 ×
[

0.1513 0.1513 −7.8155
]
, Fd2 = 104 ×

[
0.1713 0.1713 −8.8488

]
Lp1 = 105 ×

 −0.0002 0.0393
−0.0002 0.0389
0.0486 −2.5097

, Lp2 = 105 ×

 −0.0001 0.0317
−0.0001 0.0317
0.0491 −2.5340


Ld1 = 105 ×

 −0.0001 0.0221
−0.0001 0.0213
0.0236 −1.2184

 and Ld2 = 105 ×

 −0.0000 0.0165
−0.0000 0.0152
0.0240 −1.2387


(42)

Based on the obtained gains, the proposed OBPD fuzzy controller in (7) can be
designed for the nonlinear system in (40). The state responses of (40) are provided in
Figures 4–6 with the initial conditions x(0) =

[
0.5 1 0

]T and x̂(0) =
[
0 0 0

]T. Based
on the simulation results, the following value is also obtained to verify passive performance:
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2
∫ tp

0 zT(t)w(t)dt
= 0.94 (43)

Because the value of (43) is smaller than 1.111, the constraint (12) of Definition 1 is
satisfied, and the requirements of passivity are achieved. This means that even under the
effect of the disturbance, the control performance also can be guaranteed for the system (40).

Referring to the figures, one can find that the stability of (40) is achieved by the
proposed OBPD fuzzy controller (7). Moreover, the fuzzy observer can also successfully
estimate the actual states. Based on the definition of state variables, the convergence
of the bio-economy system in (40) means that all states can be controlled to a positive
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equilibrium. This result also indicates that the species population is guaranteed to be
not endangered. Furthermore, government policy can efficiently adjust taxes to increase
or decrease the cost of harvesting based on the proposed design method to achieve the
sustainable development of bio-economic systems in (40). Thus, the proposed OBPD
fuzzy controller design method can provide a valid choice for the control of numerical and
practical nonlinear singular systems.

5. Conclusions

In this paper, an observer-based control problem was discussed for uncertain T-SFSS
with external disturbance. According to the designed observer, the current states can be
estimated to guarantee the existence of states in the controller. Therefore, the observer-
based PD fuzzy controller can be applied to achieve the regularity and nonimpulsiveness of
a system and guarantee the stability of considered systems when the complete states are not
measurable. Based on passivity theory and Lyapunov theory, the stability conditions were
obtained to deal with the control problem to achieve stability and attenuation performance.
By utilizing SVD, projection lemma, and the Schur complement, the derived conditions
were converted into strict LMI form, which can be effectively calculated by using convex
optimization techniques. Furthermore, the positive definite matrix was not required as a
diagonal case to reduce the conservatism of searching for feasible solutions. Based on the
proposed method, the observer-based PD fuzzy controller can be designed to guarantee the
stability of uncertain nonlinear singular systems subject to passivity. Finally, two examples
have been presented to illustrate the effectiveness of the proposed control method.
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