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Abstract: There are closed-chain constraints between the left manipulator and the right manipulator
in tight coordination of the dual redundant manipulator. The existing planning algorithms suitable for
loose coordination cannot be directly applied to tight coordination, as the planned path cannot satisfy
the closed-chain constraints. To solve the above problem, a master-slave planning method based on
bidirectional RRT* is proposed for dual redundant manipulators. Bidirectional RRT* is adopted to
plan the path of the master manipulator. The path of the slave manipulator is calculated by terminal
generalized velocity constraints instead of terminal position and posture constraints. Moreover, a
local path replanning strategy is proposed to solve the problem that the planned path is actually not
feasible due to the discontinuous joint path of the slave manipulator. The joint self-motion in the
null space is utilized to keep the terminal position and posture of the slave manipulator unchanged.
The proposed method is verified by simulations and experiments and the results show that it can
solve the discontinuity problem, increase the success rate, shorten the planning time and satisfy
closed-chain constraints. Therefore, the proposed method can be feasibly and effectively applied to
the tight coordination of dual redundant manipulators.

Keywords: dual redundant manipulator; closed-chain constraint; bidirectional RRT*; master-slave
planning; local path replanning

1. Introduction

Redundant manipulators, compared with nonredundant manipulators [1,2], can be
more flexible to perform a variety of delicate and complex operations due to their increased
degrees of freedom [3–5]. Hence, they are widely applied to various industrial fields.
For many operations such as transportation, assembly, maintenance and processing of
complex parts, single redundant manipulators may not be competent due to the limitations
of their load-bearing capacity, workspace and application range. Therefore, coordination
operations of dual redundant manipulators have attracted extensive attention [6–8].

Path planning is one of the key technologies for safe operations of dual redundant
manipulators [9–11]. Sampling-based algorithms are the most popular algorithms for
path planning. Rapidly exploring random tree (RRT) and its derivative algorithms are the
mainstream among various sampling-based algorithms [12–17]. Yu et al. [18] proposed
a spline RRT* for coordinated motion planning of dual-arm space manipulators. RRT*
was adopted to plan the desired path and then the quartic spline function was adopted
to smooth it. Ying et al. [19] proposed a bidirectional RRT with deep learning for the
cooperative assembly of dual manipulators. The historical training data of deep learning
were adopted to generate new nodes that were close to the goal node and away from
the obstacles. Chen et al. [20] proposed a bidirectional RRT with post-processing for the
cooperative assembly of dual manipulators. After the planning of bidirectional RRT was
completed, the path was optimized by post-processing. Compared with RRT, bidirectional
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RRT has a faster convergence speed, and RRT* can plan an optimized path. To shorten
the planning time and path length, bidirectional RRT* (B-RRT*) is proposed by combining
bidirectional RRT with RRT* [21,22]. Therefore, B-RRT* is adopted in this study for path
planning of dual redundant manipulators.

Existing algorithms based on RRT are generally applied to plan the path for loose coor-
dination of dual redundant manipulators [18–20,23–25]. Compared with loose coordination,
the terminal positions and postures of the left manipulator and the right manipulator are
mutually restricted by the kinematic closed-chain constraints in tight coordination [26,27].
Therefore, planning algorithms suitable for loose coordination cannot be directly applied
to tight coordination. To solve the above problem, a master-slave planning method based
on B-RRT* is proposed for tight coordination of dual redundant manipulators in this study.

For general master-slave planning methods, the path of the slave manipulator in
the task space is obtained by the terminal position and posture constraints, and then
its path in the joint space is calculated by solving the inverse kinematics [28,29]. For
redundant manipulators, the inverse kinematics is usually solved by numerical algo-
rithms. Numerical algorithms generally obtain the joint angular velocity of the redundant
manipulator through its terminal generalized velocity and then calculate the joint angles ac-
cordingly [30,31]. According to the above characteristics, the terminal generalized velocity
constraints are directly adopted to obtain the joint angular velocity of the slave manipulator
in our study. Therefore, it can avoid the calculation of inverse kinematics and improve the
execution efficiency.

When the master-slave planning method based on B-RRT* is applied to dual redundant
manipulators, it cannot guarantee the continuity of the path at the connection nodes of two
trees in the joint space. The reasons for this problem are described as follows. The path
of the master manipulator is planned by the planning algorithm. Hence, it is continuous
at the two connection nodes in both the task space and the joint space. Nevertheless, the
path of the slave manipulator is calculated by the closed-chain constraints that are just
acted on the terminal states. Therefore, it can only ensure that its path is continuous at the
two connection nodes in the task space. Since there are infinite sets of inverse kinematics
solutions for redundant manipulators, there is a high probability that the two sets of joint
angles at the two connection nodes are inconsistent and usually quite different. That is, the
path of the slave manipulator may be discontinuous at the two connection nodes in the
joint space. As a result, there is an additional motion between the two connection nodes in
the actual motion due to the above discontinuity problem. This additional motion is not
included in the planned path. Therefore, the dual redundant manipulator may collide with
obstacles or fail to satisfy the closed-chain constraints in the actual motion. The planned
path is actually not feasible in this case. To solve the discontinuity problem, it is necessary
to modify the master-slave planning method based on B-RRT* so that the planned path is
continuous in both the task space and the joint space.

The main contributions of this paper are highlighted as follows:

(1) For tight coordination of dual redundant manipulators, a master-slave planning
method based on B-RRT* is proposed. One manipulator is regarded as the master
manipulator and the other is regarded as the slave manipulator. The path of the
master manipulator is planned by B-RRT* and then the path of the slave manipulator
is calculated according to the kinematic closed-chain constraints.

