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Abstract: Dynamics models of planetary gear sets (PGSs) are usually established to predict their
dynamic behavior and load-sharing characteristics. The accurate modeling of bearing support
stiffness is essential to study their dynamics. However, in most of the existing PGS dynamic models,
the effect of characteristics coupling the rolling bearing time-varying nonlinear stiffness with the
translational property of PGSs on the dynamic responses was completely neglected. To investigate
this problem, a refined dynamic model for PGSs is proposed considering the coupled relationship
between the radial translation of the rotating components and the time-varying nonlinear support
stiffness of the ball bearing. The refined dynamic model simultaneously considers the coupled
effect of the time-varying characteristic caused by the orbital motion of the rolling elements and
the nonlinear characteristic caused by Hertzian contact between the rolling elements and raceways
of the ball bearing. Comparisons between the simulations and experimental results are presented,
which indicate that the PGS vibration spectrums yielded by the proposed time-varying nonlinear
stiffness model are much closer to the actual scenarios than those of traditional models. The analysis
results provide theoretical guidance for fault monitoring and diagnosis of the rolling bearings used
in the PGS.

Keywords: planetary gear set; rolling bearing; nonlinear hertzian contact; time-varying nonlinear
support stiffness; dynamic response

1. Introduction

Planetary gear sets (PGSs) have the advantages of high-power density, high transmis-
sion ratios, large torque-weight ratios, and compactness compared to countershaft gear
transmission sets. Thus, they are widely used in many industries such as automotive,
aerospace, marine, wind turbines, and machine tools industries [1–3]. The rotating mem-
bers of PGSs are normally supported by rolling element bearings (ball bearing and roller
bearing). The support stiffness of the rolling bearings significantly affects the dynamic
characteristics, operation reliability, and service life of the PGS [4–7].

It is well known that the support stiffness of the rolling bearing exhibits a strong time-
varying characteristic due to the orbital motion of the finite number of rolling elements
and nonlinear characteristics with the support load due to the Hertzian contact between
the rolling elements and raceways of the rolling bearings [5,7]. In the past decades, the
individual effects of time-varying or nonlinear characteristics of rolling bearings on the
fixed-axis gear-rotor-bearing and rotor-bearing systems have attracted intensive attention.
Kahraman [8] and Kim [9] studied the effects of bearing deformation on the dynamic
performance of the gear-rotor-bearing system. Shi and Li [10] established the interaction
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between mesh stiffness and dynamic response to allow the real-time variation of mesh stiff-
ness under dynamic conditions and adopted an iterative approach to obtain the dynamic
responses. The interactions between the hypoid gear dynamic mesh force and the dynamic
mesh stiffness were established for the first time. Liu et al. [11] established a dynamics
model of the spur gear pair with the pitch deviation. Meshing characteristics of the spur
gear pair with the pitch deviation were studied in order to analyze the time-varying contact
ratio and motion characteristics of the system. A refined methodology to simulate the
non-linear dynamic response of spur gears was proposed by Cirelli et al. [12,13], which
evaluates the nonlinear dynamic effects due to the contact loss by using a multibody model
based on contact formulation. Zheng et al. [14] proposed a combined analytical-FEM
method to analyze the mesh stiffness and nonlinear dynamics in the centrifugal field,
which extended the gear torsional dynamic model to embody the internal dynamic effect
in a centrifugal field. Zhu et al. [15] established a piecewise torsional-bending-pendular
nonlinear dynamics model to study the nonlinear dynamics response of the face-gear
drive system, which can reflect its actual working state as far as possible. In the litera-
ture reviewed above, the researchers concentrated on the fixed-axis gear-roller-bearing
systems, which have a single-rotor structure. Some transmission systems include the
coaxial dual-rotor structure. The main difference between the dual-rotor structure and
the single-rotor structure is the introduction of inter-shaft bearings (bearings supporting
two rotating members), which couple the outer and inner rotors [16,17]. There are some
studies on the dynamic performance of the dual-rotor systems in which the effects of the
nonlinearity characteristics of the inter-shaft bearings are taken into account. For example,
Hu [18] and Deng [19] established a dual-rotor system dynamic model for an aeroengine
spindle. The results showed that the nonlinear support influences the dynamic behaviors
of the system significantly. Gupta [20] and Chiang [21] used the transfer matrix method
and the finite element method to study the critical speed, mode shape, and unbalanced
response of a dual-rotor system. Luo [22] developed a refined inter-shaft bearing model,
and the dynamic responses of the dual-rotor system were analyzed. Gao [23], Fukata [24],
Tiwari [25,26], Ghafari [27], and Zhang [28] investigated the nonlinear dynamic behaviors
of the bearing-rotor system by considering the Hertzian contact and nonlinear stiffness of
the inter-shaft bearing when establishing the dynamic model of the bearing-rotor system.
In addition, Gao [29] analyzed the bifurcation phenomenon of a dual-rotor system, in
which the double frequency excitations of the dual-rotor system and the nonlinearity of the
inter-shaft bearing are taken into consideration.

The aforementioned studies regarding the dual-rotor system mainly focus on the fixed-
axis bearing-rotor system. The PGS usually includes a coaxial dual-rotor structure. The
schematic diagrams of a typical PGS coupled with a dual-rotor structure in the dual-input
differential PGS application are shown in Figure 1. Figure 1a illustrates that the system is
simultaneously driven by two different elements, including the two input shafts and an
output shaft, which is a schematic diagram of the structure only to express the position of
the support bearings in the PGS. There are different connection types between the central
rotating members of PGS (sun gear, carrier, and ring gear) and input/output ports in
practice. In the example shown in Figure 1, the sun gear and the carrier are connected
to the input and output ports, respectively. The ring gear is fixed to the housing. The
inter-shaft bearings labeled by 2© couple the sun gear and carrier, and the bearings labeled
by 1© couple the rotating components and the housing.
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Figure 1. PGS coupled with a dual-rotor subsystem: (a) schematic diagram; (b) a simple dual-rotor
system supported by rolling ball bearings.

