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Abstract: Aiming to address the problems of a low fault detection rate and poor diagnosis perfor-
mance under different loads and noise environments, a rolling bearing fault diagnosis method based
on switchable normalization and a deep convolutional neural network (SNDCNN) is proposed. The
method effectively extracted the fault features from the raw vibration signal and suppressed high-
frequency noise by increasing the convolution kernel width of the first layer and stacking multiple
layers’ convolution kernels. To avoid losing the intensity information of the features, the K-max
pooling operation was adopted at the pooling layer. To solve the overfitting problem and improve
the generalization ability, a switchable normalization approach was used after each convolutional
layer. The proposed SNDCNN was evaluated with two sets of rolling bearing datasets and obtained
a higher fault detection rate than SVM and BP, reaching a fault detection rate of over 90% under
different loads and demonstrating a better anti-noise performance.

Keywords: deep convolutional neural network; fault diagnosis; K-max pooling; rolling bearing;
switchable normalization

1. Introduction

Rolling bearings are one of the main components of mechanical equipment. The online
monitoring of the real-time operation of bearings and the accurate identification of fault
types and fault degrees can ensure the reliability of mechanical equipment operation [1,2].
One of the most widely used methods to detect rolling bearing faults by vibration signals
is to extract the characteristics of the vibration signals through techniques such as time-
domain analysis [3], wavelet analysis, wavelet packet analysis [4–6], empirical wavelet
transform [7,8], empirical mode decomposition [9], ensemble empirical mode decomposi-
tion [5,10], sparse decomposition [11], independent component analysis [12], and spectral
kurtosis [13,14]. However, the characteristics of bearing faults under different operating
conditions and noise environments are complex, and effectively mining information from
bearing vibration data has always been an important problem in rolling bearing fault
diagnosis [15–17].

Fault diagnosis is essentially pattern recognition. The currently commonly used
approaches of support vector machines (SVMs) [18–20], random forests [21], AdaBoost [22],
backpropagation neural networks [23], and radial basis neural networks [24] are shallow
learning models with a limited fault feature expression ability, and the accuracy of the
diagnosis is subject to the feature extraction results. In recent years, researchers have
turned their attention to various deep learning models, such as convolutional neural
networks (CNNs) [25], recurrent neural networks [26], autoencoders [27–29], and transfer
learning [30]. Among these, CNNs can convert the original features of the input layer
by layer into features that are easy to recognize and realize the deep characterization of
rolling bearing faults, representing a hotspot of current research [31,32]. Several studies
have applied CNNs as a classifier, using wavelet packets [33–35], continued wavelet
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transform [36,37], dual-tree complex wavelet transform [38,39], fast Fourier transform
(FFT) [40], discrete wavelet transform (DWT) [40], and other signal processing methods [41]
to pre-process one-dimensional vibration signals, which are converted into the time domain
or the time-frequency domain and then input into the CNN for fault diagnosis [42]. This
processing method fails to fully exploit CNNs’ deep learning ability. Therefore, dislocated
time series (DTS) [43]; gray-scale images [44,45], infrared thermal images, and other image
data [46,47]; one-dimensional CNNs [48,49]; and other methods have been proposed to
reshape the input data dimension and get rid of the dependence on expert knowledge for
vibration signal feature extraction. However, in most current studies, the pooling operation
of CNNs mostly adopts the max-pooling method. Since the rolling bearing is a periodic
time-series signal, this processing method causes the intensity information of the feature to
be lost. In response to this shortcoming, the deep convolutional neural network (DCNN)
model presented in this paper used the K-max pooling method, which could retain the
Top-K score of all feature values, thereby avoiding the problem of the loss of intensity
information in the signal.

Furthermore, although feature extraction can be effectively performed through the
superposition of multiple convolutional layers and pooling layers, it is easy to cause over-
fitting. Therefore, in this study we adopted the switchable normalization (SN) method [50],
which could choose the appropriate normalization method for each normalization layer
of the DCNN. Experiments showed that the average recognition rate of the proposed
SNDCNN model was 99.68%, and it achieved good diagnostic results under different loads
and noise environments.

The remainder of this paper is structured as follows. The next section presents an
interpretation of the relevant literature, including works on CNN and K-max pooling. In
Section 3, we propose a novel model combining SN and DCNN. Then, in Section 4, we
describe in detail the experimental procedures and diagnosis result analysis based on two
rolling bearing datasets. Finally, the conclusions are presented in Section 5.