(2) Considering the characteristics of dual redundant manipulators, the path of the slave
manipulator is calculated by the terminal generalized velocity constraints instead of
the terminal position and posture constraints. In this way, the calculation of the inverse
kinematics solutions can be avoided, and the planning efficiency can be improved.

(3) To solve the discontinuity problem in the joint path of the slave manipulator at the
connection nodes when the master-slave planning method based on B-RRT* is applied
to dual redundant manipulators, a local path replanning strategy is designed on the
basis of the joint self-motion in the null space. On the premise that the terminal
position and posture of the slave manipulator remain unchanged, the local path of



Machines 2023, 11, 209 3 of 18

the slave manipulator between the two connection nodes is replanned to guarantee
its continuity and satisfy the closed-chain constraints.

The subsequent contents of this paper are organized as follows. In Section 2, the
closed-chain constraints of dual redundant manipulators are described. The master-slave
planning method based on B-RRT* for dual redundant manipulators is introduced. The
local path replanning strategy is designed. In Section 3, comparative simulations and
experiments are carried out, and their results are analyzed. In Section 4, innovations,
extended applications and limitations of our study are discussed. In Section 5, conclusions
are given.

2. Materials and Methods
2.1. Closed-Chain Constraints for Dual Redundant Manipulators

The general situation of tight coordination operation of dual redundant manipulators
is that the left manipulator and the right manipulator cooperate with each other to grip a
workpiece and then move it along a desired path. In this situation, a closed-chain structure
is formed between the left manipulator, the right manipulator and the workpiece. There
are strict constraints between them, which are called the closed-chain constraints. The
transportation of a workpiece is taken as an example to describe the closed-chain constraints
in the tight coordination operation of dual redundant manipulators, as shown in Figure 1.
The left manipulator is taken as the benchmark in the following description.
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2.1.1. Terminal Position and Posture Constraints

It can be seen from the purple dotted line box in Figure 1 that there is a closed-chain
relationship between the terminal position of the left manipulator and the terminal position
of the right manipulator. Therefore, the closed-chain constraint between them can be
obtained according to the addition rule of vectors [32,33], as described below:

d0 + Rl0
w pl7

l0

(
ql
)
+ Rl0

w Rl7
l0

(
ql
)

d7 = pr7
w (qr) (1)

where d0 is the position vector of the base coordinate frame of the left manipulator in the
world coordinate frame, Rl0

w is the posture transformation matrix of the base coordinate
frame of the left manipulator with respect to the world coordinate frame, pl7

l0

(
ql
)

is the
position vector of the terminal coordinate frame of the left manipulator in its base coordinate
frame, Rl7

l0

(
ql
)

is the posture transformation matrix of the terminal coordinate frame of the
left manipulator with respect to its base coordinate frame, d7 is the distance vector between
the terminal coordinate frames of the left manipulator and the right manipulator in the
terminal coordinate frame of the left manipulator and pr7

w (qr) is the position vector of the
terminal coordinate frame of the right manipulator in the world coordinate frame.

According to the transformation relation between the coordinate frames at the four
vertices of the purple dotted line box in Figure 1, the constraint between the terminal
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posture of the left manipulator and the terminal posture of the right manipulator can be
obtained [32,33], as described below:

Rr0
w Rr7

r0(q
r) = Rl0

w Rl7
l0

(
ql
)

Rr7
l7 (2)

where Rr0
w is the posture transformation matrix of the base coordinate frame of the right ma-

nipulator with respect to the world coordinate frame, Rr7
r0(q

r) is the posture transformation
matrix of the terminal coordinate frame of the right manipulator with respect to its base
coordinate frame and Rr7

l7 is the posture transformation matrix of the terminal coordinate
frame of the right manipulator with respect to the terminal coordinate frame of the left
manipulator.

2.1.2. Terminal Linear and Angular Velocity Constraints

The constraint between the terminal linear velocity of the left manipulator and the
terminal linear velocity of the right manipulator can be obtained through the derivation of
Equation (1) [32,33], as described below:[

Rl0
w Jl

(
ql
)
+ L

(
ql
)] .

ql
= Rr0

w Jl(qr)
.
qr (3)

where L
(

ql
)
=

∂[Rl7
w (ql)d7]

∂ql , Jl

(
ql
)

is the first three rows of the Jacobian matrix of the left

manipulator, Jl(qr) is the first three rows of the Jacobian matrix of the right manipulator,
.
ql

is the joint angular velocity of the left manipulator and
.
qr is the joint angular velocity of the

right manipulator.
For the transportation of a workpiece, the posture transformation matrix Rr7

l7 is a
constant matrix. Therefore, the angular velocity of the terminal coordinate frame of the
right manipulator with respect to the terminal coordinate frame of the left manipulator is
0. That is, the terminal angular velocity of the right manipulator is equal to the terminal
angular velocity of the left manipulator. The constraint between the terminal angular
velocity of the left manipulator and the terminal angular velocity of the right manipulator
is described below [32,33]:

Rl0
w ωl = Rr0

w ωr (4)

where ωl = Ja

(
ql
) .

ql , ωr = Ja(qr)
.
qr, ωl is the terminal angular velocity of the left manipula-

tor in its base coordinate frame, ωr is the terminal angular velocity of the right manipulator
in its base coordinate frame, Ja

(
ql
)

is the last three rows of the Jacobian matrix of the left
manipulator and Ja(qr) is the last three rows of the Jacobian matrix of the right manipulator.

