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Abstract: Forest fires are a serious ecological concern, and smoke is an early warning indicator. Early
smoke images barely capture a tiny portion of the total smoke. Because of the irregular nature of
smoke’s dispersion and the dynamic nature of the surrounding environment, smoke identification is
complicated by minor pixel-based traits. This study presents a new framework that decreases the
sensitivity of various YOLO detection models. Additionally, we compare the detection performance
and speed of different YOLO models such as YOLOv3, YOLOv5, and YOLOv7 with prior ones such
as Fast R-CNN and Faster R-CNN. Moreover, we follow the use of a collected dataset that describes
three distinct detection areas, namely close, medium, and far distance, to identify the detection
model’s ability to recognize smoke targets correctly. Our model outperforms the gold-standard
detection method on a multi-oriented dataset for detecting forest smoke by an mAP accuracy of
96.8% at an IoU of 0.5 using YOLOv5x. Additionally, the findings of the study show an extensive
improvement in detection accuracy using several data-augmentation techniques. Moreover, YOLOv7
outperforms YOLOv3 with an mAP accuracy of 95%, compared to 94.8% using an SGD optimizer.
Extensive research shows that the suggested method achieves significantly better results than the
most advanced object-detection algorithms when used on smoke datasets from wildfires, while
maintaining a satisfactory performance level in challenging environmental conditions.

Keywords: YOLO; wildfire smoke detection; data augmentation; object detection; fire detection

1. Introduction

We must protect forests to keep the planet healthy. Forest fires are uncontrollable
disasters. Forest fires have increased in frequency and damage. Forest fires destroy millions
of acres of forest and cause a cascade of environmental disasters, including global warming,
costing governments USD tens of billions [1]. Forest fires harm the ecosystem and threaten
human lives and progress [2]. Forest fires spread swiftly and randomly. Forest fires can
develop swiftly without early warning, endangering the environment, and firefighters [3].
Smoking debris starts forest fires. Smoke precedes forest fires. Smoke detection early and
accurately reduces forest firefighting response times and damage.

Forest-fire smoke-detection procedures need urgent improvements. One smoke puff
from a forest fire’s smoke angle indicates the wind direction and the fire’s origin. Horizontal
detection boxes missed details and were not accurate, mistaking non-smoke for smoke.
In the dynamic, ever-changing forest, smoke-like phenomena such as shifting clouds and
fog are widespread. These occurrences are similar to smoke, making standard feature
extraction networks difficult to differentiate. Smoke is too far away to see. When the
burning point is far from the camera, the detection box’s confidence drops, filtering out
smoke and making smoke detection harder.
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L Tian et al.’s [4] smoke tilt detection system uses an image augmentation module
and a dense feature-reuse module to handle distant sensing objects’ densely ordered
properties. W. Huang et al. [5] suggested a cross-scale feature-fusion pyramid network and
a multioriented detection box for remote sensing tilted ships. The remote sensing scene’s
multioriented detection strategy was encouraging, and the multioriented detection box
captured smoke drifting in the wind well. Thus, we propose a multioriented detection
method where the target box adaptively describes smoke direction and is used to determine
the fire source direction. The forest-fire multioriented detection dataset uses PolyIOU to
evaluate anchor box overlap as an adaptation to multioriented detection.

Delayed wildfire identification and suppression can cause severe forest damage. For-
est monitoring systems must promptly and correctly detect fire and smoke. Early fire-
monitoring systems focused on flame detection. Smoke detection is better than fire detection
in forest monitoring systems because fires develop slowly and are hard to detect early. Thus,
smoke-based security monitoring systems outperform fire-based ones. Thus, forest-fire
monitoring algorithms are better at smoke detection than fire detection [4].

Sensor-based smoke detectors detect particulate particles from smoke ionization. A
sensor-based smoke detector cannot be used in woodlands due to their size and geogra-
phy [5]. Therefore, numerous computer vision-based smoke-detection algorithm efforts
have addressed this issue.

Early smoke detectors could not locate smoke and firefighting devices can deliver
more precise signals if smoke is confined. Thus, precise smoke localization has become
a computer vision task in recent years and smoke detectors are the focus of this article.
Most early vision-based smoke detectors used inference techniques with simple feature
representations [4,6]

These methods show smoke’s hue, velocity, opacity, and orientation graphically. Due
to the lack of feature representation-based procedures for characterizing smoke motion
and exterior morphology, conventional smoke-detection algorithms perform poorly when
the running environment changes [2]. Thus, smoke-detection algorithms can improve
generality and interference suppression.

Some forest objects resemble smoke, rendering the model open to misinterpretation
under typical settings. Smoke contains distinct visual properties at different combustion
phases, making it hard for detection models to acquire high-dimensional features adaptable
to different stages. A reliable wildfire smoke-detection technology should be able to
locate smoke sources. Figure 1 shows a general wildfire smoke-detection operation using
deep learning.

The key contributions are as follows: (1) Comparing the performance and detection
accuracy of different YOLO models, such as YOLOv3, YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, YOLOv5x, and YOLOv7, for wildfire smoke detection from different detection
ranges; (2) Using several data-augmentation techniques to reduce the sensitivity of de-
tection models; (3) Comparing YOLO models with other detection models such as Fast
R-CNN, Faster R-CNN, and YOLOv4; (4) Improving performance and shortening detection
times using the stochastic gradient descent optimizer.

