
Citation: Chen, Y.-L.; Cai, Y.-R.;

Cheng, M.-Y. Vision-Based Robotic

Object Grasping—A Deep

Reinforcement Learning Approach.

Machines 2023, 11, 275.

https://doi.org/10.3390/

machines11020275

Academic Editor: Shabnam

Sadeghi Esfahlani

Received: 5 January 2023

Revised: 8 February 2023

Accepted: 10 February 2023

Published: 12 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Vision-Based Robotic Object Grasping—A Deep Reinforcement
Learning Approach
Ya-Ling Chen, Yan-Rou Cai and Ming-Yang Cheng *

Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
* Correspondence: mycheng@mail.ncku.edu.tw

Abstract: This paper focuses on developing a robotic object grasping approach that possesses the
ability of self-learning, is suitable for small-volume large variety production, and has a high success
rate in object grasping/pick-and-place tasks. The proposed approach consists of a computer vision-
based object detection algorithm and a deep reinforcement learning algorithm with self-learning
capability. In particular, the You Only Look Once (YOLO) algorithm is employed to detect and classify
all objects of interest within the field of view of a camera. Based on the detection/localization and
classification results provided by YOLO, the Soft Actor-Critic deep reinforcement learning algorithm
is employed to provide a desired grasp pose for the robot manipulator (i.e., learning agent) to
perform object grasping. In order to speed up the training process and reduce the cost of training data
collection, this paper employs the Sim-to-Real technique so as to reduce the likelihood of damaging
the robot manipulator due to improper actions during the training process. The V-REP platform
is used to construct a simulation environment for training the deep reinforcement learning neural
network. Several experiments have been conducted and experimental results indicate that the 6-DOF
industrial manipulator successfully performs object grasping with the proposed approach, even for
the case of previously unseen objects.

Keywords: 6-DOF industrial manipulator; deep reinforcement learning; soft actor-critic; robotic
object grasping; YOLO

1. Introduction

In most conventional approaches for vision-based pick-and-place tasks of industrial
manipulators used in a production line, a 3D model of the object to be grasped must be
known in advance. With the known 3D model, one can either analyze the geometric shape
of the object and find a proper way for the industrial manipulator to grasp that object or
exploit methods such as feature matching and shape recognition to find an appropriate
pose for the industrial manipulator to perform object grasping as well as pick-and-place
tasks. However, this kind of approach is sensitive to the illumination conditions and other
types of disturbances in the ambient environment. If the 3D model of the object to be
grasped is not known in advance or if there are a variety of objects to be grasped, the
aforementioned conventional approaches may fail. With the machine learning paradigm
becoming popular, more and more research has been focused on applying the deep learning
technique to deal with automatic object grasping tasks [1]. For example, Johns et al. [2]
used a deep neural network to predict a score for the grasp pose of a parallel jaw gripper
for each object in a depth image, through which a physical simulator was employed to
obtain simulated depth images of objects as the training data set. Lenz et al. [3] used two
deep neural networks to detect robotic grasps from images captured by an RGBD camera.
One deep neural network having a simpler structure and requiring fewer computation
resources was mainly used to retrieve candidate bounding rectangles for grasping. Another
deep neural network was used to rank the candidate bounding rectangles for a parallel
gripper [3]. In [4], 700 h were spent collecting data from 50,000 grasping attempts of robot

Machines 2023, 11, 275. https://doi.org/10.3390/machines11020275 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020275
https://doi.org/10.3390/machines11020275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines11020275
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020275?type=check_update&version=2

Machines 2023, 11, 275 2 of 19

manipulators, and a Convolutional Neural Network (CNN) was combined with a multi-
stage learning approach to predict an appropriate grasping pose for robot manipulators.
In [5], Levine et al. exploited the deep learning paradigm to train fourteen 7-DOF robot
manipulators to perform object grasping using RGB images. A total of 800,000 grasp
attempts by robot manipulators were recorded within two months to train the deep neural
network. Experimental results indicate that the robot manipulator can successfully grasp
1100 objects of different sizes and shapes. Goldberg and his colleagues have done a series
of studies on robot grasping using deep learning [6–9]. Mahler et al. proposed the Dex-Net
1.0 deep learning system for robot grasping [6]. More than 10,000 independent 3D models
and 2.5 million samples of grasping data for the parallel gripper are used in Dex-Net 1.0.
In order to shorten the training time, 1500 virtual cores in the Google cloud platform are
used. In 2019, Mahler et al. proposed the Dex-Net 4.0 [9], for which five million depth
images had been trained by a GQ-CNN. After the training is complete, the dual arm robot
with a suction nozzle and a parallel-jaw gripper is able to empty a bin with an average
grasping rate of 300 objects/hour [9]. Several past studies utilized CNN to produce suitable
grasping poses to perform object grasping tasks [10–12]. All of the aforementioned studies
demonstrated good performance in automatic object grasping, even for cases in which the
objects to be grasped did not appear in the training data set. However, the subjects of these
past studies all have common drawbacks, in that they are very time consuming and not
cost effective in generating a grasping data set for training the deep neural network.

Recently, the research topic of exploiting reinforcement learning in training robot
manipulators to perform object grasping has received much attention [13–15]. Gualtieri et al.
used deep reinforcement learning algorithms to solve the robotic pick-and-place problems
for cases in which the geometrical models of the objects to be grasped are unknown [16]. In
particular, using the deep reinforcement learning algorithm, the robot manipulator is able
to determine a suitable pose (i.e., optimal action) to grasp certain types of objects. In [17],
the image of an arbitrary pose of an object is used as an input to a distributed reinforcement
learning algorithm. After learning, the robot is able to perform grasping tasks for objects
that are either occluded or previously unseen. Deep reinforcement learning is also used
in training robotic pushing/grasping/picking [18,19]. Kalashnikov et al. developed the
QT-Opt algorithm and focused on scalable, off-policy deep reinforcement learning [20].
Seven real robot manipulators were used to perform and record more than 580 k grasp
attempts for training a deep neural network. Once the learning process is complete, the
real robot manipulator can successfully perform grasping, even for previously unseen
objects [20]. Chen and Dai used a CNN to detect the image features of an object. Based
on the detected image features of the object of interest, a deep Q-learning algorithm was
used to determine the grasp pose corresponding to that object [21]. In [22], Chen et al. used
a Mask R-CNN and PCA to estimate the 3D pose of objects to be grasped. Based on the
estimated 3D object pose, a deep reinforcement learning algorithm is employed to train the
control policy in a simulated environment. Once the learning process is complete, one can
deploy the learned model to the real robot manipulator without further training.

This paper proposes an object grasping approach that combines the YOLO algo-
rithm [23–26] and the Soft Actor-Critic (SAC) algorithm [27,28]. It is well known that YOLO
is capable of rapidly detecting, localizing and recognizing objects in an image. In particular,
YOLO can find the location of the object of interest inside the field of view of a camera
and use this location information as the input to a reinforcement learning algorithm. Since
the search of an entire image in not essential, training time can therefore be substantially
reduced. SAC is based on the Actor-Critic framework and exploits Off-Policy to improve
the sample efficiency. SAC maximizes the expected return as well as the entropy of policy
simultaneously. Since SAC exhibits excellent performance and is suitable for real-world
applications, this paper employs SAC to train the robot manipulator to perform object
grasping through self-learning.

Machines 2023, 11, 275 3 of 19

2. Framework

This paper develops a robotic object grasping technique that combines computer
vision-based object detection/recognition/localization and a deep reinforcement learning
algorithm with self-learning capability. Figure 1 shows the schematic diagram of the
robotic pick-and-place system developed in this paper. As shown in Figure 1, YOLO will
detect the object of interest from the image captured by the camera. SAC will provide the
desired grasping point in the image plane based on the depth image information of the
object bounding box. The grasping point on the 2D-image plane is converted to a desired
6D grasping pose in the Cartesian space so as to control the robot manipulator to grasp
objects of interest and place them at a desired position. The system will return the reward
information based on the reward mechanism.

Machines 2023, 11, x FOR PEER REVIEW 3 of 20

applications, this paper employs SAC to train the robot manipulator to perform object
grasping through self-learning.

2. Framework
This paper develops a robotic object grasping technique that combines computer vi-

sion-based object detection/recognition/localization and a deep reinforcement learning al-
gorithm with self-learning capability. Figure 1 shows the schematic diagram of the robotic
pick-and-place system developed in this paper. As shown in Figure 1, YOLO will detect
the object of interest from the image captured by the camera. SAC will provide the desired
grasping point in the image plane based on the depth image information of the object
bounding box. The grasping point on the 2D-image plane is converted to a desired 6D
grasping pose in the Cartesian space so as to control the robot manipulator to grasp objects
of interest and place them at a desired position. The system will return the reward infor-
mation based on the reward mechanism.

Figure 1. Schematic diagram of robotic pick-and-place based on computer vision and deep rein-
forcement learning.