The constraint between the terminal generalized velocity of the left manipulator and
the terminal generalized velocity of the right manipulator can be obtained by combining
constraint (3) with constraint (4) [32], as described below:

.
qr

= J+(qr)
(

R0
w

)−1
Jn

(
ql
) .

ql (5)

where R0
w =

[
Rr0

w O
O Rr0

w

]
, Jn

(
ql
)
=

Rl0
w Jl

(
ql
)
+ L

(
ql
)

Rl0
w Ja

(
ql
) , J+(qr) is the pseudo inverse of

the Jacobian matrix of the right manipulator.

2.2. Master-Slave Planning Based on B-RRT* for Dual Redundant Manipulators

For dual redundant manipulators, B-RRT* establishes a tree T1 at the initial node qinit
and another tree T2 at the goal node qgoal, respectively. The root node of the tree T1 is qinit
and the root node of the tree T2 is qgoal. Then, two trees are extended successively until they
are connected to each other, as shown in Algorithm 1.
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Algorithm 1. Bidirectional RRT*

Input: the initial node qinit and the goal node qgoal
Output: the desired path σ

1. T1.init(qinit); T2.init(qgoal);
2. For i = 1 To N
3. (T1, flag1, qe1, qe2)← Extend(T1, T2);
4. If flag1 = true
5. Break;
6. End If
7. (T2, flag2, qe1, qe2)← Extend(T2, T1);
8. If flag2 = true
9. Break;
10. End If
11. End For
12. If flag1 = true or flag2 = true
13. σ← ExtractPath (T1, T2, qinit, qgoal, qe1, qe2);
14. Else
15. σ← Ø;
16. End If
17. Return σ;

Assuming that both the left manipulator and the right manipulator have n degrees of
freedom, the dual redundant manipulator can be regarded as a whole, which is equivalent
to a single manipulator with 2n degrees of freedom. In this case, the nodes of two trees can
be expressed as below:

q =
[
ql qr] (6)

where ql =
[
ql

1 · · · ql
i · · · ql

n
]
, qr =

[
qr

1 · · · qr
i · · · qr

n
]
, q is the node of one tree

of the dual redundant manipulator, ql is the set of n joint angles of the left manipulator,
qr is the set of n joint angles of the right manipulator, ql

i is the ith joint angle of the left
manipulator and qr

i is the ith joint angle of the right manipulator.
The extension processes of two trees are identical. Hence, the extension process of the

tree T1 is taken as an example to elaborate the details, as shown in Algorithm 2.

Algorithm 2 (T1, flag, qe1, qe2)← Extend(T1, T2)

1. flag← false;
2. qrand ← Sample(qlimit);
3. qnear1 ← Near(qrand, T1);
4. qnew1 ← Steer(qrand, qnear1);
5. feasibility← DetectCollision(qnew1);
6. If feasibility = true
7. T1 ← Insert(qnew1, qnear1);
8. T1 ← ReselectParentNode(qnew1, qnear1, T1);
9. T1 ← Rewire(qnew1, T1);
10. (flag, qe1, qe2)← JudgeConnectivity(qnew1, T2);
11. While feasibility = true And flag = false
12. qnear2 ← Near(qnew1, T2);
13. qnew2 ← Steer(qnew1, qnear2);
14. feasibility← DetectCollision(qnew2);
15. If feasibility = true
16. T2 ← Insert(qnew2, qnear2);
17. T2 ← ReselectParentNode(qnew2, qnear2, T2);
18. T2 ← Rewire(qnew2, T2);
19. (flag, qe1, qe2)← JudgeConnectivity(qnew2, T1);
20. End If
21. End While
22. End If
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Firstly, a sampling point qrand can be obtained by random sampling within the motion
range of the dual redundant manipulator. Secondly, the node qnear1 that is nearest to the
sampling point qrand is searched in the tree T1. Thirdly, a new node qnew1, whose parent
node is qnear1, can be obtained by expanding, as shown in Algorithm 3. Fourthly, the
collision between the dual redundant manipulator and obstacles at the new node qnew1 is
detected. If a collision occurs, the new node qnew1 will be abandoned and then the tree T2 is
switched to extend. Conversely, if no collision occurs, the new node qnew1 will be added to
the tree T1. Fifthly, the parent node of the new node qnew1 is reselected in its neighborhood.
Its new parent node is the node with the lowest path cost. The path cost of a node is the
sum of the path length from the root node qinit to this node and the path length from this
node to the new node qnew1. Sixthly, all nodes in the neighborhood of the new node qnew1
are rewired. The new node qnew1 is taken as the parent node of these nodes and then their
new path costs are calculated. If the new path costs are less than the old path costs, the
parent nodes of these nodes are changed to the new node qnew1. On the contrary, the parent
nodes of these nodes remain unchanged. Seventhly, the connectivity of the two trees is
checked, as shown in Algorithm 4. If the distance between the new node qnew1 and some
node of the tree T2 is less than the connection threshold, the two trees have been connected
to each other and then the extensions of two trees are stopped. If the distance between the
new node qnew1 and any node of the tree T2 is greater than the connection threshold, the
tree T2 is extended towards the new node qnew1 until there is a collision or the two trees
are connected to each other. In the case that there is a collision, the tree T2 is switched to
perform the above steps. Finally, in the case that the extensions of two trees are completed,
if the two trees are connected to each other, the desired path can be extracted from the
two trees and it will be the output of the algorithm. Otherwise, the empty set is directly
returned as the output of the algorithm.