The rest of the paper is organized as follows: Section 2 shows the state-of-the-art
related works in the area. Section 3 illustrates the proposed wildfire smoke-detection
methodology, data gathered, used detection models, and data-augmentation techniques.
Section 4 shows the evaluation metrics used for detection model assessment. More-
over, Section 5 discusses the experimental results, shows the hyperparameter tuning
process, and simulation device setup. Lastly, Section 6 concludes the study and suggests
future directions.
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2. Review of Related State-of-the-Art Works

In the event that there is a forest fire in an area, massive plumes of smoke will be
sent into the atmosphere. A smoke alarm that is in good working order is essential for
avoiding loss in the case of a fire. If they are not located and contained in a timely manner,
rapidly spreading wildfires, which are made worse by climate change, have the potential
to have far-reaching repercussions on human populations, ecosystems, and the economy.
Two different methods may be used to monitor wildfires to detect smoke and flames.
The presence of smoke is the primary indicator of a wildfire nearby. Consequently, an
early warning and detection system for wildfires, such as deep-learning models, have
to be sensitive to the smoke in the environment in which it operates. However, with
the development of technology, previous studies presented many modern methods that
can be used to detect smoke and fires in light of the availability of many processed data.
Swin-YOLOv5, a novel framework that enhances feature extraction in the original YOLOv5
architecture, was suggested in [7].

The designed framework can detect fire and smoke to a satisfactory degree. The notion
of Swin-fundamental YOLOv5 is to employ a transformer across three headers. A dataset
of 16,503 photos from two target classes was used for comparative reasons. Additionally,
seven hyperparameters were modified. According to the statistics, Swin-YOLOv5 beat
the original with a 0.7% mean average accuracy improvement at an IOU of 0.5 and a 4.5%
mean average precision improvement for an IOU of 0.5 to 0.95.

In [8], an improved version of YOLOv5, including dynamic anchor learning using the
K-means++ algorithm, was produced. The suggested strategy aimed to reduce fire damage
by enhancing detection speed and performance. In addition, loss functions including
CIOU and GIOU were applied to three separate YOLOv5 models: YOLOv5 small, YOLOv5
medium, and YOLOv5 big. A self-created dataset of 4815 photos was subjected to a
synthetic system to raise the number of images to 20,000. According to the results, the
improved model beat the original YOLOv5 by 4.4% in mean average accuracy. In addition,
it was revealed that YOLOv5 performs better when utilizing the CIoU loss function, with a
recall of 78% and an average mean accuracy of 87%.

The study in [9] presented a novel approach for identifying flames using aerial images.
The equivalent of 6000 photographs illustrating forest fires and smoke were gathered from
Kaggle and Google libraries. Furthermore, the developed technique intended to employ
the YOLOv5 model with the K-means++ algorithm to find the anchor squares. To improve
detection accuracy, procedures such as rotation and flipping were developed, reducing
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the sensitivity of detection models in future detection operations. The assessment criteria
application demonstrated that the provided technique beat several other methods, such as
upleNet and SSD, with an average accuracy of 73.6%. However, it is worth mentioning that
the described technique has several drawbacks, such as misclassifying clouds as smoke
from flames. In [6], the researchers highlighted the issue of a lack of sufficient and high-
quality data for detecting fires and smoke in research archives. One of the most serious
issues is a shortage of labeled data suitable for development and utilization. As a result, a
novel approach was given to create NEMO (Nevada Smoke Detection Benchmark), a first-
of-its-kind data repository that comprises a set of aerial pictures gathered from detection
stations to identify forest fires. NEMO provides data sets with 7023 fire detection photos
taken using many cameras at various times and places. Various detection models were
utilized to evaluate the data, including Faster R-CNN and RetinaNet. The results revealed
an average detection accuracy of 42.3% and a detection rate of 98.4% within 5 min. It is
worth mentioning that NEMO was designed for photographs of various sizes, including
horizontal, distant, and medium.

In [2], a novel framework was presented to identify forest fires using ensemble learning.
In the first layer, the suggested technique employs Yolov5 and EfficientDet as the primary
learners, followed by the introduction of EfficientNet, which is in charge of detection and
classification based on publicly available data. Furthermore, a collection of 10,581 images
was compiled from well-known datasets such as FD-dataset and VisiFire. When compared
to other models such as the Yolov4, the findings revealed an improvement in fire detection
accuracy, with an average precision of 79.7% at an intersection over the union of 50%.
However, several of the study’s constraints suggest that the suggested model defines the
sun as a fire at sunset.

Other studies focused on using detection models to develop special methods for
detecting and classifying internal and external objects that can be developed and used
to detect fires and smoke. In [10], a novel framework for recognizing interior occupancy
objects was introduced. The proposed framework maximizes using YOLOv5 by using
the anchor-free method for parameter reduction and VariFocal loss for data balancing. In
addition, a newly constructed dataset including 11,367 samples was provided, which was
separated into training, testing, and validation sets. In addition, Pascal-VOC2012, a well-
known dataset, was used throughout the experiment. As part of the YOLOv5 upgrade, the
head’s layer was decoupled to improve detection precision and performance. A 640-by-640
pixel resolution is also employed. Eleven prior models using YOLO in various forms were
compared with the new framework’s outcomes. The test results determined the model’s
average accuracy of 93.9 at an intersection over union (IOU) of 0.9.