The literature reports intensive studies on the dynamic modeling of a PGS considering
bearing factors. Guo and Parker [30,31] proposed a dynamic model of a PGS and inves-
tigated the effects of bearing clearance on the system vibrations. Kim [32] analyzed the
influence of bearing deformations on the time-varying contact ratios and pressure angles of
the sun-planet meshes and ring-planet meshes, as well as the dynamic response of the PGS.
Although Wu and Parker [33] and Liu [34] presented the effects of the bearing stiffness of
the ring gear on the vibrations of the system, they only established the single-ring gear
models. Bahgat [35], Guo [36], and Tatar [37] studied the sensitivity of dynamic character-
istics of the PGS, in which the parameters such as the time-varying gear mesh stiffness,
bearing support stiffness, and speed have been taken into account. Guo [38] investigated
the influence of ring gear support stiffness on the system’s dynamic characteristics by
considering the effects of tooth wedging and bearing-raceway contacts. Shao and Liu [39]
developed a multi-body dynamic model for a PGS with various values of static bearing
support stiffness of the ring gear to reveal the effects of static support stiffness on the system
dynamic response. Many experimental and theoretical reports illustrated that in actual
systems, the elastic deformation of ring gear can reduce the noise and vibration of the
PGS significantly [40]. Additionally, to study the operating condition of rolling bearings,
Chen et al. [41] focused on the health state identification of the planetary gearbox and
fused the horizontal and the vertical vibration signals, which can extract features from
raw data automatically with less dependence on the expert diagnosis experience and the
signal processing techniques. Li et al. [42] proposed a novel neural network called the
reinforcement learning unit matching recurrent neural network to predict the state trending
of rolling bearings.

From the literature survey mentioned above, current studies considering the bearing
time-varying or nonlinear characteristics are almost concentrated on fixed-axis bearing-
rotor or gear-bearing-rotor systems with inter-shaft bearings. However, for the PGS, the
rolling bearings are usually simplified as simple linear spring-damper elements in the
dynamic model. The coupling effect of time-varying and nonlinear characteristics of rolling
bearing support stiffness (referred to also as the time-varying nonlinear support stiffness in
the remainder of this paper as opposed to the conventional static linear stiffness) on the
dynamics of the PGS is rarely studied in the literature, which constitutes the major research
objective of this work. In this paper, the influence of the time-varying and nonlinear
characteristics of rolling bearings on the dynamic characteristics of the PGS is studied. This
work is of practical significance for the study of the influence of the time-varying nonlinear
support stiffness of rolling bearings on the load-sharing and dynamic characteristics of the
PGS. In addition, it can also provide a foundation for the study of dynamic characteristics
of the PGS subjected to rolling bearing faults.
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The rest of this paper is organized as follows. In Section 2, the refined dynamic model
considering the coupled effect of the translational property of the PGS and the time-varying
nonlinear support stiffness of rolling ball bearings is proposed. In Section 3, the experiments
are carried out to validate the dynamic model proposed in Section 2. Then, in Section 4,
comparisons in terms of the dynamic responses of the PGS between the proposed time-
varying nonlinear stiffness model and the conventional static linear model are conducted.
Finally, conclusions are summarized in Section 5.

2. Dynamics Model of a Planetary Gear Set with Time-Varying Nonlinear Support Stiffness

In view of the influence of the time-varying nonlinear stiffness excitation of rolling
bearings on the dynamic characteristics of the PGS, the time-varying stiffness model and
nonlinear stiffness model of rolling bearings are proposed in this paper, and coupled
into time-varying nonlinear stiffness models to establish the translation torsion coupling
dynamic model of a two-stage PGSs parallel compound power-split mechanism (CPSM),
as shown in Figure 2. In Figure 2, the solid lines represent the initial situation of the
relative position and engagement relationship of PGS components when the inner and
outer raceways of the support bearing are not deflected, and the dotted lines represent
the influence of the deflection of the inner and outer raceways of the support bearing on
the relative position and engagement relationship of PGS components. To simplify the
description, s, c, r, and pn represent the sun gear, carrier, ring gear, as well as the nth
planet gear, respectively (n = 1, 2, . . . , N). Each planet gear is supported by the needle
bearing on the carrier. ri and rc are the base radii of the gear i (i = s, r, pn) and the distance
between the center of the nth planet gear and that of the sun gear. xj and yj represent the
translational displacements in the x and y directions and uj (j = s, c, r, pn) describes the
torsional displacement in the rotational direction. δi and δo describe the deflection of inner
and outer raceways, respectively. Oi and Oo describe the geometric center of inner and
outer raceways after deflection, respectively. All the above parameters are the displacement
changes of each component relative to the rotating coordinate system fixed on the carrier.
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The dynamic model of the PGS with rolling ball bearings is shown in Figure 3. The
sun gear and ring gear mesh with the n planet gears through a spring-damping system
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model have mesh stiffness, kspni, krpni, and damping, csni, crni, respectively. Oj (j = s, c, r, pn)
describes the geometric center. kjx, cjx, and kjy, cjy are the support stiffness and damping of
each component of the PGS along the x and y axes, respectively. Similarly, kjt and cjt are the
support stiffness and damping along the rotational direction of each component.
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To investigate the influence of the time-varying nonlinear support stiffness of rolling
ball bearings on the dynamic responses of the PGS, the bearing support stiffness of sun,
carrier, and ring gears in the x-direction and y-direction (khx and khy, h = s, c, r) are replaced
by Khx (t, δhx) and Khy (t, δhy), respectively.