2. Convolutional Neural Network

The main CNN hierarchy is shown in Figure 1.
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2.1. Convolution Layer

In the convolution layer, the convolution calculation is performed on the input through
the convolution kernel, and each small block in the neural network is analyzed more deeply
to obtain higher abstraction features.

Xk
j = f

(
∑i∈Mj

Xk−1
i ∗Wk

ij + bk
j

)
(1)

where Xj
k is the jth element of the kth layer; Mj is the input feature vector; Xi

k−1 is the
element; Wij

k is the weight matrix of the convolution kernel; bj
k is the bias term; and ƒ(·)

is the activation function, which is a non-linear function that converts the output of each
neuron from linear to non-linear. In this model, the Relu function is chosen as the activation
function.

f (x) = max(x, 0) (2)
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2.2. Pooling Layer

After the feature extraction of the input data through the convolution layer, the
resulting data dimension is still relatively large. The pooling layer does not change the
depth of the data matrix of the previous layer. By reducing the size of the data matrix,
the goal of reducing the parameters in the neural network is achieved. The mathematical
expression of the pooling layer is shown in Equation (3):

X = f (α ∗ down(x) + b) (3)

where x is the output, ƒ(·) is the activation function, α is the multiplicative bias, down( ) is
the downsampling function, and b is the bias term.

Commonly used pooling layer processing methods include general pooling, overlap-
ping pooling, average pooling, and max pooling. In this study, K-max pooling was selected,
which is an improved maximum pooling method. A comparison chart for max pooling and
K-max pooling when K = 2 is shown in Figure 2. The max pooling method has an obvious
disadvantage in that sometimes certain strong features appear multiple times. The more
occurrences, the stronger the feature. Because maximum pooling only retains a maximum
value, which means that the same feature has incomplete intensity information, K-max
pooling can retain all feature values scored in Top-K and the original order of these feature
values, thus providing more complete feature information for subsequent use.
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Figure 2. Pooling method comparison. The dotted lines in different colors represent pooling of
different convolution filters.

2.3. Fully Connected Layer

The fully connected layer acts as a classifier in the CNN. It accepts the input of the
previous neural layer and outputs an N-dimensional vector, where N is the total number of
all possible categories. After the processing of multiple convolutional layers and pooling
layers, the final classification results are generally provided by one or two fully connected
layers. This study used the Softmax layer for classification.

3. Rolling Bearing Fault Diagnosis Method Based on SNDCNN

Although traditional CNNs have a high recognition rate for the fault diagnosis of
rolling bearings, the recognition rate still needs to be improved, as it cannot meet the
challenge of bearing fault diagnosis under different loads and noise environments. In
response to these problems, a new rolling bearing fault diagnosis method based on switch-
able normalization and a deep convolutional network (SNDCNN) was proposed, as shown
in Figure 3.
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3.1. Structural Parameters of the SNDCNN

In this study, by increasing the convolution kernel width of the DCNN’s first layer and
setting the convolution kernel size of the first layer to 80 × 1, a larger receptive field could
be obtained, which could effectively extract one-dimensional vibration signal characteristics
and suppress high-frequency noise. The subsequent neural layers adopted a multi-layer
convolution kernel stacking to achieve multi-layer nonlinear mapping. However, increas-
ing the width of the convolution kernel and superimposing the convolution layer increases
the complexity of the DCNN model and the training parameters, which may cause over-
fitting problems. To suppress overfitting and increase the training speed, the switchable
normalization method was adopted, and the SN process was performed between each
convolutional layer and the active layer of the DCNN. The structural parameters of the
SNDCNN are shown in Table 1.

Table 1. Structural parameters of SNDCNN.