In the study in [3], a real-time experiment was carried out to recognize inside and
outside things by building an engineering system that uses camera sensors such as OS1-64
and OS0-128 that are used in the Lidar gadget. On the other hand, the primary contribution
was made using complete 360-degree images with a resolution of 2048 x 128. In the developed
system, the performance of FasterR-CNN, MaskRCNN, YOLOx, and YOLOv5 was compared.
Sensor pictures identified four target kinds for indoor and outdoor applications, including a
person, bicycle, chair, and automobile. YOLOx outperformed the competition, detecting over
80% of indoor and outdoor items with 100% accuracy and 95.3% recall. Furthermore, they
claimed that YOLOx exceeds YOLOv5 in detection performance and speed.

The study in [4] presented a novel approach based on the enhanced YOLOv3 model,
to detect fires in the day and night with the least amount of time and the broadest detection
area feasible. Furthermore, the research highlighted the lack of high-quality data to identify
fires. As a result, a data collection of 9200 photos was gathered and built from Google
repositories and remotely accessible resources, in addition to gathering a collection of
photos derived from video clips. Moreover, data-augmentation methods such as image
rotation were used to make new copies of current data and enhance the size of the data
set. Furthermore, the given technique was based on employing a unique collection of
cameras coupled to the YOLOv3 model for real-time fire detection. Compared to other
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detection methods, the experimental investigation yielded an average accuracy of 98.9. The
identification of certain factors on flames that are not truly fire, such as strong light and
high-beam lamp light, is a hindrance to the research.

Other studies revealed techniques for detecting objects using satellites, which is one of
the fire-detection stations used in conjunction with video cameras and drones. As a result,
these technologies may be utilized and refined to identify large-area fires. A technique
for locating suitable landing spots for unmanned aerial vehicles was presented in [5]. The
established framework compared the effectiveness of several YOLO versions, including
YOLOv3, YOLOv4, and YOLOv5, in pinpointing optimal landing locations to reduce flying
system failure and increase safety. Yet, the DOTA, a database of 11,268 satellite photos with
a maximum image resolution of 20,000 by 20,000 pixels and a total of 15 labels, was used.
With a 70% accuracy rate, a 61% recall rate, and a 63% mean average accuracy rate, the
results show that YOLOv5 with big network weights performs better than its competitors.

On top of that, YOLOv4 outperforms YOLOv3 with a recall of 57% and an average
accuracy of 60%. In addition, additional research has shown the capability and efficacy of
YOLO models in detecting illnesses such as cancer by image processing. The research in [11]
suggested a different approach to enhancing YOLOv5′s capacity to detect breast cancer.
All four YOLOv5 weight models (small, medium, big, and extra-large) were evaluated for
their usefulness in the context of this study. Furthermore, 10,239 unique 1000 × 2000-pixel
photos from the CBIS-DDSM collection were used. It indicated whether or not the breast
cancer was malignant. The results of the tests showed that modified YOLOv5x is superior to
the small, medium, and big weights, with an MCC of 93.6%. In addition, competing models
such as YOLOv3 and quicker RCNN were compared to the anticipated YOLOv5m upgrade.
With an accuracy of 96.5% and mAP of 96%, it was shown that modified YOLOv5m beat
YOLOv3 and faster RCNN. Table 1 summarizes the state-of-the-art related works.

Table 1. Summary of related state-of-the-art works.

Paper Dataset Task Detection Models Findings

[2]
Self-built dataset of 10,581
images of wildfire from
FD-dataset and VisiFire.

Forest fire detection YOLOv5, EfficientNet,
EfficientDet

The findings revealed an
improvement in fire-detection
accuracy, with an average
precision of 79.7% at an
intersection over the union
of 50%.

[3]
Full 360-degree images with a
resolution of 2048 × 128 were
collected by Lidar sensors.

Indoor and
outdoor detection. YOLOx and YOLOv5

YOLOx outperforms others
with a precision of 100% and a
recall of 95.3%.

[4]

Collected dataset of 9200
images from cameras and
video clips that describe night
and day flames.

Fire detection. YOLOv3
Enhanced YOLOv3
outperforms others with an
average precision of 98.9%.

[5]

DOTA dataset including 11,268
satellite photos with a
resolution of 20,000 × 20,000
and 15 target classifications.

Landing sweet spots
detection.

YOLOv3, YOLOv4,
YOLOv5

With an accuracy of 70% and a
recall of 61%, YOLOv5 exhibits
an improvement in
performance.

[6] NEMO dataset Wildfire smoke detection. Faster R-CNN,
RetinaNet

The results revealed an
average detection accuracy of
42.3% and a detection rate of
98.4% within 5 min.

[7] Dataset of 16,503 images of
two target classes. Fire and smoke detection. YOLOv5

Swin-YOLOv5 outperforms
others with an mAP
improvement of 0.7 at an IOU
of 0.5.

[8] Self-built dataset of 4815
images of fires and smoke. Fire detection. YOLOv5

The improved model of
YOLOv5 using K-means++
outperforms others in mAP
by 4.4%.
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Table 1. Cont.