3. Object Recognition and Localization Based on YOLO Algorithms
In computer vision-based object recognition/localization applications, many past

studies have adopted a two-step approach. The first step focuses on detecting and seg-
menting out the region that contains objects of interest within the image. The second step
proceeds to object recognition/localization based on the region detected in the first step.
Such an approach often consumes enormous computation resources and time. Unlike the
two-step approach, YOLO can simultaneously detect and recognize objects of interest [23–
26]. The schematic diagram of the YOLO employed in this paper is shown in Figure 2,
where “Input” is the image input, “Conv” is the convolution layer, “Res_Block” is the
residual block, and “Upsample” is the upsampling of image features. YOLO uses the
Darknet-53 network structure to extract image features. In general, Darknet-53 consists of
a series of 1 × 1 and 3 × 3 convolution layers. Each convolution layer has a Leaky ReLU

Figure 1. Schematic diagram of robotic pick-and-place based on computer vision and deep
reinforcement learning.

3. Object Recognition and Localization Based on YOLO Algorithms

In computer vision-based object recognition/localization applications, many past stud-
ies have adopted a two-step approach. The first step focuses on detecting and segmenting
out the region that contains objects of interest within the image. The second step proceeds
to object recognition/localization based on the region detected in the first step. Such an
approach often consumes enormous computation resources and time. Unlike the two-step
approach, YOLO can simultaneously detect and recognize objects of interest [23–26]. The
schematic diagram of the YOLO employed in this paper is shown in Figure 2, where
“Input” is the image input, “Conv” is the convolution layer, “Res_Block” is the residual
block, and “Upsample” is the upsampling of image features. YOLO uses the Darknet-53
network structure to extract image features. In general, Darknet-53 consists of a series of
1 × 1 and 3 × 3 convolution layers. Each convolution layer has a Leaky ReLU activation
function, a batch normalization unit and a residual block to cope with the problem of
gradient disappearance/explosion caused by the large number of layers in the deep neural
network. In addition, to improve the detection accuracy of small objects, YOLO adopts the

Machines 2023, 11, 275 4 of 19

Feature Pyramid Network structure to perform multi-scale detection. The image input after
processing by the Darknet-53 will output three different sizes of image features—13 × 13,
26 × 26 and 52 × 52. Object detection will be performed on these image features and the
anchor box will then be equally distributed to three outputs. The final detection results will
be the sum of the detection results of these three image features of different sizes.

Machines 2023, 11, x FOR PEER REVIEW 4 of 20

activation function, a batch normalization unit and a residual block to cope with the prob-
lem of gradient disappearance/explosion caused by the large number of layers in the deep
neural network. In addition, to improve the detection accuracy of small objects, YOLO
adopts the Feature Pyramid Network structure to perform multi-scale detection. The im-
age input after processing by the Darknet-53 will output three different sizes of image
features—13 × 13, 26 × 26 and 52 × 52. Object detection will be performed on these image
features and the anchor box will then be equally distributed to three outputs. The final
detection results will be the sum of the detection results of these three image features of
different sizes.

Figure 2. Schematic diagram of YOLO.

4. Object Pick-and-Place Policy Based on SAC Algorithms
SAC is a deep reinforcement learning algorithm [27,28] that can enable a robot to

learn in the real world. The attractive features of SAC include: (1) it is based on the Actor-
Critic framework; (2) it can learn based on past experience, i.e., off-policy, to achieve im-
proved efficiency in sample usage; (3) it belongs to the category of Maximum Entropy
Reinforcement Learning and can improve stability and exploration; and (4) it requires
fewer parameters.

Figure 2. Schematic diagram of YOLO.

4. Object Pick-and-Place Policy Based on SAC Algorithms

SAC is a deep reinforcement learning algorithm [27,28] that can enable a robot to
learn in the real world. The attractive features of SAC include: (1) it is based on the
Actor-Critic framework; (2) it can learn based on past experience, i.e., off-policy, to achieve
improved efficiency in sample usage; (3) it belongs to the category of Maximum Entropy
Reinforcement Learning and can improve stability and exploration; and (4) it requires
fewer parameters.

In this paper, both the state and action are defined in the continuous space. Therefore,
SAC uses neural networks to parametrize the soft-action value function and the policy
function as Qθ(st, at) and πφ(at

∣∣st) , respectively. A total of five neural networks are
constructed—two soft action-value networks Qθ1(st, at) and Qθ2(st, at); two target soft
action-value networks Q′θ1

′(st, at) and Q′θ2
′(st, at); and one policy network πφ(at

∣∣st) ,

Machines 2023, 11, 275 5 of 19

where θ1,θ2,θ1
′,θ2
′ and φ are the parameter vectors of the neural networks as shown in

Figure 3. In particular, the policy function and the soft action-value function are the actor
and the critic in the Actor-Critic framework, respectively. Under state s, the soft action-value
function will output the expected reward Qθ(st, at) for selecting action a, thus guiding
the policy function πφ(at

∣∣st) to learn. Based on the current state, the policy function
will output an action to yield the system state for the next moment. By repeating these
procedures, one can collect past experience to be used in training the soft action-value
function. Since SAC is a random policy, the outputs of SAC are therefore the mean and
standard deviation of probability distribution of the action space.

Machines 2023, 11, x FOR PEER REVIEW 5 of 20

In this paper, both the state and action are defined in the continuous space. Therefore,
SAC uses neural networks to parametrize the soft-action value function and the policy
function as (,)t tQ s aθ and (|)t ta sφπ , respectively. A total of five neural networks are
constructed—two soft action-value networks

1
(,)t tQ s aθ and

2
(,)t tQ s aθ ; two target soft ac-

tion-value networks
1
(,)t tQ s a

θ ′
′ and

2
(,)t tQ s a

θ ′
′ ; and one policy network (|)t ta sφπ , where 1θ

, 2θ , 1θ ′ , 2θ ′ and φ are the parameter vectors of the neural networks as shown in Figure
3. In particular, the policy function and the soft action-value function are the actor and the
critic in the Actor-Critic framework, respectively. Under state s, the soft action-value func-
tion will output the expected reward (,)t tQ s aθ for selecting action a, thus guiding the pol-
icy function (|)t ta sφπ to learn. Based on the current state, the policy function will output
an action to yield the system state for the next moment. By repeating these procedures,
one can collect past experience to be used in training the soft action-value function. Since
SAC is a random policy, the outputs of SAC are therefore the mean and standard devia-
tion of probability distribution of the action space.

Figure 3. Neural network architecture of SAC.

The objective function for the Soft Action-Value Network is described by Equation
(1), while Equation (2) is the learning target. The Mean-Square Error (MSE) is employed
to update the network parameters. The action-value network (,)t tQ s aθ and the target ac-
tion-value network (,)t tQ s a′ have the same network structure. The action-value network
is used to predict the expected reward for executing action a under state s. The target ac-
tion-value network is used to update the target so as to help train the action-value net-
work. During training, only the action-value network will be trained, while the target ac-
tion-value network will remain unchanged. In short, the target will change if the target
action-value network updates, which will make it difficult for the learning of the neural
network to converge.

2
(,)~

1 ˆ() ((,) (,))
2t tQ s a D t t t tJ E Q s a Q s aθθ = −  

 (1)

1 ~ 1
ˆ (,)= (,)+ [()]

tt t t t s p tQ s a r s a E V sθγ
+ ′ + (2)

Figure 3. Neural network architecture of SAC.

The objective function for the Soft Action-Value Network is described by Equation (1),
while Equation (2) is the learning target. The Mean-Square Error (MSE) is employed
to update the network parameters. The action-value network Qθ(st, at) and the target
action-value network Q′(st, at) have the same network structure. The action-value network
is used to predict the expected reward for executing action a under state s. The target
action-value network is used to update the target so as to help train the action-value
network. During training, only the action-value network will be trained, while the target
action-value network will remain unchanged. In short, the target will change if the target
action-value network updates, which will make it difficult for the learning of the neural
network to converge.

JQ(θ) = E(st ,at)∼D

[
1
2
(Qθ(st, at)− Q̂(st, at))

2
]

(1)

Q̂(st, at) = r(st, at)+γEst+1∼p[Vθ′(st+1)] (2)

In this paper, the Stochastic Gradient Descent (SGD) method is employed to calculate the
derivative of the objective function, as described by Equation (3):

∇̂θ JQ(θ) = ∇θQθ(st, at)(Qθ(st, at)− r(st, at) + γ(Qθ′(st+1, at+1)− α log πφ(at+1|st+1)))) (3)

The weights of the target soft action value network are updated using Equation (4), where
τ is a constant:

θ′t+1 ← τθt + (1− τ)θ′t (4)

The objective function of the policy network is described by Equation (5). To improve
the policy, one should maximize the sum of action value and entropy:

Machines 2023, 11, 275 6 of 19

Jπ(φ) = Est∼D,at∼πθ
[α log(πφ(at

∣∣st))−Qθ(st, at)]
at = fφ(εt; st)

(5)

where εt is the noise and Equation (5) can be rewritten as Equation (6):

Jπ(φ) = Est∼D,εt∼N [α log(πφ(fφ(εt; st)
∣∣st))−Qθ(st, fφ(εt; st))] (6)

The derivative of the objective function of the policy network is described by
Equation (7):

∇̂φ Jπ(φ) = ∇φα log(πφ(at|st)) + (∇at α log(πφ(at|st))−Q(st, at))∇φ fφ(εt; st) (7)

The SAC reinforcement learning algorithm is illustrated in Figure 4.