Algorithm 3 qnew ← Steer(qtarget, qnear)

1. (ql
target, qr

target)← Decompose(qtarget);

2. (ql
near, qr

near)← Decompose(qnear);
3. ql

new ← Expand(ql
target, ql

near);

4.
.
ql ← (ql

new − ql
near)/t;

5.
.
qr ← Constraint(

.
ql, ql

near, qr
near);

6. qr
new ← qr

near + t· .qr;
7. qnew ←Merge(ql

new, qr
new);

Algorithm 4 (flag, qe1, qe2)← JudgeConnectivity(qnew, T)

1. qe1 ← qnew;
2. For i = 1 To k
3. qi ← ExtractNode(T, i);
4. If Distance(qnew, qi) < threshold
5. flag← true;
6. qe2 ← qi;
7. Break;
8. Else
9. flag← false;
10. End If
11. End For

In the expansion phase, for single redundant manipulators, a new node qnew can be
obtained directly by extending a step distance δ forward in the direction from the node
qnear to the sampling point qrand. However, for dual redundant manipulators, considering
the closed-chain constraints (1)–(5) between the left manipulator and the right manipulator
in tight coordination, a new node qnew cannot be obtained by the expansion mode of single
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redundant manipulators. Therefore, the master-slave planning method is adopted to extend
the trees of dual redundant manipulators. It is assumed that the left manipulator is the
master manipulator and the right manipulator is the slave manipulator. A new set of joint
angles ql

new of the left manipulator is generated by the expansion mode of single redundant
manipulators. Then, the corresponding set of joint angles qr

new of the right manipulator can
be calculated according to the closed-chain constraints. Lastly, a new node qnew of the dual
redundant manipulator can be obtained by merging the two sets of joint angles ql

new and qr
new.

The closed-chain constraints (1)–(5) of the dual redundant manipulator are the con-
straints between the terminal states of the left manipulator and the right manipulator.
Therefore, the general execution process of the master-slave planning method is described
as follows. After obtaining the set of joint angles of the left manipulator, the terminal posi-
tion and posture of the left manipulator are calculated through forward kinematics. Then,
the terminal position and posture of the right manipulator can be calculated through the
closed-chain constraints (1) and (2). Finally, the set of joint angles of the right manipulator is
solved by inverse kinematics [28,29]. The numbers of degrees of freedom of the left manip-
ulator and the right manipulator are both greater than 6. It results in the calculation of the
analytic solution of inverse kinematics being very tedious. Hence, the inverse kinematics is
usually solved by numerical algorithms. Numerical algorithms are generally based on the
relationship (7) between the terminal generalized velocity of the redundant manipulator
and its joint angular velocity. The joint angular velocity of the redundant manipulator is
calculated by the numerical algorithm, and then its corresponding set of joint angles can be
calculated accordingly [30,31].

.
q = J+(q)V +

[
In×n − J+(q)J(q)

]
ε (7)

where V is the terminal generalized velocity vector of the redundant manipulator, J+(q) is
the pseudo inverse of the Jacobian matrix and ε is a vector in the null space.

The closed-chain constraints (3)–(5) of the dual redundant manipulator are essentially
the constraints between the terminal generalized velocities of the left manipulator and the
right manipulator, but they have been transformed into the constraints between the joint
angular velocities of the left manipulator and the right manipulator through the Jacobian
matrix. To simplify the calculation of the set of joint angles of the right manipulator, the
joint angular velocity of the left manipulator is calculated after obtaining the set of joint
angles of the left manipulator. Then, the joint angular velocity of the right manipulator
can be calculated through the closed-chain constraints (3)–(5), and the set of joint angles of
the right manipulator can be calculated accordingly, as shown in Algorithm 3. This method
can avoid the calculation of the inverse kinematics solution and can effectively improve the
planning efficiency and shorten the planning time. The specific steps are described as follows:

(I) In the direction from the node ql
nearof the left manipulator to its temporary target point

ql
target, the new node ql

new can be obtained by extending a step distance δ forward, as
described below:

ql
new = ql

near + δ (8)

where ql
new is the new node of the left manipulator and ql

near is the node closest to the
temporary target point ql

target of the left manipulator.
(II) The motion time t between two adjacent nodes of the dual redundant manipulator is

given. Assuming that the left manipulator moves at a uniform speed between the two
adjacent nodes in the joint space, the joint angular velocity

.
ql of the left manipulator

can be calculated by Equation (9).

.
ql

=
ql

new − ql
near

t
(9)

where
.
ql is the joint angular velocity of the left manipulator and t is the motion time

between two adjacent nodes of the dual redundant manipulator.
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(III) According to the closed-chain constraint (5), the joint angular velocity
.
qr of the right

manipulator is calculated.
(IV) Similarly, assuming that the right manipulator moves at a uniform speed between the

two adjacent nodes in the joint space, the new node qr
new of the right manipulator can

be calculated by Equation (10).

qr
new = qr

near + t· .qr (10)

where qr
new is the new node of the right manipulator, qr

near is the node closest to the
temporary target point qr

target of the right manipulator and
.
qr is the joint angular

velocity of the right manipulator.
(V) The new node ql

new of the left manipulator and the new node qr
new of the right manipulator

are merged to obtain the new node qnew = [ql
new qr

new] of the dual redundant manipulator.