Paper Dataset Task Detection Models Findings

[9]
Collected aerial wildfire smoke
dataset of 6000 images from
Kaggle and google repositories

Wildfire smoke detection. YOLOv5

YOLOv5 and K-means++ for
anchor boxes have the best
accuracy of 73.6% mean
average precision.

[10]

Newly constructed dataset
with 11,367 samples and
Pascal-VOC2012 with
640 × 640.

Indoor and outdoor
detection. YOLOv5

The best average accuracy of
93.9 at an intersection over the
union of 0.9.

[11] 10,239 breast cancer images
from CBIS-DDSM. Breast cancer detection YOLOv5, YOLOv3

YOLOv5x exceeds other
models with 93.6% MCC. Its
96.5% accuracy and 96% mAP
beat YOLOv3.

3. Proposed Wildfire Smoke-Detection Methodology

The next sections go through the methodology presented for detecting forest fire
smoke, the data set utilized, the methods used to analyze it, and the detection models
employed. In this paper, we aim to find the best detection models for fire detection in the
smallest amount of time and with the ability to detect from various detection areas such
as close, medium, and distant. Figure 2 shows a flowchart of the proposed framework.
The designed methodology has the potential to reduce the sensitivity of detection models
using prospective data by combining data-augmentation methods. Data augmentation and
approaches such as cropping, resizing, and modifying the colors of photos were utilized
to triple the number of training samples in the data set. In addition, to improve detection
stability, we reserved 20% of the data for evaluating and testing detection findings. In
addition, we applied a comprehensive, reusable technique to any dataset other than those
specified for usage. In terms of adjusting the parameters of the detection models, we
employed the stochastic gradient descent (SGD) optimizer to lower detection time while
also adjusting the rest of the fundamental parameters of the detection processes. Comparing
detection models is vital, particularly in light of the release of certain current models such
as YOLOv7, but it is insufficient to search for the best models. As a result, this work aims to
compare recent detection methods to other models such as Fast R-CNN, Faster R-CNN, and
YOLOv4 using the same dataset utilized by prior contributions. The designed approach
may be used to monitor warning signals in the case of a fire breakout by connecting them
with detection models utilizing detection stations such as video cameras and drones, in
addition to the early identification of fires by smoke detection.Machines 2023, 11, x FOR PEER REVIEW 7 of 19 
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3.1. Dataset Collection and Processing

The detection areas and their surroundings in meters must be considered to create
accurate models with the highest performance for forest-fire smoke detection. Where
distant locations are prone to erroneous detection, such as detecting the sun at sunset
or detecting a particularly brilliant light and mistaking it for forest fires, must also be
considered as it results in false alarms. As a result, in this work, we used an online
accessible data set obtained from Kaggle archives, which describes 737 distinct photos
with varying placements and detecting zones such as close, medium, and distant. The
dataset is publicly available at https://www.kaggle.com/datasets/ahemateja19bec1025/
wildfiresmokedataset. The dataset was accessed online on 19 December 2022. However,
we discovered that the amount of data was inadequate to obtain reliable detection results.
As a result, we used data-augmentation methods such as picture cropping and grayscale
to increase the number of training samples in the data, while decreasing the sensitivity
of detection models to future data and maintaining a consistent level of accuracy. Data-
augmentation strategies create new copies of the original data set differently, resulting in
new training components. As a result, the data-augmentation process entailed making a
new copy of the data set and increasing the number of training items from the new photos
by three times, bringing the total number of images to 1723. Additionally, all images were
resized to 640 × 640 to accelerate detection. Figure 3 shows a selection of samples from
the data set and the additional items resulting from the data-augmentation processes. In
addition, 20% of the data was saved as new data to test detection models. Table 2 contains
a description of the dataset. Moreover, data analysis shows that the dataset was free from
missing labels.
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Table 2. Description of dataset following data-augmentation techniques.

Dataset Training Set
(80%)

Testing Set
(20%)

Total
Annotations

Average Image
Size Image Ratio Target

Classes

Kaggle wildfire
smoke-detection
dataset

1590 133 1723 0.41 megapixel 640 * 640 Smoke

3.2. Detection Models
3.2.1. YOLOv3

The third iteration of the idea developed by Joseph Redmon and Ali Farhadi [12]
was published in 2018: YOLOv3. The updated version has a 22 ms inference time and
an average mean accuracy of 28.2 percent. Dimension clusters are used to handle the
problem of anticipating ground-truth bounding bounds for anchor boxes. Unfortunately,
the performance of YOLOv3 is so poor that it employs logistic regression rather than
softmax to minimize the confidence score (the network classification layer). The greater
the confidence level, the more probable it is that the item in question may be found in
that specific grid cell. It employs darknet-53, a more convolutional foundation layer than
YOLOv5. YOLOv5 employs a route aggregation network to extract features at the neck layer.
Redmon discovered that the YOLOv3 detection model outperforms both the YOLOv2 and
single-shot detector models in terms of effectiveness and speed (SSD). Even today, YOLOv3
may be used as a reliable detection model in several applications. Magnuska et al. [13]
used YOLOv3 to detect malignancies in breast cancer patients. When the intersection over
union performance measurements were compared, the findings showed that YOLOv3
outperforms Viola–Jones. Furthermore, further variants, such as tiny-YOLOv3, were
derived from YOLOv3. In their experiment, Yi Zhang et al. [14] advised employing a
K-means cluster to enhance tiny-YOLOv3 pedestrian identification.