Machines 2023, 11, x FOR PEER REVIEW 6 of 20

In this paper, the Stochastic Gradient Descent (SGD) method is employed to calculate the
derivative of the objective function, as described by Equation (3):

1 1 1 1
ˆ () (,)((,) (,) ((,) log (|))))Q t t t t t t t t t tJ Q s a Q s a r s a Q s a a sθ θ θ θ θ φθ γ α π′ + + + +∇ =∇ − + − (3)

The weights of the target soft action value network are updated using Equation (4), where 𝜏 is a constant:

1 (1)t t tθ τθ τ θ+′ ′← + − (4)

The objective function of the policy network is described by Equation (5). To improve
the policy, one should maximize the sum of action value and entropy:

~ , ~() [log((|)) (,)]
(;)

t ts D a t t t t

t t t

J E a s Q s a

a f s
θπ π φ θ

φ

φ α π
ε

= −

=
 (5)

where 𝜀௧ is the noise and Equation (5) can be rewritten as Equation (6):

~ , ~() [log(((;) |)) (, (;))]
t ts D N t t t t t tJ E f s s Q s f sπ ε φ φ θ φφ α π ε ε= − (6)

The derivative of the objective function of the policy network is described by Equa-
tion (7):

ˆ () log((|)) (log((|)) (,)) (;)
tt t a t t t t t tJ a s a s Q s a f sφ π φ φ φ φ φφ α π α π ε∇ = ∇ + ∇ − ∇ (7)

The SAC reinforcement learning algorithm is illustrated in Figure 4.

Soft Actor-Critic

1. Input： 1 2, ,θ θ φ Initial parameters

2. 1 1 2 2,θ θ θ θ′ ′← ← Initial target network weights

3. D ← ∅ Initial empty replay buffer

4. for each iteration do
5. for each environment step do

6. ~ (|)t t ta a sφπ Sample action from the policy

7. 1 1~ (| ,)t t t ts p s s a+ +
 Sample transition from the environment

8. { }1(, , (,),)t t t t tD D s a r s a s +← ∪ Store the transition in the replay buffer

9. end for
10. for each gradient step do

11. { }ˆ () for 1, 2
ii i Q Q iJ iθθ θ λ θ← − ∇ ∈ Update the Q-function parameters

12. ˆ ()Jπ φ πφ φ λ φ← − ∇ Update policy weights

13. { }(1) for 1,2i i i iθ τθ τ θ′ ′ ′← + − ∈ Update target network weights

14. end for
15. end for

16. Output： 1 2, ,θ θ φ Optimized parameters

Figure 4. SAC reinforcement learning algorithm.
Figure 4. SAC reinforcement learning algorithm.

4.1. Policy

This paper applies SAC to robotic object grasping. The learning agent is the 6-DOF
robot manipulator, while the policy output is the coordinate (u,v) of the object grasping
point on the image plane. The state, action and reward mechanism are designed as follows.

4.1.1. State (State s)

By exploiting YOLO, one can detect the objects of interest. The state of the SAC
algorithm is defined to be the depth image of the object of interest. The state input designed
in this paper is the depth information. Therefore, after obtaining the position of the object
of interest in the RGB image, one needs to find its corresponding position in the depth

Machines 2023, 11, 275 7 of 19

image. Note that this depth image will be scaled to a size of 64 × 64. To be precise, the state
used in this paper is a 64 × 64 × 1 depth image as shown in Figure 5.

Machines 2023, 11, x FOR PEER REVIEW 7 of 20

4.1. Policy
This paper applies SAC to robotic object grasping. The learning agent is the 6-DOF

robot manipulator, while the policy output is the coordinate (u,v) of the object grasping
point on the image plane. The state, action and reward mechanism are designed as fol-
lows.

4.1.1. State (State s)
By exploiting YOLO, one can detect the objects of interest. The state of the SAC algo-

rithm is defined to be the depth image of the object of interest. The state input designed
in this paper is the depth information. Therefore, after obtaining the position of the object
of interest in the RGB image, one needs to find its corresponding position in the depth
image. Note that this depth image will be scaled to a size of 64 × 64. To be precise, the state
used in this paper is a 64 × 64 × 1 depth image as shown in Figure 5.

Figure 5. Illustrative diagram of state acquisition.

4.1.2. Action (Action a)
The action of SAC is defined to be the input displacement vector of the object of in-

terest on the image plane as described by Equation (8), for which its unit is a pixel. The
length and width of the bounding box obtained by YOLO are denoted as x and y, respec-
tively. In addition, the coordinate of the center of the bounding box is denoted as (𝑢௖, 𝑣௖).
Equation (9) gives the displacement vector of the object of interest on the image plane
corresponding to the action by the SAC. The coordinates of the object grasping point on
the image plane as shown in Figure 6 are calculated using Equation (10). With the calcu-
lated image coordinates of the object grasping point, by using coordinate transformation,
depth information and inverse kinematics, one can obtain the joint command for the 6-
DOF robot manipulator to perform object grasping.

1
1 2

2

[1,1]
(,),

[1,1]
a

a a a
a

∈ −
=  ∈ −

 (8)

1

2

1 (* / 2 0.99)
1 (* / 2 0.99)

u a x
v a y

Δ = + −
Δ = + −

 (9)

c

c

u u u
v v v

= Δ +
= Δ +

 (10)

Figure 5. Illustrative diagram of state acquisition.

4.1.2. Action (Action a)

The action of SAC is defined to be the input displacement vector of the object of
interest on the image plane as described by Equation (8), for which its unit is a pixel. The
length and width of the bounding box obtained by YOLO are denoted as x and y, respec-
tively. In addition, the coordinate of the center of the bounding box is denoted as (uc, vc).
Equation (9) gives the displacement vector of the object of interest on the image plane
corresponding to the action by the SAC. The coordinates of the object grasping point on the
image plane as shown in Figure 6 are calculated using Equation (10). With the calculated
image coordinates of the object grasping point, by using coordinate transformation, depth
information and inverse kinematics, one can obtain the joint command for the 6-DOF robot
manipulator to perform object grasping.

a = (a1, a2),
{

a1 ∈ [−1, 1]
a2 ∈ [−1, 1]

(8)

∆u = 1 + (a1 ∗ x/2− 0.99)
∆v = 1 + (a2 ∗ y/2− 0.99)

(9)

u = ∆u + uc
v = ∆v + vc

(10)

Machines 2023, 11, x FOR PEER REVIEW 8 of 20

Figure 6. The displacement vector and the object grasping point on the image plane.

4.1.3. Reward (Reward, r)
A positive reward of 1 will be given if a successful object grasping occurs. In contrast,

a negative reward −0.1 (i.e., penalty) will be given if failure occurs. As a result, the accu-
mulated reward for an episode will be negative if the first ten attempts of object grasping
fail. In order to help the learning agent find the optimal object grasping point as soon as
possible, an extra positive reward 0.5 will be given if the first attempt of object grasping
is successful. In addition, two termination conditions are adopted for the learning of SAC.
To prevent the learning agent from continuously learning the wrong policy, if none of the
first 100 object grasping attempts is successful, this episode will be terminated immedi-
ately. In addition, when the learning agent successfully performs object grasping, this ep-
isode will also be terminated immediately. The reward mechanism is described by Equa-
tion (11).

1 , if successful
+1.5 , if successful and the number of attempts in object grasping 1

0.1 , for each failure attempt in object grasping
r

+
= =
−

 (11)

4.2. Architecture Design of SAC Neural Network
Since state s adopted in this paper is a 64 × 64 × 1 depth image, a CNN is amended to

the SAC so that the SAC can learn directly from the depth image. The hyperparameters of
SAC are listed in Table 1 and its network architecture is shown in Figure 7. The input to
the policy network is the depth image of the object of interest as detected by YOLO. The
inputs to the soft action-value network and the target soft action-value network are com-
prised of the depth image of the object of interest as detected by YOLO and the policy
outputted by the policy network. As shown in Figure 7, the policy network, the soft action-
value network and the target soft action-value network all consist of three CNNs and four
full connected neural networks. The activation functions used in the soft action-value net-
work and the target soft action-value network are ReLU. As for the policy network, the
activation functions for the three CNNs and the first three full connected neural networks
are ReLU. The output of the last layer of the policy network is the displacement vector on
the image plane, having both positive and negative values. Therefore, the hyperbolic tan-
gent function (i.e., Tanh) is chosen as the activation function for the last layer of the policy
network. Note that the three CNNs and the first fully connected neural network are used
to extract image features.