No. Layer Type Size Stride Kernel Number Padding (Yes or No)

1 C1 80 × 1 8*1 8 Y
2 P1 4 × 1 2*1 16 N
3 C2 5 × 1 1*1 32 Y
4 P2 2 × 1 2*1 32 N
5 C3 3 × 1 1*1 64 Y
6 P3 2 × 1 2*1 64 N
7 C4 3 × 1 1*1 64 Y
8 P4 2 × 1 2*1 64 N
9 C5 3 × 1 1*1 64 Y

10 P5 2 × 1 2*1 64 N
11 C6 3 × 1 1*1 64 Y
12 P6 2 × 1 2*1 64 N
13 F1 100 100 1 N
14 Softmax 10 10 1 N

3.2. Switchable Normalization

Normalization technology plays an important role in the deep learning model, as it
can effectively suppress overfitting and improve the generalization ability of the DCNN.
Commonly used normalization methods include batch normalization (BN), instance nor-
malization (IN), layer normalization (LN), and group normalization (GN). However, each
normalization method has its limitations in terms of the scenarios to which it can be applied.
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Although normalization can improve DCNN performance, solving different problems often
requires different normalization methods. A DCNN often contains several or even dozens
of normalization layers. Selecting the appropriate normalization operation for each normal-
ization layer using a manual takes a lot of time. Thus, the same normalization method is
used in traditional deep neural networks.

In this study, the switchable normalization method was proposed to solve the above
problems. SN contains three normalization methods: IN, LN, and BN. Using differential
learning, the appropriate normalization method for different normalization layers in the
deep neural network can be automatically selected. Suppose that the input data of the
convolutional layer of a DCNN can be expressed in four dimensions, with each dimension
representing the number of samples N, the number of channels C, the height of the channel
H, and the width of channel W. Each pixel that is normalized based on the SN method is
represented as hncij:

ĥncij = γ
hncik −∑k∈Ω ωkµk√

∑k∈Ω ω′kσk
2 + θ

+ β (4)

where ĥncij is the normalized pixel value, and n, c, i, and j are the subscripts of the four
dimensions. The above definition in Equation (5) is similar to those of BN, IN, and LN. They
all learn the scaling factor γ and the offset factor β. The main difference is the statistical
information included in SN (mean µ and variance σ2), making it unlike IN, which is only
calculated in one channel, and LN, which is only calculated in one layer. In SN, a set is
defined as Ω = IN, LN, BN, and the set weighted average is chosen by a suitable approach.
ωk and ωk

′ are the weight coefficients for the corresponding statistics. The weighting
coefficientωk of the mean is calculated as follows:

ωk =
eλk

∑k∈{IN,LN,BN} eλk
, k ∈ {IN, LN, BN} (5)

The calculation methods of the mean and variance of IN, LN, and BN are as follows:

µIN =
1

HW ∑H,W
i,j hncij, σIN

2 =
1

HW ∑H,W
i,j

(
hncij − µIN

)2 (6)

µLN =
1
C ∑C

c=1 µIN , σLN
2 =

1
C ∑C

c=1

(
σIN

2 + µIN
2
)
− µLN

2 (7)

µBN =
1
C ∑N

n=1 µIN , σBN
2 =

1
N ∑N

n=1

(
σIN

2 + µIN
2
)
− µBN

2 (8)

3.3. Adaptive Momentum Algorithm

To speed up the convergence speed and accuracy, the adaptive momentum (Adam)
algorithm was used to update the parameters and optimize the model. Adam is by far
the best-performing gradient descent model optimization algorithm. It can be seen as a
combination of the momentum algorithm and the RMSProp algorithm. When updating
parameters, Adam considers not only the gradient of the current iteration but also the
gradient of all previous iterations and the square of the gradient. By accumulating the
gradient index weights, Adam introduces the first- and second-order moment estimates of
the parameters into the update operation. Thus, the adaptive change in the learning rate
can be realized. The specific steps of the Adam parameter update are as follows:

Steps of Adam parameter update:
Set the learning rate α, the first-order moment estimate exponential decay rate ρ1, the

second-order moment estimate exponential decay rate ρ2, and the minimum constant ε.
The parameters in this paper are all default values, α = 0.001, ρ1 = 0.9 = 0.9, ρ2 = 0.999,
ε = 1 × 10−8.