3.2.2. YOLOv5

It was initially planned to release YOLOv5 [15] in May 2020. It is a way to find
items in many photographs simultaneously. Figure 4 displays the three layers comprising
the backbone, neck, and head. All of the layers are conventional network designs. The
backbone layer is first used to extract crucial and recognizable information from incoming
pictures. In this YOLO variation, the cross-stage partial network CSPNet is employed as the
basic learner in the foundation layer for feature extraction. Second, the feature pyramids
created above the neck layer aid in identifying the same objects in varied sizes and places.
YOLOv5 also uses a route aggregation network to generate a features pyramid (PANet).
Lastly, the YOLO layer (or “head layer”) is used for object detection and prediction. A vector
is created with probability and bounding boxes for the supplied class. Bounding boxes
offer object coordinates in terms of x, y, height, and width. This layer improves detection
accuracy and performance by estimating the area of overlapping boxes. Then, calculating
the intersection over union (IoU) makes it feasible to discover which overlapping boxes
have the best limits [16]. We chose YOLOv5 for this study due of its high throughput, low
latency, and great accuracy. However, the following are some key differences between
YOLOv5 and its predecessors: (1) the network’s basic technology is CSPDarknet53, and
the PANet is employed in the neck layer. (2) It employs cross-loss functions that are both
logistic and binary. (3) It can discriminate between local and distant objects within the same
input image.
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3.2.3. YOLOv7

YOLOv7, designed by Chien-Yao Wang et al. [17], was released in July 2022. In terms
of speed and accuracy, the YOLOv7 version is a substantial advance over its predecessors.
The average accuracy for real-time item identification, in particular, is between 51.4% and
56.8%. The architecture of YOLOv7, in addition, is based on the original YOLOv4 and
scaled versions of that notion. Figure 5 depicts the YOLOv7 architecture.

Machines 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

requirement for a faster and more accurate detection system. In contrast to previous net-

works, such as the first iteration of the ELAN and the CSPVoVNet, the E-ELAN adds three 

extra components to the training layer. These portions are known as shuffle, merge, and 

expand. YOLOv7′s basic premise is to enhance detection accuracy and performance while 

simultaneously minimizing the number of parameters and processing required. However, 

when it comes to the detecting layer, YOLOv7 employs not one, but two heads: the lead 

head and the auxiliary head. Because of their interaction, these two layers give a more 

detailed portrayal of the data’s correlation and distribution. Trials conducted by the au-

thors reveal that YOLOv7 beats rival models such as the modest YOLOv4, YOLOv4, and 

YOLOR. The present version of YOLOv7 has been validated for use in the diagnosis of a 

spectrum of disorders and illnesses. Bayram et al. [18] discovered that YOLOv7 had the 

highest mean average accuracy of 85% at an IoU of 50% in an experimental study on iden-

tifying renal diseases. 

 

Figure 5. YOLOv7 Network Architecture. 

4. Evaluation Metrics 

Accuracy, recall and mean average precision (mAP) are the metrics we use to assess 

the YOLO models. Our purpose is to determine the right size and weight of YOLO net-

works, which is our primary focus. The mean of the average accuracy of the whole data 

class with reference to the intersection over union (IoU) value [19] is used as an alternate 

method to evaluate how successful object detection is. On the other hand, the mAP value 

is calculated by utilizing the IoU matrix in conjunction with the accuracy matrix, the recall 

matrix, and the confusion matrix. Depending on the bounding box representing the 

ground truth, the confusion matrix displays the results of classification and detection in 

the form of objects that have been correctly classified and incorrectly categorized. The 

definition of precision is the ratio of true positive predictions to the sum of all true positive 

and false positive samples. The number of times a prediction was accurate (the number of 

true positives) out of all relevant samples is what is counted for each label’s recall. The 

four fundamental qualities of a confusion matrix may be utilized to construct a variety of 

evaluation measures: 

True Positive (TP): Indicates the number of smoke objects appropriately detected. 

True Negative (TN): Number of accurately identified non-smoke objects. 

False Positive (FP): The number of misclassified non-smoke objects that are smoke. 

False Negative (FN): The number of smoke objects misclassified as non-smoke. 

Calculated and generated from the confusion matrix are the following metrics: 

Figure 5. YOLOv7 Network Architecture.

The foundation layer of the system is an implementation of the unique extended
efficient layer aggregation network (E-ELAN). The E-ELAN was developed to answer
the requirement for a faster and more accurate detection system. In contrast to previous
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networks, such as the first iteration of the ELAN and the CSPVoVNet, the E-ELAN adds
three extra components to the training layer. These portions are known as shuffle, merge,
and expand. YOLOv7′s basic premise is to enhance detection accuracy and performance
while simultaneously minimizing the number of parameters and processing required.
However, when it comes to the detecting layer, YOLOv7 employs not one, but two heads:
the lead head and the auxiliary head. Because of their interaction, these two layers give
a more detailed portrayal of the data’s correlation and distribution. Trials conducted by
the authors reveal that YOLOv7 beats rival models such as the modest YOLOv4, YOLOv4,
and YOLOR. The present version of YOLOv7 has been validated for use in the diagnosis
of a spectrum of disorders and illnesses. Bayram et al. [18] discovered that YOLOv7 had
the highest mean average accuracy of 85% at an IoU of 50% in an experimental study on
identifying renal diseases.