To ensure that the new node qnew can satisfy the closed-chain constraints (1) and (2),
the step distance δ and the motion time t should not be too large. That is, the motion
between the two adjacent nodes should be a differential motion.

2.3. Local Path Replanning

The connection condition of two trees is that the distance between some node q1i of
the tree T1 and some node q2j of the tree T2 is less than the given threshold, as shown in
Algorithm 4. In the case that B-RRT* is applied to dual redundant manipulators, its node q
contains both the set of joint angles ql of the left manipulator and the set of joint angles qr of
the right manipulator. In the actual planning, when the distance between two sets of joint
angles of the left manipulator (or the right manipulator) in different trees is less than the
given threshold, the distance between two sets of joint angles of the right manipulator (or
the left manipulator) in different trees may be not less than the given threshold in a high
probability. That is, it is difficult to meet the connection condition of two trees. Therefore, it
is necessary to modify the connection condition of two trees for solving the above problem.

Since it is difficult for the left manipulator and the right manipulator to meet the
connection condition at the same time, it can first ensure that the parts corresponding to the
left manipulator in two nodes of different trees are connected with each other, as shown in
Algorithm 5. Then, the local path between the parts corresponding to the right manipulator
in two nodes of different trees is replanned. That is, while keeping the left manipulator
stationary, the right manipulator moves from the set of joint angles corresponding to
the connection node of the tree T1 (or T2) to the set of joint angles corresponding to the
connection node of the tree T2 (or T1). Moreover, to satisfy the closed-chain constraints (1)
and (2), the terminal position and posture of the right manipulator must always remain
unchanged during the movement.

Algorithm 5 (flag, qe1, qe2)← NewJudgeConnectivity(qnew, T)

1. qe1 ← qnew;
2. (ql

new, qr
new)← Decompose(qnew);

3. For i = 1 To k
4. qi ← ExtractNode(T, i);
5. (ql

i , qr
i )← Decompose(qi);

6. If Distance(ql
new, ql

i) < threshold
7. flag← true;
8. qe2 ← qi;
9. Break;
10. Else
11. flag← false;
12. End For
13. End For
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To ensure that the terminal position and posture of the right manipulator remains
unchanged during the local path replanning, it can be realized through the joint self-motion
in the null space [34,35] on the basis of the characteristics of redundant manipulators. That
is, the joint angular velocity of the right manipulator is calculated by setting the terminal
generalized velocity V in Equation (7) to zero, as described below:

.
qr

=
(

In×n − J+(qr)J(qr)
)
εr (11)

where εr is a vector in the null space of the right manipulator.
To ensure that the right manipulator can start from the starting point qr

localstart of the
local path and move towards the end point qr

localgoal of the local path, the value of vector εr

can be calculated by Equation (12).

εr =

(
qr

localgoal − qr
k

)
(m− k + 1)t

(12)

where m =

(
qr

localgoal−qr
localstart

)
δ , k = 1 ∼ m, qr

localstart is the starting point of the local path of
the right manipulator, qr

localgoal is the end point of the local path of the right manipulator, m
is the upper limit of the number of discrete points in the local path of the right manipulator and
k is the serial number of the current discrete point in the local path of the right manipulator.

The process of local path replanning is shown in Algorithm 6. In addition, the exten-
sion process of bidirectional RRT* with local path replanning (B-RRT*-LPR) is shown in
Algorithm 7.

Algorithm 6 (T, success, qe1)← Localpath(qe1, qe2, T)

1. success← false;
2. (ql

localstart, qr
localstart)← Decompose(qe1);

3. (ql
localgoal , qr

localgoal)← Decompose(qe2);

4. q1 ← qe1; qr
1 ← qr

localstart;
5. For k = 1 To m − 1
6. Jr

k ← Jacobian(qr
k);

7. εr
k ← NullSpaceVector(qr

k, qr
localgoal , k);

8.
.
qr

k ← Velocity(Jr
k , εr

k);
9. qr

k+1 ← qr
k + t

.
qr

k
10. qk+1 ←Merge(ql

localstart, qr
k+1r k;

11. feasibility← DetectCollision(qk+1);
12. If feasibility = true
13. T← Insert(qk+1, qk);
14. qk ← qk+1;
15. If Distance(qr

k+1, qr
localgoal) < threshold

16. qe1 ← qk+1;
17. success← true;
18. Break;
19. End If
20. End If
21. End For

The specific steps of local path replanning are described as follows:

(a) The parts corresponding to the right manipulator in the connection node of the tree
T1 (or T2) are selected as the starting point qr

localstart of the local path. The parts
corresponding to the right manipulator in the connection node of the tree T2 (or T1)
are selected as the end point qr

localgoal of the local path. The first discrete point qr
1of the

local path is qr
rlocalstart.
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(b) The Jacobian matrix Jr
k and the vector εr

k of the current discrete point qr
k are calculated.

Then, the joint angular velocity
.
qr

kof the right manipulator is calculated according to
Equation (11).

(c) The next discrete point qr
k+1 is calculated by Equation (13).

qr
k+1 = qr

k + t · .
qr

k (13)

where qr
k+1 is the next discrete point of the local path of the right manipulator, qr

k is
the current discrete point of the local path of the right manipulator and

.
qr

k is the joint
angular velocity of the right manipulator at the current discrete point of the local path.