The flexibility of inner and outer raceways is not considered. They are assumed
as a rigid body whose translational and torsional degrees of freedom are considered in
the proposed dynamic model. In Figure 3, O-U-V is the global fixed coordinate system,
whereas oj-xj-yj is the local coordinate system of each component of the PGS. opi-xpi-ypi is
fixed at the local coordinate system oc-xc-yc and rotates around the origin of the absolute
coordinate O with a constant carrier angular speed Ωc. The translational displacements,
xj and yj, and torsional displacements uj are assigned to the sun gear, carrier and ring
gear, and the nth planet, respectively. The linear displacement of the angular displacement
caused by vibration converted to the circumference is represented by uj, which can be
expressed as uj = θjrj, where θj and rj are the angular displacements and the rotating radius
of component j, respectively.

2.1. Actual Support Stiffness and Translation of the Ball Bearing

As presented in Figure 1, a dual-rotor structure of the PGS is presented, which includes
an inner-rotor (sun gear) and an outer-rotor (carrier). Without loss of generality, suppose
the inter-shaft bearings are the general ball bearings and are located between the inner- and
outer-rotors to achieve the coupling of the sun gear shaft and carrier shaft. For the deep
groove ball bearing, an appropriate value of preload should be applied to maintain the
effective contact between the rolling elements and the raceways, to improve the rolling ball
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bearing rotation accuracy and support stiffness. In previous work, the rolling ball bearings
of the PGS are modeled as linear springs, which means that the bearing support stiffness is
usually considered a constant value. However, the rolling ball bearing support stiffness
exhibits strong nonlinear and time-varying characteristics, as shown in Figure 4.
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Figure 4 shows the schematic diagram of a rolling ball bearing with time-varying loads
and rotating speed, and the corresponding position (t, δr) on the time-varying nonlinear
support stiffness result. The angular positions and radial deflections of rolling elements of
the ball bearing at times t0 and t1 are shown in Figure 4a,b, respectively. The time-varying
nonlinear support stiffness result of the rolling ball bearing by considering the coupled
effect of the time-varying characteristic caused by the orbital motion of the rolling elements
and the nonlinear characteristic caused by Hertzian contact between the rolling elements
and raceways of the ball bearing is shown in Figure 4c. For the rolling ball bearings, the
inner and outer raceways of the bearing are fixed with different rotating members. The
rolling balls are evenly distributed between the inner and outer raceways.

In Figure 4, Ri and Ro represent the contact radii of the inner and outer raceways,
respectively. Rb is the radius of the rolling ball. Riw and Row are the groove bottom radii of
the inner and outer raceways, respectively. riw and row are the radii of the inner and outer
raceway curvatures, respectively. Rbc is the radius of the pitch circle, and Rbc = (Ri + Ro)/2.
ϕj(t) is the rotational angle of the jth rolling ball with respect to the x-axis at the time
moment t, which can be expressed as

ϕj(t) = ωbct +
2π(j− 1)

N
(1)


ωbc =

ωi
2

(
1− Rb

Rbc

)
, ωo = 0;

ωbc =
ωo
2

(
1 + Rb

Rbc

)
, ωi = 0;

ωbc =
ωi Ri+ωo Ro

Ri+Ro
.

(2)

where N is the number of rolling balls. ωbc, ωi, and ωo represent the rotating speeds of the
cage, inner raceway, and outer raceway, respectively. The rotating frequency of the cage fbc
equals ωbc/60, and the ball passage frequency fp equals N·fbc.

In addition, in Figure 4, δ0
r and δ1

r are the radial deformations caused by the varying
normal contact F0

r and F1
r at times t0 and t1, respectively. When the rolling ball bearing is

operating under a given radial load and speed condition, the inner and outer raceways of
the rolling ball bearing will be deflected, and the position relationship is given in Figure 5a.
O is the initial center position of the inner and outer raceways. Oi and Oo are the center
positions of the inner and outer raceways after being deflected, respectively. δi and δo are



Machines 2023, 11, 206 7 of 22

the contact deformations of the inner raceway-ball and outer raceway-ball, respectively. rL
is the bearing radial clearance.
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As shown in Figure 5b, the rolling balls and the inner/outer raceway are important
elements in modeling the nonlinear support stiffness of rolling ball bearings. According
to the Hertzian contact theory, the contact pattern between a ball and a raceway (inner or
outer) of the deep groove ball bearing under load is elliptical rather than the theoretical
point contact, as shown in Figure 5. Ob is the ball center. A localized u-v-w coordinate
system is established whose directions are along the rolling direction, the axial direction,
and the contact normal direction, respectively. The radii of curvature of the rolling ball in
the uw and vw plane are Rbx and Rby, respectively. The semi-major axis b and semi-minor
axis a of the elliptical contact area between the rolling ball and the raceway are calculated
by Hertzian contact theory.

The load–deformation relationship between the jth rolling ball and the raceways is:

Fj
θ = Knδn

j (3)

where Fj
θ and δj

θ are the normal contact force and normal contact deformation between the
jth rolling ball and the raceways, respectively; Kn is the effective contact stiffness constant
for the inner raceway-rolling ball-outer raceway contacts and is a function of the bearing
geometry and material properties [43]. It can be expressed as Equation (4). It should be
noted the exponent n is 3/2 and 10/9 for the point contact (ball bearings) and line contact
(roller bearings), respectively.