Require: Initialize the first-order moment estimate s0 and second-order moment
estimate r0 to 0, and initialize the iteration step number t to 0.
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Require: Calculate the gradient of the loss function ƒ(θ) for the parameter θ, and loop
the following updates:

While θ is not converged do:
1. Update steps: t← t + 1
2. Computing the gradients: gt ← ∇θ · f (θ)
3. Update biased first moment estimates: st ← ρ1 · st−1 + (1− ρ1) · gt
4. Update biased second-order moment estimates: rt ← ρ2 · rt−1 + (1− ρ2) · gt

2

5. Correct the deviation of the first moment: ŝt ← st
1−ρ1

t

6. Correct the deviation of the second moment: r̂t ← rt
1−ρ2

t

7. Calculation update: ∆θ ← −α · ŝt√
r̂t+ε

8. App update: θ = θ + ∆θ
End while
Return θ

3.4. Fault Diagnostic Process

The algorithm consisted of the following two stages, as shown in Figure 4. The detailed
fault diagnosis process flow is as follows:

(1) Training Stage:
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Step 1—data preprocessing: The vibration signals of the rolling bearings were collected,
and the original data were expanded by overlapping sampling; then, these were divided
into samples of length N, and the training data were input into the SNDCNN.

Step 2—training network: After the training data were input into the first layer
of wide convolution kernels, they underwent a non-linear transformation of the ReLU
function to become a set of feature maps, which were then put through pooling layer
1 for further feature extraction. The processed data were then input into a continuous
six-layer superimposed small convolution kernel layer, which could effectively extract data
features. Between each convolutional layer and the activation layer above, a switchable
normalization method was used for processing. Together, the dropout rate was 0.5. After
the nonlinear transformation of the ReLU function, its output was to the final Softmax
layer.

Step 3—well-trained SNDCNN: A well-trained SNDCNN was saved for rolling bear-
ing fault diagnosis.

(2) Testing Stage:
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Step 1—testing data acquisition: New vibration signals were acquired, and segmented
samples were obtained as the testing dataset Dtest.

Step 2—testing: Dtest was input into the trained SNDCNN obtained from the training
stage, providing the corresponding diagnosis result.

4. Experimental Verification
4.1. Case 1—Western Reserve University Rolling Bearing Data Analysis

The experimental verification in this study was carried out based on the rolling bearing
fault dataset of Case Western Reserve University (CWRU). The test rig is shown in Figure 5.
The rolling bearing mode was SKF 6205, which contained three fault locations, on the
ball, inner ring, and outer ring of the bearing. The diameters of the bearing faults were
0.007 inches, 0.014 inches, and 0.021 inches, respectively.

Machines 2023, 11, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 4. The process flow of rolling bearing fault diagnosis based on SNDCNN. 

4. Experimental Verification 
4.1. Case 1—Western Reserve University Rolling Bearing Data Analysis 

The experimental verification in this study was carried out based on the rolling bear-
ing fault dataset of Case Western Reserve University (CWRU). The test rig is shown in 
Figure 5. The rolling bearing mode was SKF 6205, which contained three fault locations, 
on the ball, inner ring, and outer ring of the bearing. The diameters of the bearing faults 
were 0.007 inches, 0.014 inches, and 0.021 inches, respectively. 

 
Figure 5. The rolling bearing test rig. 

4.1.1. Dataset Division 
During the experiment, to avoid the SNDCNN overfitting problem caused by the 

insufficient amount of data in the training set, the data were expanded by overlapping 
sampling, that is, starting from the initial sampling point, the data length of each sampling 
was N. The position of the next sampling was shifted by n from the previous sampling 
position. The overlapping sampling process is shown in Figure 6: 

Figure 5. The rolling bearing test rig.

4.1.1. Dataset Division

During the experiment, to avoid the SNDCNN overfitting problem caused by the
insufficient amount of data in the training set, the data were expanded by overlapping
sampling, that is, starting from the initial sampling point, the data length of each sampling
was N. The position of the next sampling was shifted by n from the previous sampling
position. The overlapping sampling process is shown in Figure 6:
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Figure 6. Overlapping sampling process. The data in solid black represents the previous time of
Overlapping sampling, and the data in dotted red represents the next time of Overlapping sampling.

The dataset division is shown in Table 2. According to the load, the rolling bearing
data of Western Reserve University were divided into three situations, A, B, and C, and
the corresponding loads were 1 hp, 2 hp, and 3 hp, respectively. Dataset D was the sum
of datasets A, B, and C, that is, it contained three different loads at the same time. Take
dataset A as an example: it included 10 types of labels, 0–9; each label included 800 training
samples, 40 test samples, and 20 verification samples; and each sample had a length of
2048. Dataset D contained 24,000 training samples, 1200 test samples, and 600 verification
samples.
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Table 2. Division of rolling bearing data.