Algorithm 7 (T1, flag, qe1, qe2)← NewExtend(T1, T2)

1. flag← false;
2. qrand ← Sample(qlimit);
3. qnear1 ← Near(qrand, T1);
4. qnew1 ← Steer(qrand, qnear1);
5. feasibility← DetectCollision(qnew1);
6. If feasibility = true
7. T1 ← Insert(qnew1, qnear1);
8. T1 ← ReselectParentNode(qnew1, qnear1, T1);
9. T1 ← Rewire(qnew1, T1);
10. (flag, qe1, qe2)← NewJudgeConnectivity(qnew1, T2);
11. If flag = true
12. (T1, flag, qe1)← Localpath(qe1, qe2, T1);
13. End If
14. While feasibility = true And flag = false
15. qnear2 ← Near(qnew1, T2);
16. qnew2 ← Steer(qnew1, qnear2);
17. feasibility← DetectCollision(qnew2);
18. If feasibility = true
19. T2 ← Insert(qnew2, qnear2);
20. T2 ← ReselectParentNode(qnew2, qnear2, T2);
21. T2 ← Rewire(qnew2, T2);
22. (flag, qe2, qe1)← NewJudgeConnectivity(qnew2, T1);
23. If flag = true
24. (T2, flag, qe2)← Localpath(qe2, qe1, T2);
25. End If
26. End If
27. End While
28. End If

(d) The set of joint angles ql
localstart of the left manipulator corresponding to the starting

point qr
localstart of the local path of the right manipulator is merged with the next

discrete point qr
k+1 of the local path of the right manipulator to obtain the next discrete

point qk+1 = [ ql
llocalstart qr

k+1] of the local path of the dual redundant manipulator.
(e) The collision detection of the next discrete point qk+1 of the local path of the dual

redundant manipulator is carried out. If the dual redundant manipulator does not
collide, step (f) is performed. If the dual redundant manipulator collides, the local
path replanning is stopped and the result that the node qlocalstart = [q qr

localstart] and the
node qlocalgoal = [ql

localgoal qr
localgoal] cannot be connected with each other is returned.

(f) The next discrete point qk+1 of the local path of the dual redundant manipulator is
added to the tree T1 (or T2).

(g) The distance between the next discrete point qr
k+1of the local path of the right manip-

ulator and the end pointqr
rlocalgoal of the local path of the right manipulator is judged

to determine whether it is less than the given threshold. Alternatively, the serial
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number k of the current discrete point is judged to determine whether it is greater
than the upper limit m of the number of discrete points. If the distance is less than
the given threshold or the serial number k is greater than the upper limit m, the local
path replanning is stopped and the result that the node qlocalstart and the node qlocalgoal
can be connected with each other is returned. If the distance is not less than the given
threshold value and the serial number k is not greater than the upper limit m, the
current discrete point of the local path of the right manipulator is replaced by qr

k+1,
and then step (b) is performed again.

3. Results

To verify the effectiveness of B-RRT*-LPR for dual redundant manipulators, the Baxter
dual redundant manipulator is taken as the experimental object to plan its motion path
of tight coordination operations. The experimental platform is built for the situation
of collaborative transportation, as shown in Figure 2. There are two obstacles in the
environment. Obstacle 1 is a dark yellow paper box suspended in the air, and obstacle 2 is a
white storage box placed on the desktop. The workpiece is an industrial aluminum profile
whose length, width and height are 0.235 m, 0.04 m and 0.04 m, respectively. A simulation
platform, whose size is consistent with the actual size, is built accordingly, as shown in
Figure 3. In Figure 3, the yellow cuboids are the obstacles. Then, the simulations are carried
out by Matlab 2014a, which runs on a computer with an Intel(R) Core(TM) i7-4710HQ
quad-core processor, 2.50 GHz main frequency and 8G memory. Finally, the experiment is
carried out according to the simulation results.

Figure 2. Experimental platform: (a) initial state; (b) goal state.

Figure 3. Simulation platform: (a) initial state; (b) goal state.
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3.1. Simulation

Considering the randomness of sampling-based algorithms, B-RRT* and B-RRT*-LPR
are adopted to plan 10 groups of paths in the case that the connection threshold is 1◦, 5◦, 10◦,
15◦, 20◦, 25◦ and 30◦, respectively. The planning results are arranged in ascending order
according to the time cost of each group of paths, as shown in Figure 4. The maximum
number of iterations of the two algorithms is set to 500. That is, if no feasible path is
obtained after 500 iterations, the planning fails.
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The maximum time cost, minimum time cost, average time cost and success rate of
10 groups of planning results of the 2 algorithms with different connection thresholds are
shown in Tables 1 and 2.

Table 1. Planning results of B-RRT*.

tmax (s) tmin (s) tavg (s) sr

Th: 1 (◦) 5294.087 4323.168 4855.917 0%
Th: 5 (◦) 5376.889 4379.025 4838.732 0%

Th: 10 (◦) 5283.419 4359.348 4885.978 0%
Th: 15 (◦) 5197.209 4097.994 4815.204 0%
Th: 20 (◦) 5316.107 4438.916 4811.795 20%
Th: 25 (◦) 4902.081 1856.069 2972.804 80%
Th: 30 (◦) 1414.534 963.751 1106.657 100%

where tmin, tmax and tavg are the minimum, maximum and average time costs of 10 groups of paths, sr is the
success rate of 10 groups of paths and Th is the connection threshold that is used to judge the connectivity of
two trees.