Figure 6. The displacement vector and the object grasping point on the image plane.

Machines 2023, 11, 275 8 of 19

4.1.3. Reward (Reward, r)

A positive reward of 1 will be given if a successful object grasping occurs. In contrast,
a negative reward −0.1 (i.e., penalty) will be given if failure occurs. As a result, the
accumulated reward for an episode will be negative if the first ten attempts of object
grasping fail. In order to help the learning agent find the optimal object grasping point
as soon as possible, an extra positive reward 0.5 will be given if the first attempt of object
grasping is successful. In addition, two termination conditions are adopted for the learning
of SAC. To prevent the learning agent from continuously learning the wrong policy, if
none of the first 100 object grasping attempts is successful, this episode will be terminated
immediately. In addition, when the learning agent successfully performs object grasping,
this episode will also be terminated immediately. The reward mechanism is described by
Equation (11).

r =


+1 , if successful
+1.5 , if successful and the number of attempts in object grasping = 1
−0.1 , for each failure attempt in object grasping

(11)

4.2. Architecture Design of SAC Neural Network

Since state s adopted in this paper is a 64 × 64 × 1 depth image, a CNN is amended to
the SAC so that the SAC can learn directly from the depth image. The hyperparameters of
SAC are listed in Table 1 and its network architecture is shown in Figure 7. The input to the
policy network is the depth image of the object of interest as detected by YOLO. The inputs
to the soft action-value network and the target soft action-value network are comprised
of the depth image of the object of interest as detected by YOLO and the policy outputted
by the policy network. As shown in Figure 7, the policy network, the soft action-value
network and the target soft action-value network all consist of three CNNs and four full
connected neural networks. The activation functions used in the soft action-value network
and the target soft action-value network are ReLU. As for the policy network, the activation
functions for the three CNNs and the first three full connected neural networks are ReLU.
The output of the last layer of the policy network is the displacement vector on the image
plane, having both positive and negative values. Therefore, the hyperbolic tangent function
(i.e., Tanh) is chosen as the activation function for the last layer of the policy network.
Note that the three CNNs and the first fully connected neural network are used to extract
image features.

Table 1. Hyperparameters of SAC neural network.

Hyperparameter Title 2

optimizer Adam
learning rate 0.001

replay buffer size 200,000
batch size 64

discount factor (γ) 0.99
target smoothing coefficient (τ) 0.005

entropy temperature parameter (α) 0.01

Machines 2023, 11, 275 9 of 19Machines 2023, 11, x FOR PEER REVIEW 9 of 20

(a)

(b)

(c)

Figure 7. Architecture of SAC neural network. (a) Policy Network; (b) Soft Action-Value Network;
(c) Target Soft Action-Value Network.

Table 1. Hyperparameters of SAC neural network.

Hyperparameter Title 2
optimizer Adam

learning rate 0.001
replay buffer size 200,000

batch size 64
discount factor (γ) 0.99

target smoothing coefficient (τ) 0.005
entropy temperature parameter (α) 0.01

5. Experimental Setup and Results
The real experimental environment used in this paper is shown in Figure 8a, while

Figure 8b shows the simulated environment constructed using the simulation platform V-
REP. The simulated environment is mainly used to train and test the deep neural network.
The 6-DOF A7 industrial articulated robot manipulator used in the real experiment is
manufactured by ITRI. The Mitsubishi AC servomotors installed at each joint of the robot
manipulator are equipped with absolute encoders and are set to torque mode. A vacuum
sucker (maximum payload 3 kg) manufactured by Schmalz is mounted on the end-effector

Figure 7. Architecture of SAC neural network. (a) Policy Network; (b) Soft Action-Value Network;
(c) Target Soft Action-Value Network.

5. Experimental Setup and Results

The real experimental environment used in this paper is shown in Figure 8a, while
Figure 8b shows the simulated environment constructed using the simulation platform
V-REP. The simulated environment is mainly used to train and test the deep neural network.
The 6-DOF A7 industrial articulated robot manipulator used in the real experiment is
manufactured by ITRI. The Mitsubishi AC servomotors installed at each joint of the robot
manipulator are equipped with absolute encoders and are set to torque mode. A vacuum
sucker (maximum payload 3 kg) manufactured by Schmalz is mounted on the end-effector
of the robot manipulator. The vision sensor used in the experiment is a Kinect v2 RGBD
camera (30 Hz frame rate) manufactured by Microsoft. The maximum resolution for
the RGB camera is 1920 × 1080 pixels, while the maximum resolution for the depth
camera is 512 × 424 pixels. The Kinect v2 camera is located at the upper right side of the
6-DOF robot manipulator to capture the images of the objects. These object images will
be used for YOLO to classify their categories. Two desktop computers are used in the
experiment. The computer for controlling the 6-DOF robot manipulator and the vacuum
sucker is equipped with Intel(R) Core TM i7-2600 CPU @3.40 Ghz and 12 GB RAM. It runs
under Microsoft Windows 7 and uses Microsoft Visual Studio 2015 as its programming
development platform. The computer responsible for computer vision, the training of the

Machines 2023, 11, 275 10 of 19

deep reinforcement learning network, and the V-REP robot simulator is equipped with a
NVIDIA GeForce RTX 2080 Ti and 26.9 GB RAM. It runs under Microsoft Windows 10 and
uses PyCharm as its development platform. The Python and the tool kit of the PyTorch are
used in training the deep reinforcement learning network.

Machines 2023, 11, x FOR PEER REVIEW 10 of 20

of the robot manipulator. The vision sensor used in the experiment is a Kinect v2 RGBD
camera (30 Hz frame rate) manufactured by Microsoft. The maximum resolution for the
RGB camera is 1920 × 1080 pixels, while the maximum resolution for the depth camera is
512 × 424 pixels. The Kinect v2 camera is located at the upper right side of the 6-DOF robot
manipulator to capture the images of the objects. These object images will be used for
YOLO to classify their categories. Two desktop computers are used in the experiment. The
computer for controlling the 6-DOF robot manipulator and the vacuum sucker is
equipped with Intel(R) Core TM i7-2600 CPU @3.40 Ghz and 12 GB RAM. It runs under
Microsoft Windows 7 and uses Microsoft Visual Studio 2015 as its programming devel-
opment platform. The computer responsible for computer vision, the training of the deep
reinforcement learning network, and the V-REP robot simulator is equipped with a
NVIDIA GeForce RTX 2080 Ti and 26.9 GB RAM. It runs under Microsoft Windows 10
and uses PyCharm as its development platform. The Python and the tool kit of the
PyTorch are used in training the deep reinforcement learning network.

(a)

(b)

Figure 8. Experimental and simulated environment: (a) real experimental environment; (b) simu-
lated environment.

5.1. Training Results of YOLO
As shown in Figure 9, the objects of interest used in the experiment included apples,

oranges, a banana, a cup, a box and building blocks.

Figure 8. Experimental and simulated environment: (a) real experimental environment; (b) simu-
lated environment.

5.1. Training Results of YOLO

As shown in Figure 9, the objects of interest used in the experiment included apples,
oranges, a banana, a cup, a box and building blocks.

Machines 2023, 11, x FOR PEER REVIEW 11 of 20

Figure 9. Objects of interest used in the experiment.

The COCO Dataset was used to train the YOLOv3 in this paper. However, the COCO
Dataset does not include objects such as the building blocks used in the experiment. As a
result, it was necessary to collect a training data set for the building blocks. In particular,
a total of 635 images of the building blocks were taken. The transfer learning technique
[29] was employed in this paper to speed up the training process, in which the weights
provided by the authors of YOLO were adopted as the initial weights for training the
YOLOv3. Figure 10 shows the training results of YOLO. The total number of iterations
was 45,000. The value of the loss function converged to 0.0391. To test the performance of
the trained YOLOv3, several objects were randomly placed on the table, with the detection
results shown in Figure 11. Clearly, YOLOv3 can successfully detect and classify the ob-
jects of interest.

Figure 10. Training results of YOLOv3.

Figure 9. Objects of interest used in the experiment.

Machines 2023, 11, 275 11 of 19

The COCO Dataset was used to train the YOLOv3 in this paper. However, the COCO
Dataset does not include objects such as the building blocks used in the experiment. As a
result, it was necessary to collect a training data set for the building blocks. In particular, a
total of 635 images of the building blocks were taken. The transfer learning technique [29]
was employed in this paper to speed up the training process, in which the weights provided
by the authors of YOLO were adopted as the initial weights for training the YOLOv3.
Figure 10 shows the training results of YOLO. The total number of iterations was 45,000.
The value of the loss function converged to 0.0391. To test the performance of the trained
YOLOv3, several objects were randomly placed on the table, with the detection results
shown in Figure 11. Clearly, YOLOv3 can successfully detect and classify the objects
of interest.