Fault Location None Ball Inner Race Outer Race Load
(hp)

Labels 0 1 2 3 4 5 6 7 8 9

Fault Diameter
(inches) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

A

Training 800 800 800 800 800 800 800 800 800 800

1Testing 40 40 40 40 40 40 40 40 40 40

Validation 20 20 20 20 20 20 20 20 20 20

B

Training 800 800 800 800 800 800 800 800 800 800

2Testing 40 40 40 40 40 40 40 40 40 40

Validation 20 20 20 20 20 20 20 20 20 20

C

Training 800 800 800 800 800 800 800 800 800 800

3Testing 40 40 40 40 40 40 40 40 40 40

Validation 20 20 20 20 20 20 20 20 20 20

D

Training 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400

1,2,3Testing 120 120 120 120 120 120 120 120 120 120

Validation 60 60 60 60 60 60 60 60 60 60

4.1.2. Diagnostic Results under Steady Conditions

Using the above dataset, the SNDCNN was used to train and verify datasets A, B, C,
and D. The number of iterations for each dataset was 100, and the recognition rate, loss
function, and training time of the SNDCNN were output. The test results are shown in
Figure 7 and Table 3. In the figure, accuracy represents the detection rate of the training set,
and var accuracy represents the detection rate of the test set.
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Figure 7. The detection rate of the SNDCNN for the four datasets.
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Table 3. SNDCNN diagnosis results.

Detection Rate Loss Function Time (ms/step) Iterations

Dataset A 99.27% 0.061 0.653 100
Dataset B 100.00% 0.054 0.749 100
Dataset C 100.00% 0.011 0.671 100
Dataset D 99.45% 0.063 0.687 100

In order to verify the impact of switchable normalization on the model, we compared it
with batch normalization, which is widely used in convolutional neural networks, and the
experimental results are shown in Figure 8. The average fault detection rate of switchable
normalization for the four datasets was 99.68%, which was better than the average fault
detection rate of batch normalization of 97.78%.
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Figure 8. The detection rate of SNDCNN and BNDCNN for the four datasets.

To further verify the fault detection ability of the SNDCNN proposed in this paper,
we compared it with several traditional machine-learning-based diagnostic methods and
several deep-learning-based diagnostic methods. The following methods all used the
CWRU bearing dataset, with the only differences being in the number of training and test
sets. Therefore, the comparison could objectively reflect the advantages of the SNDCNN in
terms of the fault detection rate. The specific comparison results are shown in Table 4.

Table 4. Comparison of test results of different diagnostic methods.

Diagnosis
Method

Accuracy (%)

Dataset A Dataset B Dataset C Dataset D

EEMD + SVM [51] 92.25 93.16 92.56 87.25
STFT + SVM [52] 94.76 93.55 95.05 86.39

WT + BP [53] 93.65 92.14 94.85 84.27
BPNN [54] 62.11 — — —

MSCNN [54] 98.46 — — —
DTS-CNN [54] 99.14 — — —
1D-DCNN [54] 98.43 — — —

SNDCNN 99.27 100.00 100.00 99.45

To verify whether the SNDCNN classification ability was improved by increasing the
number of training sets, t-SNE dimensionality reduction technology was used to visualize
the corresponding SNDCNN classification results when the number of training sets was 120,
1200, 3000, and 24,000, as shown in Figure 9. The results showed that the data enhancement
of the training set could effectively improve the SNDCNN detection effect.
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4.1.3. Diagnostic Results under Variable Load Conditions

In actual applications, machines often work under different operating loads. Such
a complex working environment elicits higher requirements for fault diagnosis models.
Neural networks trained under one load often cannot handle another load. To verify the
fault detection rate of the SNDCNN under different loads, the SNDCNN was trained by
the vibration data under 1 hp (dataset A), 2 hp (dataset B), and 3 hp (dataset C), where
1 hp, 2 hp, and 3 hp correspond to the speeds of 1772 r/min, 1750 r/min, and 1730 r/min,
respectively. Figure 10 shows the data under different operating loads.
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Figure 10. Ball fault signal under different loads.

Figure 10 shows the ball fault signal with a fault level of 0.007 inches under different
loads. It can be seen that the amplitude of the fault signal varied under different loads.
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The experiment used the signals under one load as the training set and the signals
under the other two loads as the test set for testing. The test results are shown in Figure 11
and Table 5.
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Table 5. Diagnostic results of the SNDCNN under different load conditions.