4. Evaluation Metrics

Accuracy, recall and mean average precision (mAP) are the metrics we use to assess the
YOLO models. Our purpose is to determine the right size and weight of YOLO networks,
which is our primary focus. The mean of the average accuracy of the whole data class with
reference to the intersection over union (IoU) value [19] is used as an alternate method to
evaluate how successful object detection is. On the other hand, the mAP value is calculated
by utilizing the IoU matrix in conjunction with the accuracy matrix, the recall matrix, and
the confusion matrix. Depending on the bounding box representing the ground truth, the
confusion matrix displays the results of classification and detection in the form of objects
that have been correctly classified and incorrectly categorized. The definition of precision
is the ratio of true positive predictions to the sum of all true positive and false positive
samples. The number of times a prediction was accurate (the number of true positives)
out of all relevant samples is what is counted for each label’s recall. The four fundamental
qualities of a confusion matrix may be utilized to construct a variety of evaluation measures:

True Positive (TP): Indicates the number of smoke objects appropriately detected.
True Negative (TN): Number of accurately identified non-smoke objects.
False Positive (FP): The number of misclassified non-smoke objects that are smoke.
False Negative (FN): The number of smoke objects misclassified as non-smoke.
Calculated and generated from the confusion matrix are the following metrics:

Mean average precision (mAP) =
1
n

k=n

∑
k=1

Avereage precision o f class k (1)

Precision =
True Positive

True Positive + False Positive
(2)

Recall =
True Positive

True Positive + False Negative
(3)

Intersection over union (IoU)

= Overlaped area between the predicted and ground truth boxes
Area o f union

(4)

We further apply three loss functions for reduction and evaluation, including the
bounding box regression score (loss), which may be used to quantify non-overlapping
bounding boxes [20]. The class probability score may be used to determine how well
a bounding box matches the class of an object [21]. The objectness score (confidence
score/GIoU) may be used to calculate the likelihood of a certain object being present in a
given grid cell [22].

5. Experimental Results and Discussion

Detecting forest fires is a delicate procedure with enormous economic consequences.
Furthermore, it is important to note the persistence of climate change, which significantly
impacts the spread and intensification of flames. In this section, we compare several YOLO
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models and their performance in detecting forest-fire smoke with the shortest feasible
detection time. However, this is not considered adequate for determining the optimum
fire-detection model, particularly given several competing models based on very efficient
neural networks, such as Faster R-CNN. As a result, one of the objectives of this study is to
evaluate the performance of YOLO models compared to earlier models.

Furthermore, in terms of detection speed, it is fully dependent on the speed of image
processing to identify its constituents such as smoke and flames. Detection stations play a
vital role in this case by delivering high-quality images such as satellite or drone photos.
Here, the problem of the inequality of comparisons of the different YOLO detection models
with previous models such as fast R-CNN and faster R-CNN appears. In order to properly
overcome this problem, we suggest in this study that high-quality simulation devices be
provided to boost detection. However, in this paper, we confine ourselves to the parameters
of the device employed in this study, as shown in Table 3. Additionally, the most significant
factors of fire smoke-detection activities, which are centered on the difficulty of detecting
distant areas based on the size of the detection zones, should be underlined. On the
other hand, some components with intense light are among the most notable obstacles
in erroneous detections. As a result, the objective of this study is to provide light on the
variations in performance amongst YOLO models for identifying faraway regions.

Table 3. Simulation Device Qualifications.

Device Specification Description

Processor Intel(R) Core i7 10th generation.
Random access memory (RAM) 8 Gigabits.
Operating system Windows ×64
Central processing unit (CPU) 1.50 GHz
Graphical processing unit (GPU) NVIDIA GeForce MX230

YOLO models include roughly 29 different parameters for hyperparameter adjustment.
However, we set up twelve parameters, as shown in Table 4. The parameters are loss gain
functions, learning rates, optimizers, and IoU threshold. All pictures were downsized to
640 × 640 as the input image size for all models. However, because of the low weight of
networks such as nano and small models, we increased the number of epochs in YOLOv5
to 100 iterations to boost detection results. To make the comparison more realistic, we
set all other YOLOv5 models to 100 epochs, including medium, large, and x-large. As
with YOLOv5, we picked 100 epochs to train the YOLOv3 model and 100 epochs to train
the YOLOv7 model. However, all models were built up in 16 batches compatible with
the tiny, selected learning rates and device qualifications in terms of RAM and GPU. In
each iteration, just four photos were input into the model once for clarity. In the YOLOv3
and YOLOv5 models, we applied the stochastic gradient descent (SGD) optimizer. To our
knowledge, the SGD optimizer outperformed the ADAM optimizer, despite the Adam
optimizer converging quicker [23].