Table 2. Planning results of B-RRT*-LPR.

tmax (s) tmin (s) tavg (s) sr

Th: 1 (◦) 1355.623 756.654 1066.326 100%
Th: 5 (◦) 1264.872 805.944 1006.879 100%

Th: 10 (◦) 1279.273 784.542 976.011 100%
Th: 15 (◦) 1166.911 682.488 872.420 100%
Th: 20 (◦) 1017.361 619.926 795.953 100%
Th: 25 (◦) 984.236 601.268 761.544 100%
Th: 30 (◦) 965.477 534.450 708.229 100%
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It can be seen from Figure 4 and Tables 1 and 2 that the success rate of B-RRT* is 0% in
the case that the connection threshold is less than or equal to 15◦. With the increase of the
connection threshold, the success rate gradually increases until it reaches 100% when the
connection threshold is 30◦. However, the success rate of B-RRT*-LPR is 100% in the case
that the connection threshold is any one of the seven given values. Therefore, the results
show that the local path replanning strategy can effectively solve the discontinuity problem
in the joint path of the slave manipulator at the connection nodes in the case that B-RRT* is
applied to dual redundant manipulators. It can significantly improve the success rate.

The success rate of B-RRT* is 100% in the case that the connection threshold is 30◦,
but its average time cost is 1106.657 s. On the contrary, with the same connection thresh-
old, B-RRT*-LPR can ensure that the success rate is 100%, and its average time cost is
708.229 s, which is 36.00% lower than the one of B-RRT*. Therefore, B-RRT*-LPR can
effectively shorten the planning time.

In the case that B-RRT* fails to plan, its time cost is always more than 4000 s. That is,
for B-RRT*, the time cost of 500 iterations is more than 4000 s. Therefore, in the case that
the maximum number of iterations is greater than 500, although it is possible to improve
the success rate, the time cost will be further increased. That is, if the number of iterations
exceeds 500, B-RRT* may successfully plan the desired path, but the time cost must exceed
4000 s. However, B-RRT*-LPR spends no more than 1400 s successfully planning the desired
path with any connection threshold. Therefore, instead of increasing the maximum number
of iterations to improve the success rate of B-RRT*, it is better to directly adopt B-RRT*-LPR
for path planning.

In addition, although B-RRT* can improve the success rate by increasing the connection
threshold, the increase of the connection threshold means that the difference between the
connection nodes of two trees will also become larger. When the connection threshold
is much larger than the step distance, the local path between the two connection nodes
essentially contains some other hidden nodes. These hidden nodes have not been detected
whether they would collide with obstacles. Hence, they may collide with obstacles. As
a result, the planned path may actually be infeasible. For B-RRT*-LPR, it can ensure that
the success rate is 100% with any connection threshold. Therefore, a smaller connection
threshold can be selected in the actual planning to ensure that B-RRT*-LPR will not have
the above problem.

3.2. Experiment

The most representative path in the 10 groups of planning results of B-RRT*-LPR is
chosen in the case that the connection threshold is 1◦. Its time cost is closest to the average
time cost of 10 paths. That is, the fifth path is chosen. The display of this path in the task
space is shown in Figure 5. In Figure 5, the green hollow dot represents the node of two
trees, the blue thin solid line represents the local path between two nodes and the red thick
solid line represents the final path. The yellow cuboid suspended above is obstacle 1, and
the yellow cuboid placed below is obstacle 2.

According to the path shown in Figure 5, the motion process of the dual redundant
manipulator can be described as follows. At the initial stage of motion, the dual redundant
manipulator is far away from obstacles 1 and 2. Hence, it moves directly towards the goal
state. When the dual redundant manipulator approaches obstacle 1, it moves downward
to avoid collision with obstacle 1. After moving a certain distance, the dual redundant
manipulator moves towards the goal state again on the premise that it does not collide
with obstacles 1 and 2. After successfully passing through the gap between obstacle 1 and
obstacle 2, the dual redundant manipulator moves upward until its height is close to the
height of the goal state. Then, the dual redundant manipulator moves towards the goal
state until it reaches the goal state.

In the case that the dual redundant manipulator moves along the path shown in
Figure 5, its actual motion process is shown in Figure 6.
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Figure 5. Path of the dual redundant manipulator in the task space: (a) global view; (b) partial
enlarged view.

Figure 6. Actual motion process: (a) connection node of the tree T1; (b) connection node of the tree T2;
(c) global view of a node located between two obstacles; (d) partial enlarged view of a node located
between two obstacles.

It can be seen from Figure 6 that the dual redundant manipulator starts from the initial
state, as shown in Figure 2a. Then, the dual redundant manipulator moves to the vicinity
of obstacle 1 in the direction of the goal state, as shown in Figure 6a. The state of the dual
redundant manipulator in Figure 6a corresponds to the connection node of the tree T1.
Afterwards, the dual redundant manipulator moves along the local path planned by the
local path replanning strategy until it reaches the state corresponding to the connection
node of the tree T2, as shown in Figure 6b. The terminal positions and postures of both
the left manipulator and the right manipulator remain unchanged during the local motion
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shown in Figure 6a,b. After that, the dual redundant manipulator moves downward for
a distance and then passes through the gap between obstacle 1 and obstacle 2 without
collision, as shown in Figure 6c,d. Finally, the dual redundant manipulator can reach the
goal state successfully, as shown in Figure 2b.

The above results show that the dual redundant manipulator can move according
to the desired path and satisfy the closed-chain constraints in the actual motion. The
actual path of the dual redundant manipulator is continuous in both the task space and
the joint space. Therefore, B-RRT*-LPR can effectively plan a collision-free path for tight
coordination operation of the dual redundant manipulator.