Detection Rate Loss Function Time (ms/step) Iterations

A→B 99.18% 0.101 0.674 100

A→C 95.72% 0.431 0.703 100

B→A 97.14% 0.372 0.689 100

B→C 90.00% 0.624 0.683 100

C→A 79.40% 3.195 0.714 100

C→B 84.15% 0.961 0.692 100

Average 90.93% 0.947 0.693 100

The results showed that the SNDCNN had a detection rate of more than 90% under
different loads, and the average training time of each signal was about 0.693 ms. Therefore,
the SNDCNN had strong adaptability across load domains and could complete fault
diagnosis tasks in complex and changing operating environments.

4.1.4. Diagnostic Results under Different Noise Conditions

To show that the SNDCNN had a high anti-noise performance, we also studied the
diagnostic effect of the SNDCNN under different noise environments by introducing the
concept of the signal-to-noise ratio (SNR), which is the ratio of useful signal power to noise
power. The SNR is an important criterion for evaluating the strength of noise for a signal.
The calculation formula of the SNR is as follows:

SNR(dB) = 10log10

(Psignal

Pnoise

)
= 20log10

(Asignal

Anoise

)
(9)

where Psignal is the signal power; Pnoise is the noise power; Asignal is the signal amplitude;
and Anoise is the noise amplitude.

Environmental noise of different intensities has different effects on the raw vibration
signal and may cover up the fault information of the raw vibration signal, making the
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SNDCNN unable to diagnose the fault well. Figure 12 shows the results of adding SNRs of
−4 dB, 0 dB, 4 dB, and 8 dB Gaussian white noise to the raw vibration signal.
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Figure 12. Vibration signals under different noise environments.

At this stage, the SNDCNN was trained by four vibration datasets with noise to test
its detection rate at different noise intensities, and the diagnosis results were compared
with support vector machines, multi-layer perceptrons (MLPs), and deep neural networks
in the same noise environment. The average detection rate under the four different noise
environments was calculated. The results of the average detection rate are shown in
Table 6 and Figure 13. The results showed that the detection rate of the SNDCNN model
in the four different noise environments was significantly higher than that of the other
three diagnostic models, and the average detection rate was 97.15%, demonstrating a high
anti-noise performance.

Table 6. Diagnostic results of SNDCNN under different noise environments.

SVM MLP DNN SNDCNN

−4 dB 67.35 30.48 42.24 92.05

0 dB 95.15 41.75 57.93 98.37

4 dB 97.62 76.93 83.45 99.03

8 dB 98.73 95.02 96.64 99.25

Average 89.7125 61.045 70.065 97.175

4.2. Case 2—Rolling Bearing Test Platform Data Analysis
4.2.1. Test Bench Description

Figure 14 displays the rolling bearing test platform, which consisted of several parts.
This test platform could conduct fault simulation tests of bearings under different operating
conditions. The adjustable operating conditions of the test platform mainly included speed
and load. The test bearing was a TPI6205 rolling bearing, and three fault forms of the
ball, inner ring, and outer ring were processed by laser pitting. The specific parameters
of the rolling bearings are shown in Table 7. Figure 15 shows photographs of the normal
and faulted bearings. To collect vibration signals from the tested bearings, as shown in
Figure 13, the accelerometer of type HD-YD-232 was positioned on the housing of the
tested bearings, and the sampling frequency was set to 12 kHz.
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Figure 13. Comparison of diagnostic rates between SNDCNN and other fault diagnosis models
under different noise environments.
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Table 7. TPI6205 rolling bearing parameters.

Type Diameter of the
Ball Pitch Diameter Ball Number Contact Angle

TPI6205 0.3126 inches 1.537 inches 9 0

The rolling bearing test bench was designed for experiments with different bearing
failure degrees, different loads, different speeds, and a constant speed acceleration. We
saved the experimental data to a series of files and filled in the file names with sequential
numbers. The non-constant speed acceleration experiment stopped when the file size
exceeded 16,384 KB, and the constant speed acceleration experiment stopped when the
specified speed was reached. Taking the minor fault of the inner ring as an example, the
details of the data records are shown in Table 8. Load 0 corresponded to operation under
the no-load state, load 1 corresponded to a loading of 0.5 N·m, load 2 corresponded to a
loading of 1 N·m, and load 3 corresponded to a loading of 1.5 N·m.