Kn =
1[

(1/Ki)
1/n + (1/Ko)

1/n
] (4)

The load–deformation coefficients of inner and outer raceways Ki and Ko can be
expressed as Equation (5) [44], respectively.{

Ki= 2.15× 105(∑ ρi)
−1/2(δi)

−2/3

Ko= 2.15× 105(∑ ρo)
−1/2(δo)

−2/3 (5)

The normal deformations δi and δo between the rolling ball and the inner/outer
raceways are, respectively, the functions of the difference in curvatures between the
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rolling ball and the raceways, F(ρi) and F(ρo). The expressions of F(ρi) and F(ρo) are
as follows, respectively:  F(ρi) =

|1/Rix−1/Riy|+|1/Rbx−1/Rby|
∑ ρi

F(ρo) =
|1/Rbx−1/Rby|+|1/Rox−1/Roy|

∑ ρo

(6)

where the sum of flexion radii between the rolling ball and inner/outer raceways are
written as Equation (7). ∑ ρi =

(
1

Rix
+ 1

Riy

)
+
(

1
Rbx

+ 1
Rby

)
∑ ρo =

(
1

Rbx
+ 1

Rby

)
+
(

1
Rox

+ 1
Roy

) (7)

where Rbx = Rby = Rb, Rix = Riw, Rby = −riw, Rox = −Row, Roy = −row, as shown in Figure 5.
In addition, the minus sign ‘−’ means that the curved surface is concave. Otherwise, the
surface is convex.

According to the geometric relationship in Figure 6, the effective radial contact defor-
mation of the jth ball is

δjr = (δix − δox) cos ϕj +
(
δiy − δoy

)
sin ϕj − rL/2 (8)

δir =
√
(δix)

2 +
(
δiy
)2

δor =
√
(δox)

2 +
(
δoy
)2

δr =
√
(δix − δox)

2 +
(
δiy − δoy

)2

(9)

where δix and δiy are the deformation components of the inner raceway center in the
horizontal and vertical directions, respectively. δox and δoy are the deformation components
of the outer raceway center in the horizontal and vertical directions, respectively. If δjr is
less than zero, it means that the jth ball is not in contact with the raceways.
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Figure 6. The geometrics of ball bearings including groove curvature centers of raceways before and
after deflection.

Figure 6 illustrates the geometric relationship of groove curvature centers (correspond-
ing to the jth ball) of the inner and outer raceways before and after deflection. Figure 6
shows a generic geometry (3D) of the angular rolling bearings considering the radial and ax-
ial displacement (z direction) of the raceways. In the studied PGS system, the gears are spur
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gears and the rolling bearings are deep-groove ball bearings as the axial reaction forces and
displacements are negligible compared to the radial reaction forces and displacements. The
non-constant contact angle αj of the rolling ball is the angle between the curvature center
lines of raceways before deflection and after deflection. A0 and Aj are the relative distances
of groove curvature centers before and after deflection, and are expressed by Equations (10)
and (11), respectively. δijz and δojz are the deformation components of the groove curvature
centers along the z-axis for the inner and outer raceways, respectively. Similarly, δijr and
δojr are the deformation components along the radial direction (r-axis), respectively.

A0 = (Riw + riw)− (Row + row) (10)

Aj =
√(

δjz
)2

+
(
δjr
)2 (11)

where δjr and δjz are the deformation components of the jth rolling ball along with the
radial r (x- or y-axis) and axial z-axis, respectively.

The time-varying position distribution of rolling elements of rolling bearings is com-
prehensively considered (Figure 4a). The overall radial deformations of the bearing under
different loads (Figures 4b and 6) are considered to establish the deflection model of the
inner and outer rings of rolling bearings. As a two-dimensional translational-torsional
dynamic model of the PGS is investigated in this paper, the force and displacement in the
z-direction are not considered. Thus, the expressions of time-varying nonlinear support
stiffness for the rolling ball bearing are as follows:

Kx(t, δr) =Kn
N
∑
j

(Aj−A0)
n

cos2(ϕj(t))

(Aj)
3

(
nAj(δjr)

2

Aj−A0
+
(

Aj
)2 −

(
δjr
)2
)

Ky(t, δr) =Kn
N
∑
j

(Aj−A0)
n

sin2(ϕj(t))

(Aj)
3

(
nAj(δjr)

2

Aj−A0
+
(

Aj
)2 −

(
δjr
)2
) (12)

2.2. Lumped Parameter Model of a PGS Coupled with the Time-Varying Nonlinear Support Stiffness

According to the principle of force and torque balance, the motion equations of the
PGS can be derived as follows:

The motion equations for the carrier are:

mc

( ..
xc − 2Ωc

.
yc −Ω2

c xc

)
+

n
∑

i=1
kpixδcpnx+

n
∑

i=1
cpix

.
δcpnx + Kcx(θ(t), δcx)xc + ccx

.
xc = 0

mc

( ..
yc − 2Ωc

.
xc −Ω2

c yc

)
+

n
∑

i=1
kpiyδcpny +

n
∑

i=1
cpiy

.
δcpny + K

(
θbc(t), δ

y
c,s

)
yc + ccy

.
yc = 0(

Ic/(rc)
2
) ..

uc +
n
∑

i=1
kpitδcpnu +

n
∑

i=1
cpit

.
δcpnu + kctuc + cct

.
uc = Tc/rc

(13)