Machines 2023, 11, x FOR PEER REVIEW 11 of 20

Figure 9. Objects of interest used in the experiment.

The COCO Dataset was used to train the YOLOv3 in this paper. However, the COCO
Dataset does not include objects such as the building blocks used in the experiment. As a
result, it was necessary to collect a training data set for the building blocks. In particular,
a total of 635 images of the building blocks were taken. The transfer learning technique
[29] was employed in this paper to speed up the training process, in which the weights
provided by the authors of YOLO were adopted as the initial weights for training the
YOLOv3. Figure 10 shows the training results of YOLO. The total number of iterations
was 45,000. The value of the loss function converged to 0.0391. To test the performance of
the trained YOLOv3, several objects were randomly placed on the table, with the detection
results shown in Figure 11. Clearly, YOLOv3 can successfully detect and classify the ob-
jects of interest.

Figure 10. Training results of YOLOv3.

Figure 10. Training results of YOLOv3.
Machines 2023, 11, x FOR PEER REVIEW 12 of 20

(a) (b) (c)

 (d) (e) (f)

Figure 11. Detection/classification results of YOLOv3 after training (a) 1st test (b) 2nd test (c) 3rd
test (d) 4th test (e) 5th test (f) 6th test.

5.2. Training and Simulation Results of Object Grasping Policy Based on SAC
Figure 12 illustrates the flowchart of the training process for the proposed object

grasping approach based on SAC. At the beginning of each episode, the experimental/sim-
ulation environment was reset, namely, the robot manipulator was returned to the home
position, objects were placed on the table, and the camera took images of the environment.
Based on the image captured by the camera, the object recognition/localization approach
based on YOLO developed in Section 3 was used to find the position of the object of in-
terest so as to obtain its current state (s) (detailed procedures are indicated by the red dash
block in Figure 12). According to its current state, the SAC would output an action (a), i.e.,
the input displacement vector of the object of interest on the image plane. The joint com-
mand of the robot manipulator could be obtained by using coordinate transformation,
depth information and inverse kinematics. According to the obtained joint command, the
end-effector was controlled to move to a desired position and a suction nozzle was turned
on to perform object grasping. A positive reward was given for a successful grasp. The
termination conditions for an episode occurred either when the total number of object
grasping attempts was more than 100, or when an object grasping attempt was successful.

In the real world, objects to be grasped are randomly placed. However, if the objects
to be grasped are randomly placed for each episode in the training initially, the training
time for learning object grasping successfully could be very long. In order to speed up the
learning process, the idea of incremental learning is exploited in this paper to set up the
learning environment. For instance, a building block was the object of interest for grasp-
ing. Firstly, the pose of the building block on the table was fixed and the deep reinforce-
ment neural network was trained over 1000 episodes in the simulated environment con-
structed by the V-REP robot simulator. The training results are shown in Figure 13.

Figure 11. Detection/classification results of YOLOv3 after training (a) 1st test (b) 2nd test (c) 3rd
test (d) 4th test (e) 5th test (f) 6th test.

Machines 2023, 11, 275 12 of 19

5.2. Training and Simulation Results of Object Grasping Policy Based on SAC

Figure 12 illustrates the flowchart of the training process for the proposed object grasp-
ing approach based on SAC. At the beginning of each episode, the experimental/simulation
environment was reset, namely, the robot manipulator was returned to the home position,
objects were placed on the table, and the camera took images of the environment. Based
on the image captured by the camera, the object recognition/localization approach based
on YOLO developed in Section 3 was used to find the position of the object of interest
so as to obtain its current state (s) (detailed procedures are indicated by the red dash
block in Figure 12). According to its current state, the SAC would output an action (a),
i.e., the input displacement vector of the object of interest on the image plane. The joint
command of the robot manipulator could be obtained by using coordinate transformation,
depth information and inverse kinematics. According to the obtained joint command, the
end-effector was controlled to move to a desired position and a suction nozzle was turned
on to perform object grasping. A positive reward was given for a successful grasp. The
termination conditions for an episode occurred either when the total number of object
grasping attempts was more than 100, or when an object grasping attempt was successful.

Machines 2023, 11, x FOR PEER REVIEW 13 of 20

Figure 12. Flowchart of the training process for the proposed object grasping approach based on
SAC.

As described in Equation (11), a positive reward of 1 will be given if the robot suc-
cessfully grasps an object. In contrast, a negative reward −0.1 (i.e., penalty) will be given
if the robot fails to grasp an object. That is, the accumulated reward for an episode will be
negative if the robot needs more than ten attempts to successfully grasp an object. In ad-
dition, since an extra positive reward 0.5 will be given if the robot successfully grasps an
object on its first attempt, the maximum accumulated reward for an episode will be 1.5.

Figure 12. Flowchart of the training process for the proposed object grasping approach based on SAC.

Machines 2023, 11, 275 13 of 19

In the real world, objects to be grasped are randomly placed. However, if the objects
to be grasped are randomly placed for each episode in the training initially, the training
time for learning object grasping successfully could be very long. In order to speed up the
learning process, the idea of incremental learning is exploited in this paper to set up the
learning environment. For instance, a building block was the object of interest for grasping.
Firstly, the pose of the building block on the table was fixed and the deep reinforcement
neural network was trained over 1000 episodes in the simulated environment constructed
by the V-REP robot simulator. The training results are shown in Figure 13.

Machines 2023, 11, x FOR PEER REVIEW 14 of 20

From the results shown in Figure 13, it was found that after 100 episodes of training, the
6-DOF robot manipulator was able to find a correct grasping pose for the case of a building
block with a fixed pose.

 (a) (b)

Figure 13. Training results of a fixed pose building block (a) accumulated reward for each episode
(b) number of grasping attempts for each episode.

After the 6-DOF robot manipulator could successfully grasp the building block with
a fixed pose, the deep reinforcement neural network was retrained for another 1000 epi-
sodes. This time, the building block as well as other objects (used as the environmental
disturbance) were randomly placed on a table. By exploiting the paradigm of transfer
learning, the weights of the deep reinforcement neural network after learning for the case
of fixed object poses were used as the initial weights for the deep reinforcement neural
network in the retraining process. By taking into account the fact that objects of the same
category may have different sizes or colors, for every 100 episodes in the retraining pro-
cess, the colors and sizes of objects in each category were changed. This strategy served to
enhance the robustness of the trained policy toward environmental uncertainty during
verification in the real world. Figure 14 shows the training results for the case of randomly
placed objects, where the yellow line represents the results of exploiting transfer learning
(i.e., using the weights for the case of fixed object poses as the initial weights) and the
purple line shows the results without using transfer learning. The results shown in Figure
14b indicate that the number of grasping attempts required to find correct grasping points
without using transfer learning was much larger than that for using transfer learning over
the first 200 episodes. Table 2 shows similar results in total training time and total number
of grasping attempts for 1000 episodes.

 (a) (b)

Figure 14. Training results for the case of randomly placed objects: the yellow line represents the
results of exploiting transfer learning (i.e., use the weights for the case of fixed object poses as the

Figure 13. Training results of a fixed pose building block (a) accumulated reward for each episode
(b) number of grasping attempts for each episode.

As described in Equation (11), a positive reward of 1 will be given if the robot suc-
cessfully grasps an object. In contrast, a negative reward −0.1 (i.e., penalty) will be given
if the robot fails to grasp an object. That is, the accumulated reward for an episode will
be negative if the robot needs more than ten attempts to successfully grasp an object. In
addition, since an extra positive reward 0.5 will be given if the robot successfully grasps
an object on its first attempt, the maximum accumulated reward for an episode will be 1.5.
From the results shown in Figure 13, it was found that after 100 episodes of training, the
6-DOF robot manipulator was able to find a correct grasping pose for the case of a building
block with a fixed pose.

After the 6-DOF robot manipulator could successfully grasp the building block with a
fixed pose, the deep reinforcement neural network was retrained for another 1000 episodes.
This time, the building block as well as other objects (used as the environmental disturbance)
were randomly placed on a table. By exploiting the paradigm of transfer learning, the
weights of the deep reinforcement neural network after learning for the case of fixed object
poses were used as the initial weights for the deep reinforcement neural network in the
retraining process. By taking into account the fact that objects of the same category may
have different sizes or colors, for every 100 episodes in the retraining process, the colors
and sizes of objects in each category were changed. This strategy served to enhance the
robustness of the trained policy toward environmental uncertainty during verification
in the real world. Figure 14 shows the training results for the case of randomly placed
objects, where the yellow line represents the results of exploiting transfer learning (i.e.,
using the weights for the case of fixed object poses as the initial weights) and the purple
line shows the results without using transfer learning. The results shown in Figure 14b
indicate that the number of grasping attempts required to find correct grasping points
without using transfer learning was much larger than that for using transfer learning over
the first 200 episodes. Table 2 shows similar results in total training time and total number
of grasping attempts for 1000 episodes.