Table 8. Details of the data records.

Filename Load Rotational
Speed (rpm) Filename Load Rotational

Speed (rpm) Comment

Test_001 0 800 Test_013 3 800

Test_002 0 1600 Test_014 3 1600

Test_003 0 2400 Test_015 3 2400

Test_004 0 3200 Test_016 3 3200

Test_005 1 800 Test_017 0 raising speed 40 rpm/s 800 to 3200 rpm

Test_006 1 1600 Test_018 0 raising speed 80 rpm/s 800 to 3200 rpm

Test_007 1 2400 Test_019 1 raising speed 40 rpm/s 800 to 3200 rpm

Test_008 1 3200 Test_020 1 raising speed 80 rpm/s 800 to 3200 rpm

Test_009 2 800 Test_021 2 raising speed 40 rpm/s 800 to 3200 rpm

Test_010 2 1600 Test_022 2 raising speed 80 rpm/s 800 to 3200 rpm

Test_011 2 2400 Test_023 3 raising speed 40 rpm/s 800 to 3200 rpm

Test_012 2 3200 Test_024 3 raising speed 80 rpm/s 800 to 3200 rpm

4.2.2. Bearing Fault Forms and Vibration Signal Analysis

We selected four bearing types under the conditions of rotating speed n = 2400 r/min
and 0 loads and drew their original time domain signal, frequency spectrum, and envelope
spectrum, as shown in Figure 16.

As shown in Figure 15, in addition to 40 Hz and the frequency component of dou-
bling frequency, frequency components of 186.3 Hz, 214.9 Hz, and 144.5 Hz appeared
in the spectrum and envelope spectrum, which were close to the theoretical values of
the corresponding fault characteristic frequencies of 188.54 Hz, 216.6 Hz, and 143.39 Hz,
respectively.

Through the observation and analysis of the original time domain signals, spectra, and
envelope spectra of the above four conditions, obvious frequency doubling characteristics
could be seen in the time spectra of the four types of signals, with the inner ring faults,
outer ring faults, and ball faults all having obvious characteristic frequencies. Therefore,
the overall design of the rolling bearing fault diagnosis test bed at this stage of the study
was reasonable and could effectively simulate the damage of rolling bearings in different
positions.
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4.2.3. Diagnostic Results under Steady Conditions

In the case of a single load, the bearing was diagnosed with a total of three damage
positions, on the rolling body of the bearing, the inner ring, and the outer ring. The damage
degree was divided into three types, mild, moderate, and severe, and with the data of
the bearing in a healthy state, this made up a total of 10 operating states. The speed was
2400 rpm/min.

At this stage, we expanded upon the data of the training set by employing overlapping
sampling, that is, starting from the initial sampling point, the data length of each sample
was N, and the location of the next sample was offset by N from that of the previous one.
During the neural network training, N data points were trained each time. In this section,
the length of the sampled data was 2048, and the offset length of the sampling position was
64. The specific division of the experimental dataset is shown in Table 9.
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Table 9. The specific division of the experimental dataset.

Fault Location None Ball Inner Race Outer Race Load

Labels 0 1 2 3 4 5 6 7 8 9

Fault Degree None Mild Moderate Severe Mild Moderate Severe Mild Moderate Severe

A
Training 800 800 800 800 800 800 800 800 800 800

0
Testing 40 40 40 40 40 40 40 40 40 40

B
Training 800 800 800 800 800 800 800 800 800 800

1
Testing 40 40 40 40 40 40 40 40 40 40

C
Training 800 800 800 800 800 800 800 800 800 800

2
Testing 40 40 40 40 40 40 40 40 40 40

D
Training 800 800 800 800 800 800 800 800 800 800

3
Testing 40 40 40 40 40 40 40 40 40 40

The trained fault diagnosis model was used to verify the divided single-load datasets.
The number of iterations was 100, and the experiment was repeated 10 times. The diagnostic
results are shown in Figure 17.
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D.

It can be seen from Figure 17 that the model could quickly converge, and the diagnosis
rate under each load reached more than 97%, with the diagnosis rate for the dataset with
load 3 being the highest at 98.71%. The experimental results showed that the model had
high diagnostic accuracy under a single load. The results of the experiment are shown in
Table 10.
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Table 10. The results of the experiment.