The motion equations for the sun gear are:

ms

( ..
xs − 2Ωc

.
ys −Ω2

c xs

)
−

n
∑

i=1
kspiδspi sin ϕspi −

n
∑

i=1
cspi

.
δspi sin ϕspi + K

(
θbc(t), δx

c,s
)
xs + csx

.
xs= 0

ms

( ..
ys + 2Ωc

.
xs −Ω2

c ys

)
+

n
∑

i=1
kspiδspi cos ϕspi +

n
∑

i=1
cspi

.
δspi cos ϕspi + K

(
θbc(t), δ

y
c,s

)
ys + csy

.
ys = 0(

Is/(rs)
2
) ..

us +
n
∑

i=1
kspiδspi +

n
∑

i=1
cspi

.
δspi + kstus + cst

.
us = Ts/rs

(14)

The motion equations for the ring gear are:

mr

( ..
xr − 2Ωc

.
yr −Ω2

c xr

)
−

n
∑

i=1
krpiδrpi sin ϕrpi −

n
∑

i=1
crpi

.
δrpi sin ϕrpi + Krxxr + crx

.
xr = 0

mr

( ..
yr − 2Ωc

.
xr −Ω2

c yr

)
+

n
∑

i=1
krpiδrpi cos ϕrpi +

n
∑

i=1
crpi

.
δrpi cos ϕrpi + Kryyr + cry

.
yr = 0(

Ir/(rr)
2
) ..

ur +
n
∑

i=1
krpiδrpi +

n
∑

i=1
crpi

.
δrpi + krtur + crt

.
ur = Tr/rr

(15)
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The motion equations for the nth planet gear are:

mpi

( ..
xpi − 2Ωc

.
ypi −Ω2

c xpi

)
+

n
∑

i=1
kspiδspi sin ϕspi +

n
∑

i=1
cspi

.
δspi sin ϕspi+

n
∑

i=1
krpiδrpi sin ϕrpi +

n
∑

i=1
crpi

.
δrpi sin ϕrpi − kpixδcnx − cpix

.
δcnx = 0

mpi

( ..
ypi − 2Ωc

.
xpi −Ω2

c ypi

)
−

n
∑

i=1
kspiδspi cos ϕspi −

n
∑

i=1
cspi

.
δspi cos ϕspi−

n
∑

i=1
krpiδrpi cos ϕrpi −

n
∑

i=1
crpi

.
δrpi cos ϕrpi − kpiyδcny − cpiy

.
δcny = 0(

Ipi/
(

rpi

)2
)

..
upi +

n
∑

i=1
kspiδspi +

n
∑

i=1
cspi

.
δspi −

n
∑

i=1
krpiδrpi −

n
∑

i=1
crpi

.
δrpi = 0

(16)

In these equations, the relative angle ϕspn (ϕrpn) and deformation δspn (δrpn) between
the sun (ring) gear and the nth planet gear are determined in Figure 7. Tµ (µ= s, c, r),
mj, and Ij denote the torque, mass, and moment of inertia of each component of the
PGS, respectively.
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Figure 7. Gear mesh model of the PGS.

Figure 6 shows the gear mesh states of the PGS. The mesh angles of the gear pairs for
the sun-planet and planet-ring are as follows:

ϕspn = αs − ϕpn
ϕrpn = αr + ϕpn

(17)

where αs and αr are the transverse pressure angles of the sun-planet and the planet-ring
gear meshes, respectively. ϕpn is the position angle of the nth planet gear.

The mesh deformations between the nth planet gear and the sun/ring gear are usually
defined as the dynamic transmission error, which can be expressed as Equation (20). Simi-
larly, the deformations between the nth planet gear and carrier are written as Equation (21).
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δspn =
(
xpn − xs

)
sin ϕspn +

(
ys − ypn

)
cos ϕspn + us + upn

δpnr =
(
xr − xpn

)
sin ϕrpn +

(
ypn − yr

)
cos ϕrpn + ur − upn

(18)

δcpnx = xc − xpn − uc sin ϕpn
δcpny = yc − ypn + uc cos ϕpn

δcpnu =
(
xpn − xc

)
sin ϕpn +

(
yc − ypn

)
cos ϕpn + uc

(19)

In addition, fm and tm denote the mesh frequency and mesh period of the PGS, which
can be expressed as follows:

fm = (ωs −ωc)Zs (20)

where Zr and Zs are teeth numbers of the ring gear and sun gear, respectively; ωs and ωc
represent the absolute rotating speed of the sun gear and the carrier, respectively.

After integrating the dynamic differential equations of each component, the matrix
form of the equations above can be expressed as

M
..
q+ΩcG

.
q +(K b(t, δ) + Km(t) + ΩcKΩ) q = T + F(t) (21)

where q is the displacement vectors, M is the system mass matrix, and Ωc represents the
angular speed of the carrier. G is the gyroscopic matrix. Kb(t, δ) represents the matrix
of support bearing stiffness. Km(t) represents the gear mesh stiffness matrix, and KΩ

the centripetal stiffness matrix. T and F are the static torque and the static load vector,
respectively. The displacement vector q can be written as

q =
{

xc, yc, uc, xs, ys, us, xr, yr, ur, xp1, yp1, up1, · · · , xpn, ypn, upn
} T (22)