Machines 2023, 11, 275 14 of 19

Machines 2023, 11, x FOR PEER REVIEW 14 of 20

From the results shown in Figure 13, it was found that after 100 episodes of training, the
6-DOF robot manipulator was able to find a correct grasping pose for the case of a building
block with a fixed pose.

 (a) (b)

Figure 13. Training results of a fixed pose building block (a) accumulated reward for each episode
(b) number of grasping attempts for each episode.

After the 6-DOF robot manipulator could successfully grasp the building block with
a fixed pose, the deep reinforcement neural network was retrained for another 1000 epi-
sodes. This time, the building block as well as other objects (used as the environmental
disturbance) were randomly placed on a table. By exploiting the paradigm of transfer
learning, the weights of the deep reinforcement neural network after learning for the case
of fixed object poses were used as the initial weights for the deep reinforcement neural
network in the retraining process. By taking into account the fact that objects of the same
category may have different sizes or colors, for every 100 episodes in the retraining pro-
cess, the colors and sizes of objects in each category were changed. This strategy served to
enhance the robustness of the trained policy toward environmental uncertainty during
verification in the real world. Figure 14 shows the training results for the case of randomly
placed objects, where the yellow line represents the results of exploiting transfer learning
(i.e., using the weights for the case of fixed object poses as the initial weights) and the
purple line shows the results without using transfer learning. The results shown in Figure
14b indicate that the number of grasping attempts required to find correct grasping points
without using transfer learning was much larger than that for using transfer learning over
the first 200 episodes. Table 2 shows similar results in total training time and total number
of grasping attempts for 1000 episodes.

 (a) (b)

Figure 14. Training results for the case of randomly placed objects: the yellow line represents the
results of exploiting transfer learning (i.e., use the weights for the case of fixed object poses as the
Figure 14. Training results for the case of randomly placed objects: the yellow line represents the
results of exploiting transfer learning (i.e., use the weights for the case of fixed object poses as the initial
weights), while the purple line shows the results without using transfer learning. (a) Accumulated
reward for each episode; (b) number of grasping attempts for each episode.

Table 2. Total training time and total number of grasping attempts.

Pre_Train
(Use Transfer Learning) No_Pre_Train Without_YOLO

Training time 6443 (s) 15,076 (s) 102,580 (s)
Number of grasping attempts 1323 (attempts) 3635 (attempts) 38,066 (attempts)

Figure 15 shows the results of directly using the entire image (rather than using the
object of interest detected by YOLOv3) as the input state for the deep reinforcement learning
network. The results shown in Figure 15 indicate that correct grasping points cannot be
obtained after 1000 episodes of training. Table 2 indicates that the training time for the
case of using the entire image as the input is 15.9 times longer than that for using the
proposed approach (i.e., transfer learning + YOLO + SAC). In addition, the number of
grasping attempts for the case of using the entire image as the input is 28.8 times larger
than that for using the proposed approach. The above simulation results reveal that the
proposed approach indeed can effectively reduce the total training time and total number
of grasping attempts.

Machines 2023, 11, x FOR PEER REVIEW 15 of 20

initial weights), while the purple line shows the results without using transfer learning. (a) Accu-
mulated reward for each episode; (b) number of grasping attempts for each episode.

Figure 15 shows the results of directly using the entire image (rather than using the
object of interest detected by YOLOv3) as the input state for the deep reinforcement learn-
ing network. The results shown in Figure 15 indicate that correct grasping points cannot
be obtained after 1000 episodes of training. Table 2 indicates that the training time for the
case of using the entire image as the input is 15.9 times longer than that for using the
proposed approach (i.e., transfer learning + YOLO + SAC). In addition, the number of
grasping attempts for the case of using the entire image as the input is 28.8 times larger
than that for using the proposed approach. The above simulation results reveal that the
proposed approach indeed can effectively reduce the total training time and total number
of grasping attempts.

 (a) (b)

Figure 15. Results of the V-REP robot simulator without combining YOLOv3: (a) accumulated re-
ward for each episode; (b) number of grasping attempts for each episode.

Table 2. Total training time and total number of grasping attempts.

 Pre_Train
(Use Transfer Learning)

No_Pre_Train Without_YOLO

Training time 6443 (s) 15,076 (s) 102,580 (s)
Number of grasping

attempts 1323 (attempts) 3635 (attempts) 38,066 (attempts)

5.3. Object Grasping Using a Real Robot Manipulator
As mentioned previously, the input to the proposed deep reinforcement learning-

based object grasping approach is the depth image (provided by Kinect v2) of the objects
of interest detected by YOLOv3. Since YOLOv3 uses the RGB image (provided by Kinect
v2) to detect the objects of interest, there is a need to construct the correspondence between
the depth image and the RGB image so that the depth information of a point on the object
of interest can be retrieved. In this paper, such a correspondence is constructed by using
SDK accompanied with Kinect v2. In addition, with camera calibration [30] and the ob-
tained depth information, the 3D information of a point on the object of interest in the
camera frame can be retrieved. Hand-eye calibration [31] is then conducted to obtain the
coordination transformation relationship between the camera frame and the end-effector
fame. Using the results of hand-eye calibration and robot kinematics, the 3D information
of a point on the object of interest in the camera frame can be converted into 3D infor-
mation in the robot base frame. Moreover, using robot inverse kinematics, the joint com-
mands for the robot to perform the task of grasping the object of interest can be obtained.

Figure 15. Results of the V-REP robot simulator without combining YOLOv3: (a) accumulated reward
for each episode; (b) number of grasping attempts for each episode.

Machines 2023, 11, 275 15 of 19

5.3. Object Grasping Using a Real Robot Manipulator

As mentioned previously, the input to the proposed deep reinforcement learning-
based object grasping approach is the depth image (provided by Kinect v2) of the objects of
interest detected by YOLOv3. Since YOLOv3 uses the RGB image (provided by Kinect v2)
to detect the objects of interest, there is a need to construct the correspondence between
the depth image and the RGB image so that the depth information of a point on the object
of interest can be retrieved. In this paper, such a correspondence is constructed by using
SDK accompanied with Kinect v2. In addition, with camera calibration [30] and the ob-
tained depth information, the 3D information of a point on the object of interest in the
camera frame can be retrieved. Hand-eye calibration [31] is then conducted to obtain the
coordination transformation relationship between the camera frame and the end-effector
fame. Using the results of hand-eye calibration and robot kinematics, the 3D information of
a point on the object of interest in the camera frame can be converted into 3D infor-mation
in the robot base frame. Moreover, using robot inverse kinematics, the joint com-mands for
the robot to perform the task of grasping the object of interest can be obtained.

Figure 16 illustrates the flowchart for grasping a specific object. In this experiment,
several different types of objects were randomly placed on a table. Note that the vacuum
sucker mounted on the end-effector rather than a gripper is used in this paper to grasp
the object of interest. In order to perform a successful grasp, the suction force needs to
overcome the gravity force of the object of interest. As a result, the rim of the cup is not
facing up in the experiment. The Kinect v2 camera took an image of the environment. The
user assigned a specific object of interest for the robot manipulator to grasp. The SAC
outputted a prediction of the position coordinate of the assigned object to be grasped. The
joint command of the robot manipulator was obtained by using coordinate transformation,
depth information and inverse kinematics. According to the obtained joint command,
the end-effector was controlled to move to a desired position and a suction nozzle was
turned on to perform object grasping. If the attempt for object grasping failed, the Kinect
v2 camera took an image at the environment again and the object grasping process was
repeated. If the attempts of object grasping failed three consecutive times, the task for
grasping an assigned specific object was regarded as a failure.

Machines 2023, 11, x FOR PEER REVIEW 16 of 20

Figure 16 illustrates the flowchart for grasping a specific object. In this experiment,
several different types of objects were randomly placed on a table. Note that the vacuum
sucker mounted on the end-effector rather than a gripper is used in this paper to grasp
the object of interest. In order to perform a successful grasp, the suction force needs to
overcome the gravity force of the object of interest. As a result, the rim of the cup is not
facing up in the experiment. The Kinect v2 camera took an image of the environment. The
user assigned a specific object of interest for the robot manipulator to grasp. The SAC
outputted a prediction of the position coordinate of the assigned object to be grasped. The
joint command of the robot manipulator was obtained by using coordinate transfor-
mation, depth information and inverse kinematics. According to the obtained joint com-
mand, the end-effector was controlled to move to a desired position and a suction nozzle
was turned on to perform object grasping. If the attempt for object grasping failed, the
Kinect v2 camera took an image at the environment again and the object grasping process
was repeated. If the attempts of object grasping failed three consecutive times, the task for
grasping an assigned specific object was regarded as a failure.