Detection Rate Loss Function Time (ms/step) Iterations

Dataset A 97.14% 0.083 0.638 100
Dataset B 98.57% 0.069 0.726 100
Dataset C 98.71% 0.067 0.645 100
Dataset D 99.52% 0.069 0.633 100

4.2.4. Diagnosis Results under Variable Speed Conditions

In real industrial activities, bearings often work by accelerating or, in some cases,
decelerating; the bearing fault diagnosis experimental platform designed in this study also
simulated this situation. The control unit of the experimental platform was used to set
the constant speed acceleration of the bearings. Two accelerations were set, 40 rpm/s and
80 rpm/s, to increase the running speed of the bearing from 800 rpm/min to 3200 rpm/min,
respectively, and the recording times were about 1 min and 30 s.

The experimental data for a constant speed acceleration of 40 rpm/s were used in
the experiment described in this section. Under these conditions, there were three fault
types among the bearings, namely rolling body faults, inner ring faults, and outer ring
faults. Each fault type comprised three degrees of damage. Including the running data of
the bearings in a healthy state, there were a total of 10 operating states, and each damage
degree comprised 300 training samples and 70 test samples. The training set adopted the
method of overlapping sampling, with a sampling length of 2048 and a sampling location
offset length of 128, while the test set did not adopt the method of overlapping sampling.
Dataset A is the data collected under load 0, and datasets B, C, and D correspond to the
data collected under loads 1, 2, and 3, respectively. The division of the experimental dataset
is shown in Table 11.

Table 11. The division of the experimental dataset.

Fault Location None Ball Inner Race Outer Race Load

Labels 0 1 2 3 4 5 6 7 8 9

Fault Degree None Mild Moderate Severe Mild Moderate Severe Mild Moderate Severe

A
Training 300 300 300 300 300 300 300 300 300 300

0
Testing 70 70 70 70 70 70 70 70 70 70

B
Training 300 300 300 300 300 300 300 300 300 300

1
Testing 70 70 70 70 70 70 70 70 70 70

C
Training 300 300 300 300 300 300 300 300 300 300

2
Testing 70 70 70 70 70 70 70 70 70 70

D
Training 300 300 300 300 300 300 300 300 300 300

3
Testing 70 70 70 70 70 70 70 70 70 70

The trained fault diagnosis model was verified using the fixed and rising speed dataset
with 100 iterations. The diagnostic results are shown in Figure 18.

It can be observed from Figure 18 that the model could quickly converge, and the
diagnostic rate of the constant speed and acceleration datasets under each load reached
more than 95%, with high diagnostic accuracy. The experimental results showed that
the proposed method could achieve high diagnostic accuracy under the conditions of a
constant and increasing bearing speed. The results of the experiment are shown in Table 12.
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Table 12. The results of the experiment.

Detection Rate Loss Function Time (ms/step) Iterations

Dataset A 95.79% 0.089 0.652 100
Dataset B 95.33% 0.092 0.701 100
Dataset C 97.69% 0.081 0.633 100
Dataset D 98.52% 0.079 0.655 100

5. Conclusions

In this paper, a fault diagnosis method for rolling bearings based on the SNDCNN
method was studied, and the following conclusions were drawn:

1. The SNDCNN model, applicable to complex operating conditions, could directly
input the raw vibration signal, and the fault detection rate reached 99.45% under
multiple operating conditions.

2. The method of increasing the convolution kernel width of the first layer and multi-
layer convolution kernel stacking could effectively extract fault features and suppress
high-frequency noise.

3. The pooling operation of K-max pooling was used in the pooling layer, which could
effectively retain the strong feature information.

4. Each convolutional layer and fully connected layer adopted a switchable normaliza-
tion method, which could effectively suppress overfitting and improve the model’s
generalization performance.
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Nomenclature

Symbol Description
SN switchable normalization
DCNN deep convolutional neural network
SVM support vector machine
CNN convolutional neural network
DTS dislocated time series
IN instance normalization
LN layer normalization
BN batch normalization
GN group normalization
Adam adaptive momentum
CWRU Case Western Reserve University
EEMD ensemble empirical mode decomposition
STFT short-time Fourier transform
SNR signal–noise ratio
MLP multi-layer perceptron
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