2.3. The Solving Algorithm of the Refined Dynamics Model

Considering that the vibration characteristics of the PGS are affected by the time-
varying nonlinear support stiffness of the ball bearings, the flowchart of step-by-step time
integration to obtain the dynamic response of the system is shown in Figure 8. The dynamic
responses of the system model can be obtained by utilizing the fourth-order Runge-Kutta
numerical integration method to solve the differential equation sets. However, as the
time-varying nonlinear support stiffness Khx(t, δhx) and Khy(t, δhy) are dependent on time t
and the raceways deflections δhx and δhy, the dynamic responses of bearing raceways in
the last time step must be obtained to obtain the bearing support stiffness in the current
time step. The solving algorithm is demonstrated in Figure 8. For traditional solving
algorithms, the integration interval for the dynamic differential equations of the system
runs through the entire solution process as shown in the left dotted line area in Figure 8,
in which the initial values of the support stiffness are defined as constants, i.e K = 108

N/m. Compared to the traditional method, the proposed method inserts the inner loop
in the Runge-Kutta algorithm to establish the dynamic couple relationship between the
translations of the PGS and the time-varying nonlinear support stiffness of the ball bearing.
As the time-varying property of time-varying nonlinear support stiffness, i.e., Khx(t, δhx)
and Khy(t, δhy), is considered in the current dynamic model, an iteration is introduced as
an inner cycle, as shown in the right dotted line area in Figure 8. At the beginning of the
inner cycle at the tn+1 moment, the support stiffness of the ball bearing in the x and y axes
is calculated via the displacements of the PGS components at the previous tn moment. The
iteration continues until convergence in this time step.
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3. Experiment and Comparisons

The vibration signals picked up on the planetary gearbox housing include vibration
signals from shafts, bearings, brackets, motors, and other components and background
noise signals, which make the vibration signal components collected by the acceleration
sensor very rich. As the planet gear in the PGS system not only rotates around its own axis,
but also orbits around the central axis of the sun gear, the vibration transmission paths from
the planet-ring position or planet-sun mesh position to the signal pickup position show
strong periodic variation, resulting in a complex modulation phenomenon in the vibration
signals. The pass frequency of the rolling elements is the orbital motion of the rolling
elements and the nonlinear characteristic caused by Hertzian contact between the rolling
elements and raceways of the ball bearing hidden in the vibration signal of the bearing
housing of the shafts, which need to be obtained by performing the time-synchronous
average signal (TSAS) to demodulate the test vibration signal. In order to validate the
simulation model in Section 2, a planetary gearbox (PGB) test rig is employed, as shown in
Figure 9, to collect the vibration acceleration signals of the PGS.

Figure 9a shows the experimental apparatus, which consists of two motors, two
PGBs, a computer, and a set of vibration acquisition instruments. The testbed is arranged
symmetrically, i.e., PGB #1 and PGB #2 have the same structure, and the same with the
two motors. The two motors are SIEMENS three-phase induction motors. The rated power
is 15 kW and the rated speed is 1450 rpm. Motor #1 is used for driving and motor #2
is for loading. To measure the vibration acceleration signals, a Kistler integrated circuit
piezoelectric accelerometer is installed on the housing of the input bearing of PGB #1 near
the sun gear, as shown in Figure 9b. The vibration signal acquisition system is NI 9181, and
the sampling frequency is set to 20,480 Hz. The acquisition time is 10 s. The motor and the
planetary gearbox, and the test gearbox and the accompanying gearbox are connected by
torque couplings. The teeth-shaft couplings are used to connect these components. The
design parameters of the PGB are described in Table 1.
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Table 1. Parameters of the spur PGS for simulation and experimentation.

Parameters Sun Gear Ring Gear Planet Gear Carrier

Tooth number 16 84 33 –
Module (mm) 4 4 4 –
Face width (mm) 25 25 25 –
Mass (kg) 0.5075 1.646 0.6762 5.2
Moment of inertia I/r2 (kg) 0.304 1.352 0.371 2.08
Base circle radius (m) 0.03 0.1579 0.062 –
Pressure angle (◦) 20
Number of planet gear 4
Young’s modulus (MPa) 2.05 × 105

Poisson’s ratio 0.3
Translational support stiffness (N/m) kpx,y = krx,y = 108

Torsional support stiffness (N/m) krt = 109; kst = kct = 0

Figure 10 shows the diagram and physical photo of the PGS in the gearbox, which
includes the ring gear, carrier, sun gear (input shaft), and planet gears. For the planetary
gearbox, the input component is the sun gear, and the fixed component is the ring gear.
Thus, the relationship between rotating speeds of different members is written as follow:

ωc =
ωs + Rωr

1+R
(23)

where R = Zr/Zs, and Zr and Zs are the tooth number of the ring gear and sun gear, respectively.
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Figure 10. The photo of the planetary gear set assembly in the gearbox.

A series of tests with fixed input speeds of 300 rpm, 500 rpm, 700 rpm, and 900 rpm are
carried out under a load of 200 N·m. To obtain the dynamic response of the test point, the
acceleration signals in the y-direction are measured. Figure 11 shows the root-mean-square
(RMS) values of the measured results and the simulated results versus the input speed
under different support stiffness cases, as described in Table 2.
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Table 2. Support stiffness parameters of the simulation model.

Cases Parameters Value

Static linear Ksx,y, Kcx,y (N/m) Ksx,y = Kcx,y = [0.5, 1, 2, 4] × 108

Time-varying nonlinear Ksx,y, Kcx,y (N/m) Kx,y (t, δr)

In the static linear case, four stiffness values are used to describe the bearing support
stiffness of the sun and carrier. In the time-varying nonlinear case, the bearing support
stiffness of the sun and carrier are time-varying and dependent on the instantaneous
displacements of bearing raceways.