4. Discussions
4.1. Innovations

For RRT and its derivative algorithms, they are generally applied to plan the path
for loose coordination of dual redundant manipulators, such as assembly [36,37] and
grasp [38,39]. In these cases, there are three most common planning strategies, as described
as follows: (1) RRT or its derivative algorithm is adopted to plan the paths of the left
manipulator and the right manipulator in parallel. After obtaining the paths of the two
manipulators, collision detection between the two paths is performed [23,24]. (2) RRT or
its derivative algorithm is adopted to plan the path of one manipulator first, and then the
path of another manipulator. During the planning of the second manipulator, the first
manipulator is treated as a dynamic obstacle [19]. (3) The dual redundant manipulator is
treated as a single redundant manipulator with 2n degrees of freedom. Then, the path of
this single redundant manipulator is planned by RRT or its derivative algorithm. Collision
detection between the left manipulator and the right manipulator can be transformed into
self-collision detection of the single redundant manipulator [20].

For tight coordination of dual redundant manipulators, there are kinematic closed-
chain constraints between the left manipulator and the right manipulator. The terminal
positions and postures of the left manipulator and the right manipulator are mutually
restricted. However, these kinematic closed-chain constraints are not considered for the
above three planning strategies. Therefore, the above three planning strategies are not
applicable to tight coordination of dual redundant manipulators. To solve this problem, a
master-slave planning method based on B-RRT* is proposed in our study. The path of the
master manipulator is directly planned by B-RRT*. Then, the path of the slave manipulator
is calculated by the closed-chain constraints. The experimental and simulation results show
that the closed-chain constraints can always be satisfied during the motion of the dual
redundant manipulator. Therefore, the master-slave planning method based on B-RRT*
can be effectively applied to tight coordination of dual redundant manipulators.

Due to the redundant characteristics of dual redundant manipulators, the master-slave
planning method based on B-RRT* will cause a discontinuity problem in the joint path
of the slave manipulator at the connection nodes. This problem will result in the actual
motion path being infeasible. To solve this problem, a local path replanning strategy is
designed in our study. The joints of the slave manipulator move only in the null space
for satisfying the closed-chain constraints. The experimental and simulation results show
that the dual redundant manipulator can move continuously in both the task space and
the joint space. Therefore, the local path replanning strategy can effectively solve the
discontinuity problem.

Moreover, since the closed-chain constraints act on the terminal state of the dual
redundant manipulator, the calculation of the path of the slave manipulator is generally to
calculate its terminal position and posture first, and then calculate its joint angles through
inverse kinematics [28,29]. For redundant manipulators, the inverse kinematics is usually
solved by numerical algorithms [30,31]. However, numerical algorithms generally have
the disadvantages of large amounts of calculation and high time cost [40]. To avoid the
calculation of inverse kinematics, the terminal generalized velocity constraints are directly
adopted to obtain the joint angular velocity of the slave manipulator in our study. Then,
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the joint angles of the slave manipulator can be calculated accordingly. Therefore, it can
effectively improve the execution efficiency.

4.2. Extended Applications

In our study, the master-slave planning method on B-RRT* is proposed to plan the
path for tight coordination of dual redundant manipulators. However, for the path plan-
ning of the master manipulator, B-RRT* is not the only choice; other algorithms, such as
other derivative algorithms [41,42] of RRT and PRM [43,44], or an artificial potential field
method [45,46], can also be chosen.

The local path replanning strategy can also be applied to realize the obstacle avoid-
ance [47,48] of redundant manipulators. In the case that the end-effector does not collide
with obstacles, but some joints collide with obstacles, the local path replanning strategy
can be adopted to make these joints move away from or around obstacles on the premise
that the end-effector remains stationary. In this way, it is not necessary to replan the entire
path, but only to replan the local path of joints.

4.3. Limitations

Both the master-slave planning method based on B-RRT* and the local path replanning
strategy take advantage of the unique kinematic characteristics of redundant manipula-
tors in the design process. Therefore, the proposed methods are not applicable to dual
nonredundant manipulators, but only to dual redundant manipulators.

5. Conclusions

To effectively plan a safe path for tight coordination operations of dual redundant
manipulators, a bidirectional RRT* satisfying closed-chain constraints is proposed. B-RRT*
is adopted to plan the path of the master manipulator, and the path of the slave manipulator
is then obtained based on the closed-chain constraints. When the connectivity between
the two nodes of different trees is checked, only the parts corresponding to the master
manipulator are checked. The connectivity between the parts corresponding to the slave
manipulator is guaranteed by the local path replanning strategy. The simulation results
show that, compared with B-RRT*, the proposed method can effectively improve the success
rate when the connection threshold is small and can shorten the planning time when the
connection threshold is the same. The experimental results show that the dual redundant
manipulator can effectively avoid obstacles and satisfy the closed-chain constraints during
the motion. Therefore, the proposed method can effectively plan a collision-free path for
tight coordination operations of dual redundant manipulators.

Our current study is the path planning for tight coordination of dual redundant
manipulators in the static environment. That is, obstacles are stationary. The positions
and postures of obstacles are known. However, if obstacles are in motion, their positions
and postures will change in real time and are unknown. Hence, to apply the proposed
method to the dynamic environment, it is necessary to add some external equipment to
obtain the real-time positions and postures of obstacles. In the future, we will use visual
sensors to obtain the information of obstacles in real time and then extract the positions and
postures of obstacles through image processing technologies. On the basis of the above, the
proposed method can be adopted to plan the path for tight coordination of dual redundant
manipulators in the dynamic environment.
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