In particular, SAC was employed to train a 6-DOF robot manipulator to grasp build-
ing blocks and bananas in a simulated environment constructed by a V-REP robot simu-
lator. By exploiting the concept of Sim-to-Real [32], the trained network was deployed to
the real 6-DOF robot manipulator to perform object grasping in the real world. In addi-
tion, in real-world experiments, objects such as apples, oranges and cups which are not in
the training data set were added to the list of objects of interest. From the experimental
results shown in Figure 17, it is evident that the trained SAC can indeed provide correct
object grasping points for objects of interest in real-world environments. Experimental
results for the success rate of grasping different objects are listed in Table 3.

Figure 16. Flowchart for grasping a specific object.
Figure 16. Flowchart for grasping a specific object.

Machines 2023, 11, 275 16 of 19

In particular, SAC was employed to train a 6-DOF robot manipulator to grasp building
blocks and bananas in a simulated environment constructed by a V-REP robot simulator.
By exploiting the concept of Sim-to-Real [32], the trained network was deployed to the
real 6-DOF robot manipulator to perform object grasping in the real world. In addition,
in real-world experiments, objects such as apples, oranges and cups which are not in the
training data set were added to the list of objects of interest. From the experimental results
shown in Figure 17, it is evident that the trained SAC can indeed provide correct object
grasping points for objects of interest in real-world environments. Experimental results for
the success rate of grasping different objects are listed in Table 3.

Machines 2023, 11, x FOR PEER REVIEW 17 of 20

Figure 17. Object grasping point provided by SAC for different objects of interest (red point inside
the bounding box in the upper environment image; white point in the lower depth image); the “ar-
row” sign is used to indicate the object of interest.

Table 3. Rate of successful grasping for different objects.

Object of Interest Building
Block

Apple Banana Orange Cup

Rate of successful grasping 19/20 6/10 6/10 8/10 9/10
Object is in the training set yes no yes no no

The results listed in Table 3 indicate that for the objects in the training set, the build-
ing block has a much higher rate of being successfully grasped than the banana. The rea-
son for this discrepancy is that in the simulated environment, the banana has a fixed shape
and smooth surface. However, the bananas used in real-world experiments have different
shapes/sizes and their surfaces are not smooth enough. Therefore, the significant differ-
ences between the simulated environment and that of the real-world experiment lead to a
lower rate of successful grasping for bananas. As for the objects not in the training set, the
apples had the lowest rate of being successfully grasped. One possibility is that the two
apples used in the real-world experiments have significant differences in size/shapes. In
addition, in real-world experiments, hand-eye calibration error and robot calibration er-
rors all contribute to the fact that the end-effector cannot 100% accurately move to the
grasping position determined by the proposed deep reinforcement learning-based object
grasping approach. Since bananas and apples require a more accurate grasping point, it
is not surprising that their rates of being successfully grasped are lower.

In summary, there are several interesting observations from the experimental results.
First of all, the suction nozzle used in this paper requires a smooth object surface to
achieve successful grasping. That explains why apples and bananas have lower successful
grasping rates. Secondly, without further training, the proposed approach exhibits decent
grasping performance, even for cases in which the objects of interest are previously un-
seen. Thirdly, experimental results indicate that the SAC can be trained in the robot sim-
ulator and the trained SAC can be deployed to the real 6-DOF robot manipulator to suc-
cessfully perform object grasping in the real world.

The next experiment was to grasp and classify all the objects randomly placed on the
table and to put the grasped objects into the bin where they belonged. First of all, several
objects were randomly placed on the table, after which YOLOv3 detected and classified
all of the objects on the table. The SAC then provided information for the grasping points
corresponding to all the objects of interest to the robot manipulator. The 6-DOF robot ma-
nipulator then performed the grasping task and put the grasped objects into their respec-
tive bins. Note that during the grasping process, the robot manipulator may collide with
other objects so that their poses may change and result in grasping failures. In order to
deal with the aforementioned problem, after performing the object grasping task, if some

Figure 17. Object grasping point provided by SAC for different objects of interest (red point inside the
bounding box in the upper environment image; white point in the lower depth image); the “arrow”
sign is used to indicate the object of interest.

Table 3. Rate of successful grasping for different objects.

Object of Interest Building Block Apple Banana Orange Cup

Rate of successful grasping 19/20 6/10 6/10 8/10 9/10

Object is in the training set yes no yes no no

The results listed in Table 3 indicate that for the objects in the training set, the building
block has a much higher rate of being successfully grasped than the banana. The reason
for this discrepancy is that in the simulated environment, the banana has a fixed shape
and smooth surface. However, the bananas used in real-world experiments have different
shapes/sizes and their surfaces are not smooth enough. Therefore, the significant differ-
ences between the simulated environment and that of the real-world experiment lead to
a lower rate of successful grasping for bananas. As for the objects not in the training set,
the apples had the lowest rate of being successfully grasped. One possibility is that the
two apples used in the real-world experiments have significant differences in size/shapes.
In addition, in real-world experiments, hand-eye calibration error and robot calibration
errors all contribute to the fact that the end-effector cannot 100% accurately move to the
grasping position determined by the proposed deep reinforcement learning-based object
grasping approach. Since bananas and apples require a more accurate grasping point, it is
not surprising that their rates of being successfully grasped are lower.

In summary, there are several interesting observations from the experimental results.
First of all, the suction nozzle used in this paper requires a smooth object surface to achieve
successful grasping. That explains why apples and bananas have lower successful grasping
rates. Secondly, without further training, the proposed approach exhibits decent grasping
performance, even for cases in which the objects of interest are previously unseen. Thirdly,
experimental results indicate that the SAC can be trained in the robot simulator and the
trained SAC can be deployed to the real 6-DOF robot manipulator to successfully perform
object grasping in the real world.

Machines 2023, 11, 275 17 of 19

The next experiment was to grasp and classify all the objects randomly placed on the
table and to put the grasped objects into the bin where they belonged. First of all, several
objects were randomly placed on the table, after which YOLOv3 detected and classified
all of the objects on the table. The SAC then provided information for the grasping points
corresponding to all the objects of interest to the robot manipulator. The 6-DOF robot
manipulator then performed the grasping task and put the grasped objects into their
respective bins. Note that during the grasping process, the robot manipulator may collide
with other objects so that their poses may change and result in grasping failures. In order
to deal with the aforementioned problem, after performing the object grasping task, if some
objects remained on the table, the object grasping tasks were repeated until all of the objects
on the table had been grasped and correctly put into the bin. Figure 18 shows an image
sequence of the object grasping/classification experiment.

Machines 2023, 11, x FOR PEER REVIEW 18 of 20

objects remained on the table, the object grasping tasks were repeated until all of the ob-
jects on the table had been grasped and correctly put into the bin. Figure 18 shows an
image sequence of the object grasping/classification experiment.

Figure 18. Image sequence of object grasping/classification experiment (a) original image (b) clas-
sification results of YOLOv3.

6. Conclusions

This paper proposes an approach that combines YOLO and deep reinforcement
learning SAC algorithms for the 6-DOF robot manipulator to perform object grasp-
ing/classification through self-learning. In particular, the objects of interest in this paper
are detected by YOLOv3. By considering the fact that objects of the same type may have
different colors, only their depth images provided by Kinect v2 are thus used as the inputs
for the proposed deep reinforcement learning-based object grasping approach. In this
way, the exploration space can be substantially reduced so as to improve the success rate
and enable SAC to converge quickly. Moreover, to speed up the training process, a V-REP
robot simulator is employed to construct a simulated environment to train the SAC. Sim-
ulation results indicate that the proposed approach can indeed effectively reduce the total
training time and the total number of grasping attempts compared with an approach that
directly uses the entire image as the input state for the deep reinforcement learning net-
work. In addition, to further speed up the training process, the paradigms of transfer
learning and incremental learning are employed in the proposed approach. Moreover, the
trained SAC was transferred to a real 6-DOF robot manipulator for real-world verification.
Experimental results indicate that in using the proposed approach, the real 6-DOF robot
manipulator successfully performed object grasping/classification, even for previously
unseen objects.

Author Contributions: Conceptualization, Y.-L.C., Y.-R.C. and M.-Y.C.; methodology, Y.-L.C. and
Y.-R.C.; software, Y.-L.C. and Y.-R.C.; validation, Y.-L.C. and Y.-R.C.; formal analysis, Y.-L.C. and
Y.-R.C.; writing original draft preparation, Y.-L.C., Y.-R.C. and M.-Y.C.; writing review and editing,
M.-Y.C.; Project administration, M.-Y.C.; Funding acquisition, M.-Y.C.; supervision, M.-Y.C. All au-
thors have read and agreed to the published version of the manuscript.

Figure 18. Image sequence of object grasping/classification experiment (a) original image (b) classifi-
cation results of YOLOv3.