From Figure 11, it can be found that the time-varying nonlinear case and static linear
case with K = 2 × 108 N/m are close to the measured results. The boxplots between
the simulation and experimental results are shown in Figure 11b. It can be seen that the
responses of the time-varying nonlinear case are closer to the experimental results.
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The results of the condition with the input speed of 700 rpm are illustrated in Figure 12.
Figure 12a shows the measured vibration signal and its TSAS. Figure 12b shows the TSAS
of the measured results and the simulation results of the time-varying nonlinear case and
the static linear case with K = 1× 108 N/m. It can be observed there are obvious differences
between the experimental results and simulation results, and the results of the time-varying
nonlinear case are closer to that of the experimental results.

Machines 2023, 11, x FOR PEER REVIEW 15 of 22 
 

 

simulation and experimental results are shown in Figure 11b. It can be seen that the re-

sponses of the time-varying nonlinear case are closer to the experimental results. 

  

(a) (b) 

Figure 11. Vibration RMS comparison between simulated results and experimental results: (a) time-

history vibration response; (b) boxplot. 

The results of the condition with the input speed of 700 rpm are illustrated in Figure 

12. Figure 12a shows the measured vibration signal and its TSAS. Figure 12b shows the 

TSAS of the measured results and the simulation results of the time-varying nonlinear 

case and the static linear case withK = 1 × 108 N/m. It can be observed there are obvious 

differences between the experimental results and simulation results, and the results of the 

time-varying nonlinear case are closer to that of the experimental results. 

  

(a) (b) 

Figure 12. Dynamic responses of sun gear with 700 rpm-200 Nm: (a) experimental data and its time-

synchronous average signal; (b) experimental data and simulation data (note: TSAS means the 

Time-Synchronous Average Signal). 

Figure 13 shows the results of Figure 12b in the logarithm frequency domain. Herein, 

fm denotes the mesh frequency of the PGS. In Figure 13, the frequency spectrum of the 

measured signals is plotted by the solid line, and the frequency spectrums with or without 

time-varying nonlinear support stiffness are plotted by the dashed line and dotted line, 

respectively. The simulation results have fewer spectral lines, which may be caused by 

the existence of small eccentricity errors of planet gears and ring gears, and other manu-

facturing errors. 

Figure 12. Dynamic responses of sun gear with 700 rpm-200 N·m: (a) experimental data and its
time-synchronous average signal; (b) experimental data and simulation data (note: TSAS means the
Time-Synchronous Average Signal).

Figure 13 shows the results of Figure 12b in the logarithm frequency domain. Herein,
fm denotes the mesh frequency of the PGS. In Figure 13, the frequency spectrum of the
measured signals is plotted by the solid line, and the frequency spectrums with or without
time-varying nonlinear support stiffness are plotted by the dashed line and dotted line,
respectively. The simulation results have fewer spectral lines, which may be caused
by the existence of small eccentricity errors of planet gears and ring gears, and other
manufacturing errors.
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Figure 13a shows the structure of the acceleration logarithm frequency spectrum over
a wider range, 0–750 Hz, while Figure 13b is the zoomed-in spectrum in 0–200 Hz for a
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clearer presentation. In Figure 13, it can be found that the frequency spectrum of the time-
varying nonlinear case includes numerous sidebands, which is closer to the experiment.
Additionally, it is obvious that the frequency component of the PGS is monotonous, as
shown in Figure 13a. Although there are lots of frequency components in this frequency
spectrum, the mesh frequency fm is 156 Hz, and its harmonics can be observed clearly.
For the time-varying nonlinear case, the sidebands possess obvious peaks in addition to
the fm and its harmonics when compared to those of the static linear case. In Figure 13b,
the time-varying nonlinear case is denoted by the dashed line with the ‘+’ markers. The
detailed sideband components are illustrated with red symbols above each term, which
are symmetrically distributed on both sides of the mesh frequency fm. The sidebands in
the left side of the mesh frequency are 3fbc+fo, fp-fi, fbpfi-fbc, fp+fbpfo, fm-fbpfo+fbc, fm-fp+fbc,
and fm-3fbc-fo, where fi and fo denote the rotating frequency of inner and outer raceways,
respectively; fbc, fbpfi, and fbpfo denote the frequency of time-varying support stiffness and
the passing frequency of the ball to inner and outer raceways, respectively.

Compared to those of the static linear cases, the sidebands of the time-varying nonlin-
ear case include the ball passing frequencies, fbc, fp, fbpfi, and fbpfo, which are much closer
to the real scenario. Thus, the proposed model considering the time-varying nonlinear
support stiffness provides the possibility of bearing fault feature extraction and is beneficial
for the fault diagnosis of PGSs’ bearings.

4. Dynamic Simulation and Discussion

A spur PGS coupled with a dual-rotor system including four equally spaced planet
gears is taken as the research object in this section, as shown in Figure 1. The detailed
parameters are described in Table 1. Though the static linear bearing support stiffness is
widely used to simulate the dynamic characteristics of the PGS, the time-varying nonlinear
support stiffness model of the rolling ball bearing can more accurately reflect the dynamic
response characteristics of the PGS system. The dynamic responses (in terms of the vi-
bration, load-sharing factor, and center trajectory) of the time-varying nonlinear support
stiffness are directly compared to those of the static linear cases, as described in Table 2 via
a speed-sweep analysis.

4.1. Influence of Support Stiffness and Input Speed on the Vibrations

To investigate the dynamic responses under different static linear bearing support
stiffness conditions and input rotating speeds, four static values of K are considered to
provide comparisons with that of the proposed time-varying nonlinear support stiffness.