The findings from our experiments demonstrate that the YOLOv5x model is superior,
since it has a detection accuracy of 96.8% at a threshold of 50% higher than the union
intersection. In addition, the model’s accuracy was 95%, earning it the best grade possible
on scales measuring precision and recall. This should not come as a surprise considering
that the YOLOv5x model is the most comprehensive of all the models and achieves an
average accuracy rate of 68.9% on the COCO dataset. In addition, YOLOv5 models are
differentiated from their predecessors by their ability to recognize three-dimensional objects
inside a single picture. The speed of detection, on the other hand, has to be considered
since we found that the extremely large (YOLOv5x) model had the slowest rate of detection
compared to the other models. The findings of the experiment as well as a comparison of
several detection models are shown in Table 5. When the intersection over union was set at
50%, the YOLOv7 model, on the other hand, revealed comparable results with an average
accuracy of 95%. When contrasted with the YOLOv5x model, however, we discovered
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that this one achieves the best results by cutting down on the number of loss functions.
This is due to the fact that YOLOv7 has the benefit of lowering the number of computing
operations required since it uses just a single stage rather than numerous stages like RCNN
does. Because of the new network architecture, also known as the extended efficient layer
aggregation network (E-ELAN), the computational speed has decreased, while the accuracy
rate has increased [24]; this is due to the YOLOv7 mechanism, which aims to reduce the
number of parameters that are used.

Table 4. Hyperparameter Tuning and Data-Augmentation Processing.

Parameters
Detection Models

YOLOv3 YOLOv5 YOLOv7

Initial learning rate (lr0) 0.01 0.01 0.01
Final learning rate (lrf) 0.1 0.01 0.1
Momentum 0.937 0.937 0.937
Box loss gain 0.05 0.05 0.05
Classification loss gain 0.5 0.5 0.3
Objectness loss gain 1.0 1.0 0.7
IoU training threshold 0.2 0.2 0.2
Optimizer SGD SGD SGD
Anchors per output layer 6.14 6.14 6.02
Image input size 640 × 640 640 × 640 640 × 640
Batches 16 16 16
Epochs 100 100 100

Data Augmentation For images (Grayscale by 50% and cropping by 10%
maximum zoom).

Table 5. YOLO models performance and detection accuracy results.

Model Precision Recall mAP 50 mAP
50–95 Obj Loss Box Loss

YOLOv5n 0.95404 0.93644 0.95047 0.56536 0.0051095 0.03299
YOLOv5s 0.91967 0.96241 0.94903 0.55856 0.0053546 0.033172
YOLOv5m 0.91715 0.93233 0.93564 0.54875 0.006499 0.034107
YOLOv5l 0.9286 0.91729 0.94379 0.54299 0.0069956 0.034483
YOLOv5x 0.96027 0.95489 0.96863 0.54266 0.0050051 0.031649
YOLOv3 0.9191 0.93985 0.94817 0.5345 0.0060999 0.034607
YOLOv7 0.9309 0.9173 0.9508 0.5074 0.003401 0.02954

Average 0.92928 0.93735 0.94934 0.53914 0.0055592 0.032926

On the other hand, the YOLOv5n model showed precise detection results, with an
average detection accuracy of 95% at an intersection over a union of 50%. This should not
come as a surprise considering that only one entry in the data set corresponds to the goal,
which stands for smoke. This is where the power of this model becomes apparent, as it can
perform well in detecting operations even in areas with little space and components. On
the other hand, when the size of the YOLOv5 models increased, the model’s capacity to
identify more items in more image dimensions also increased. This is because the size of
the neural networks increased.

Illustrating the feasibility of smoke-detection models from various detection areas,
the detection accuracy varied between 70% and 100%. Figures 6–12 show samples of
YOLO model detection findings in three dimensions: close, medium, and distance. In
addition, this study aims to minimize the sensitivity of detection models to future data
while increasing detection accuracy in different locations and dimensions. Consequently, in
this work, we used data-augmentation methods such as cropping images and altering their
color tone, which increased the capacity of models to recognize distinct scenarios properly.
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To emphasize the state-of-the-art of the recommended proposed methodology in
comparison to the methodologies used in prior research, this study aims to evaluate and
contrast the capabilities of various YOLO models in terms of how quickly and accurately
they can spot smoke from forest fires. We have found that some of the data sets that
are accessible online have certain issues. These issues include a lack of data labels and a
disorganization of the data, making it very time-consuming to generate a new data set. As
a result, in this study, we used a set of methods to increase the data, which ultimately led
to an increase in the number of training elements in the data set that was used, a decrease
in the classification sensitivity of the detection models, and a decrease in the proportion of
overfitting. Additionally, we highlighted one of the most prominent challenges in detecting
smoke and forest fires, which is represented by the appearance of some elements with high
illumination that can be detected as fires or smoke, but in reality, are not fires or smoke. As
a result, we adhered to using a dataset from the Kaggle repository. This dataset describes
three distinct detection zones, including proximal, middle, and distant.
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On the other hand, given the presence of a large number of previously developed
detection models using a variety of neural network types, one of the goals of this work
is to identify the kind of detection model that is most effective for the early detection of
fires. Consequently, we compared the performance results of several detection models with
the findings of the study technique that was devised and carried out on an altered data
set to detect fire smoke. The findings of prior detection models are compiled in Table 6,
along with a comparison of those results with those of YOLO detection models. With this
due consideration, the YOLO models demonstrated superior performance in terms of both
accuracy and speed.