6. Conclusions

This paper proposes an approach that combines YOLO and deep reinforcement learning
SAC algorithms for the 6-DOF robot manipulator to perform object grasping/classification
through self-learning. In particular, the objects of interest in this paper are detected by
YOLOv3. By considering the fact that objects of the same type may have different colors,
only their depth images provided by Kinect v2 are thus used as the inputs for the proposed
deep reinforcement learning-based object grasping approach. In this way, the exploration
space can be substantially reduced so as to improve the success rate and enable SAC to
converge quickly. Moreover, to speed up the training process, a V-REP robot simulator is
employed to construct a simulated environment to train the SAC. Simulation results indicate
that the proposed approach can indeed effectively reduce the total training time and the
total number of grasping attempts compared with an approach that directly uses the entire
image as the input state for the deep reinforcement learning network. In addition, to further
speed up the training process, the paradigms of transfer learning and incremental learning
are employed in the proposed approach. Moreover, the trained SAC was transferred to a
real 6-DOF robot manipulator for real-world verification. Experimental results indicate that

Machines 2023, 11, 275 18 of 19

in using the proposed approach, the real 6-DOF robot manipulator successfully performed
object grasping/classification, even for previously unseen objects.

Author Contributions: Conceptualization, Y.-L.C., Y.-R.C. and M.-Y.C.; methodology, Y.-L.C. and
Y.-R.C.; software, Y.-L.C. and Y.-R.C.; validation, Y.-L.C. and Y.-R.C.; formal analysis, Y.-L.C. and
Y.-R.C.; writing original draft preparation, Y.-L.C., Y.-R.C. and M.-Y.C.; writing review and editing,
M.-Y.C.; project administration, M.-Y.C.; Funding acquisition, M.-Y.C.; supervision, M.-Y.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant number
MOST 108-2221-E-006-217-MY2.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kyprianou, G.; Doitsidis, L.; Chatzichristofis, S.A. Collaborative Viewpoint Adjusting and Grasping via Deep Reinforcement

Learning in Clutter Scenes. Machines 2022, 10, 1135. [CrossRef]
2. Johns, E.; Leutenegger, S.; Davison, A.J. Deep learning a grasp function for grasping under gripper pose uncertainty. In

Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea,
9–14 October 2016; pp. 4461–4468. [CrossRef]

3. Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724. [CrossRef]
4. Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In Proceedings of the 2016

IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 3406–3413. [CrossRef]
5. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]
6. Mahler, J.; Pokorny, F.T.; Hou, B.; Roderick, M.; Laskey, M.; Aubry, M.; Kohlhoff, K.; Kröger, T.; Kuffner, J.; Goldberg, K. Dex-Net

1.0: A cloud-based network of 3D objects for robust grasp planning using a multi-armed bandit model with correlated rewards.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016;
pp. 1957–1964. [CrossRef]

7. Mahler, J.; Liang, J.; Niyaz, S.; Laskey, M.; Doan, R.; Liu, X.; Ojea, J.A.; Goldberg, K. Dex-Net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics. arXiv 2017, arXiv:1703.09312. [CrossRef]

8. Mahler, J.; Matl, M.; Liu, X.; Li, A.; Gealy, D.; Goldberg, K. Dex-Net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation, Brisbane, QLD, Australia, 21–25 May 2018; pp. 5620–5627. [CrossRef]

9. Mahler, J.; Matl, M.; Satish, V.; Danielczuk, M.; DeRose, B.; McKinley, S.; Goldberg, K. Learning ambidextrous robot grasping
policies. Sci. Robot. 2019, 4, eaau4984. [CrossRef]

10. Zhang, H.; Peeters, J.; Demeester, E.; Kellens, K. A CNN-Based Grasp Planning Method for Random Picking of Unknown Objects
with a Vacuum Gripper. J. Intell. Robot. Syst. 2021, 103, 1–19. [CrossRef]

11. Morrison, D.; Corke, P.; Leitner, J. Learning robust, real-time, reactive robotic grasping. Int. J. Robot. Res. 2020, 39, 183–201.
[CrossRef]

12. Fang, K.; Zhu, Y.; Garg, A.; Kurenkov, A.; Mehta, V.; Li, F.F.; Savarese, S. Learning task-oriented grasping for tool manipulation
from simulated self-supervision. Int. J. Robot. Res. 2020, 39, 202–216. [CrossRef]

13. Ji, X.; Xiong, F.; Kong, W.; Wei, D.; Shen, Z. Grasping Control of a Vision Robot Based on a Deep Attentive Deterministic Policy
Gradient. IEEE Access 2021, 10, 867–878. [CrossRef]

14. Horng, J.R.; Yang, S.Y.; Wang, M.S. Self-Correction for Eye-In-Hand Robotic Grasping Using Action Learning. IEEE Access 2021, 9,
156422–156436. [CrossRef]

15. Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; Levine, S. How to train your robot with deep reinforcement learning:
Lessons we have learned. Int. J. Robot. Res. 2021, 40, 698–721. [CrossRef]

16. Gualtieri, M.; Ten Pas, A.; Platt, R. Pick and place without geometric object models. In Proceedings of the 2018 IEEE International
Conference on Robotics and Automation, Brisbane, QLD, Australia, 21–25 May 2018; pp. 7433–7440. [CrossRef]

17. Fujita, Y.; Uenishi, K.; Ummadisingu, A.; Nagarajan, P.; Masuda, S.; Castro, M.Y. Distributed reinforcement learning of targeted
grasping with active vision for mobile manipulators. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 9712–9719. [CrossRef]

18. Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. Learning synergies between pushing and grasping with
self-supervised deep reinforcement learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Madrid, Spain, 1–5 October 2018; pp. 4238–4245. [CrossRef]

http://doi.org/10.3390/machines10121135
http://doi.org/10.1109/IROS.2016.7759657
http://doi.org/10.1177/0278364914549607
http://doi.org/10.1109/ICRA.2016.7487517
http://doi.org/10.1177/0278364917710318
http://doi.org/10.1109/ICRA.2016.7487342
http://doi.org/10.48550/arXiv.1703.09312
http://doi.org/10.1109/ICRA.2018.8460887
http://doi.org/10.1126/scirobotics.aau4984
http://doi.org/10.1007/s10846-021-01518-8
http://doi.org/10.1177/0278364919859066
http://doi.org/10.1177/0278364919872545
http://doi.org/10.1109/ACCESS.2021.3137821
http://doi.org/10.1109/ACCESS.2021.3129474
http://doi.org/10.1177/0278364920987859
http://doi.org/10.1109/ICRA.2018.8460553
http://doi.org/10.1109/IROS45743.2020.9341605
http://doi.org/10.1109/IROS.2018.8593986

Machines 2023, 11, 275 19 of 19

19. Deng, Y.; Guo, X.; Wei, Y.; Lu, K.; Fang, B.; Guo, D.; Liu, H.; Sun, F. Deep reinforcement learning for robotic pushing and picking
in cluttered environment. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Macau, China, 3–8 November 2019; pp. 619–626. [CrossRef]

20. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
QT-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv 2018, arXiv:1806.10293. [CrossRef]

21. Chen, R.; Dai, X.Y. Robotic grasp control policy with target pre-detection based on deep q-learning. In Proceedings of the 2018
3rd International Conference on Robotics and Automation Engineering, Guangzhou, China, 17–19 November 2018; pp. 29–33.
[CrossRef]

22. Chen, Z.; Lin, M.; Jia, Z.; Jian, S. Towards generalization and data efficient learning of deep robotic grasping. arXiv 2020,
arXiv:2007.00982. [CrossRef]

23. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934. [CrossRef]

24. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
25. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]
26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

27. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

28. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2019, arXiv:1812.05905. [CrossRef]

29. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
30. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
31. Cai, C.; Somani, N.; Nair, S.; Mendoza, D.; Knoll, A. Uncalibrated stereo visual servoing for manipulators using virtual

impedance control. In Proceedings of the 13th International Conference on Control Automation Robotics & Vision, Singapore,
10–12 December 2014; pp. 1888–1893.

32. Peng, X.B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21–25 May 2018. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/IROS40897.2019.8967899
http://doi.org/10.48550/arXiv.1806.10293
http://doi.org/10.1109/ICRAE.2018.8586758
http://doi.org/10.48550/arXiv.2007.0098.2
http://doi.org/10.48550/arXiv.2004.10934
http://doi.org/10.48550/arXiv.1804.02767
http://doi.org/10.1109/CVPR.2017.690
http://doi.org/10.1109/CVPR.2016.91
http://doi.org/10.48550/arXiv.1812.05905
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1109/34.888718
http://doi.org/10.1109/ICRA.2018.8460528

	Introduction
	Framework
	Object Recognition and Localization Based on YOLO Algorithms
	Object Pick-and-Place Policy Based on SAC Algorithms
	Policy
	State (State s)
	Action (Action a)
	Reward (Reward, r)

	Architecture Design of SAC Neural Network

	Experimental Setup and Results
	Training Results of YOLO
	Training and Simulation Results of Object Grasping Policy Based on SAC
	Object Grasping Using a Real Robot Manipulator

	Conclusions
	References