In the speed-sweep condition, an increasing speed-sweep (from 300 rpm to 900 rpm
with an interval of 30 rpm in 6 s, as shown in Figure 14a) simulation is conducted. The load
is 200 N/m.
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For the speed-sweep simulation, the time-history vibration responses of the sun gear
and carrier for different static linear bearing support stiffness cases and the proposed
time-varying nonlinear support stiffness and their boxplots are shown in Figure 14b,c,
respectively, which can reflect the stability of the corresponding vibration responses for
increasing the speed-sweep process.

In Figure 14b, the vibration amplitudes increase with the input speed and decrease
with the static value of support stiffness, and the results of the time-varying nonlinear
support stiffness are very close to those of the static linear case K = 2 × 108 N/m. In
Figure 14c, for the linear support stiffness cases, the number and amplitude of outliers
decrease with the static value of support stiffness, and the variance of vibration response
indicates that the stability of nonlinear support stiffness is better than that of the static
linear case with K = 2 × 108 N/m.

The root-mean-square (RMS) and jerk (peak to peak of RMS) values for different
support stiffness cases at various input speeds are calculated, and the corresponding
3D view, front view, and boxplot are illustrated in Figure 15. From Figure 15, similar
conclusions as those of Figure 14 are obtained. The vibration responses for the time-varying
nonlinear case are weaker than those of static linear cases with K = 0.5 × 108 N/m and
K = 1 × 108 N/m, but stronger than that of the static linear case with K = 4 × 108 N/m. In
addition, the dynamic responses of the time-varying nonlinear case are close to that of the
linear case with K = 2 × 108 N/m. However, in Figure 15, the variance of the vibration
response of the static linear case with K = 1 × 108 N/m is largest, and the results of the
static linear case with K = 4 × 108 N/m are smallest. Meanwhile, the stability of the
results for the time-varying nonlinear case is better than that of the static linear case with
K = 2 × 108 N/m.

4.2. Influence of Support Stiffness and Input Speed on the Load-Sharing Factor

The load-sharing factors (LSFs) of the PGS with respect to different bearing support
stiffness conditions and input speeds are shown in Figure 16. It can be found that the
LSFs increase with the input speed but decrease with the bearing support stiffness. The
fluctuations in LSFs for K = 0.5 × 108 N/m and K = 2 × 108 N/m are largest and the peak
occurs at 600 rpm; the peak of K = 1 × 108 N/m occurs at 800 rpm, as shown in Figure 16b.
The LSFs for the static linear case with K= 4 × 108 N/m and the time-varying nonlinear
case are stabler than others and there are no outliers and obvious peaks, as shown in
Figure 16b,c.

4.3. Influence of Support Stiffness and Input Speed on the Center Trajectories

The center trajectory comparison of the planet gear, sun gear, and carrier with an
input speed of 700 rpm is shown in Figure 17. Trajectories with or without considering
the time-varying nonlinear support stiffness of the rolling ball bearings are plotted by
dotted lines and solid lines, respectively. It can be seen that the effect of the time-varying
nonlinear support stiffness makes the trajectory curves of the planet gear increase and
decrease significantly in x and y directions, respectively, and the rotational center position
of the planet gear deviates significantly, as shown in Figure 17a. The time-varying nonlinear
support stiffness significantly reduces the amplitude of trajectory curves of the central
components, due to the corresponding translational movement being affected by the time-
varying nonlinear support stiffness characteristics of the ball bearing. However, their
rotational center positions are unchanged, as shown in Figure 17b,c, respectively.
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5. Conclusions

In this paper, a refined dynamic model of a planetary gear set (PGS) is proposed by
coupling their translational property with the time-varying nonlinear support stiffness of
the rolling bearings. In this model, the time-varying nonlinear support stiffness model
simultaneously considers the time-varying and nonlinear characteristics of the bearing
support stiffness, which are caused by the nonlinear Hertzian contact restoring force and
parametrically excited periodic variation of the contact stiffness. To obtain the dynamic
responses from the proposed dynamic model, an improved time integration algorithm is
presented by introducing an inner iteration cycle to calculate the time-varying nonlinear
support stiffness based on the instantaneous displacements of bearing raceways. The
simulation responses of the proposed model considering the time-varying nonlinear bearing
support stiffness is directly compared to the experimental results, which demonstrate the
advantages of the proposed model as opposed to previous models considering the static
linear bearing support stiffness. The influences of the time-varying nonlinear support
stiffness on the time- and frequency-domain dynamic responses of the PGS are analyzed.
Some conclusions are drawn as follows:

1. Compared to the static linear bearing support stiffness conditions, the sidebands of
the time-varying nonlinear support stiffness condition in the logarithm frequency
spectrum possess additional ball passing frequencies (fbc, fp, fbpfi, and fbpfo), which are
much closer to the real scenario.
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2. The conventional static linear bearing support stiffness models, which usually assume
an empirical constant value, cannot faithfully reflect the dynamic scenario of the
system. The proposed refined support stiffness model is close to the actual situa-
tion, which may provide theoretical guidance for the condition monitoring and fault
diagnosis of PGSs’ bearings.

3. The vibration amplitudes of the sun gear and the center trajectories of the sun gear,
carrier, and planet gear are greatly affected by the time-varying nonlinear support
stiffness of bearings.

4. The vibration responses of the time-varying nonlinear case and the static linear case
with K = 2 × 108 N/m are very close to that of the experiment. However, the dynamic
responses of the time-varying nonlinear case are stabler.
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