The finite detection approach in the Fast R-CNN model being a static method sheds
light on the reasons why YOLO detection models outperform some prior models. As a
result, no simultaneous learning takes place, which may result in the generation of poor
proposals for the bounding box [25]. Moreover, in the Faster R-CNN detection model,
detecting many components with comparable characteristics in the same picture is a time-
consuming procedure for neural networks, which may result in detection delays and
incorrect classification processes [26]. It is, nevertheless, still quite effective for real-time
detection. Nonetheless, neural networks do not generate enough features in the SSD
detection model to detect small items [27], for example, detecting smoke from flames, if
the data sets contain one or two target items for detection, such as fires and smoke. As a
result, we proposed in this study to employ numerous data-augmentation strategies to
increase the amount and quality of training objects. On the other hand, several prior YOLO
detection models, such as YOLOv4 and YOLOv2, lack the capacity to identify many small
objects in one location [28]. Yolo models, for example, partition a picture into grids and then
identify the components within each grid. As a result, the problem arises in recognizing
little or distant features if there are many inside the image’s single grid.

Table 6. Performance of YOLOv3, YOLOv5, and YOLOv7 compared to prior models.

Detection Model Mean Average Precision (mAP) at IoU of 50%

Fast R-CNN [25] 68.3%
Faster R-CNN [26] 70.6%
YOLOv4 [29] 77.5%
EfficientDet [30] 77.4%
SSD [31] 71.3%
YOLOv5n 95.04%
YOLOv5s 94.9%
YOLOv5m 93.5%
YOLOv5l 94.3%
YOLOV5x 96.8%
YOLOv3 94.8%
YOLOv7 95.08%

Now, some light will be shed on the study’s shortcomings. Some reduction functions,
such as the classification loss gain function, whose value was zero in all models, were
not utilized to compare detection models. This is due to the dataset only having one
classification class. We also note that a small sample of forest-fire smoke detection data
is erroneous. Figure 13 shows where the clouds were recognized as smoke from fires
in daylight mode. The detection models’ power rests in their ability to be trained on
additional data sets representing fire smoke in day and night modes and extracts from
climate change in the areas. Furthermore, altering the parameters in the detection models
may vary from experiment to experiment depending on the amount and quality of the
data collected and the speed of the detectors employed. However, to solve the problem
of misclassifying clouds as smoke, it is suggested to add another distinct element to the
data set that represents clouds. Although this solution will be effective, some physical
properties of the common substance between smoke and clouds will be specified in the
detection operations and it is an expensive process. Therefore, we shed light on the problem
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of detecting fire smoke, especially smoke from fires, which tends to be white, as opposed to
black, which will be easier to distinguish from clouds. Additionally, we noticed that the
number of clouds in the images of the available and used dataset is not sufficient in all
cases to redefine a new discrimination element. However, a radical solution to this problem
is to develop fractional detection models to analyze smoke properties and separate them
from elements that have similar properties.
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On the other hand, it should be noted that searching for the optimum detection model
might be challenging, if not impossible. This is owing to the numerous constraints, such as
a lack of appropriate labeled data sets to conduct experiments on assessing the effectiveness
of many detection models to identify smoke from fires in various conditions, such as
internal and outdoor flames, daylight fires, and nocturnal fires [31]. This is due to the high
expense of addressing data sets [32], as well as the technology required to detect fire smoke
early and distinguish it under climate change circumstances. In this paper, however, we
described the distinctions between common technologies, such as optimization algorithms,
which can be utilized in all sorts of detection models and play a key role in enhancing and
modifying detection speed. Furthermore, the comparisons in this paper aim to highlight
the molecules and components of detection model networks that differ from one detection
model to another, such as YOLOv5 that uses the PANet network and YOLOv7 that uses the
E-ELAN network, and to demonstrate the differences in performance in forest fire detection
operations. As a result, determining the best detection model is entirely dependent on the
state of the available environment, the detection areas and their dimensions, the speed of
polarization of the detection devices and their effectiveness, the quality of the collected
data, and the accuracy of the data set.

6. Conclusions

Forest fires are a particularly concerning environmental problem since smoke may
serve as an early warning indicator. A very minute portion of the total smoke might be
seen in initial photographs. Due to the unpredictability of smoke’s dissemination and
the ever-changing nature of the surrounding environment, identifying smoke is made
more difficult by minor pixel features. In this paper, we described a novel framework
that, when applied to various YOLO detection models, resulted in a decreased level of
sensitivity. In addition, we examined how well and how quickly various YOLO models
identify anomalies compared to earlier versions. In addition, to determine whether or not
the detection model was capable of accurately recognizing targets, we used a gathered
dataset that outlines three separate detection zones. When applied to a home-grown multi-
oriented dataset, our model surpasses the gold-standard detection approach for identifying
forest fires by a margin of 96.8%, with an mAP of 50 and FPS of 122, respectively. Extensive
research shows that the suggested method achieves significantly better results than the
most advanced object-detection algorithms when applied to smoke datasets from wildfires,
while maintaining a satisfactory performance level in challenging environmental conditions.
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This was discovered by comparing the results of the suggested method with those of the
most advanced object-detection algorithms.
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