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Abstract: Internet of things (IoT) applications, which include environmental sensors and control of
automated manufacturing systems (AMS), are growing at a rapid rate. In terms of hardware and
software designs, communication protocols, and/or manufacturers, IoT devices can be extremely
heterogeneous. Therefore, when these devices are interconnected to create a complicated system,
it can be very difficult to detect and fix any failures. This paper proposes a new reliability design
methodology using “colored resource-oriented Petri nets” (CROPNs) and IoT to identify significant
reliability metrics in AMS, which can assist in accurate diagnosis, prognosis, and resulting automated
repair to enhance the adaptability of IoT devices within complicated cyber-physical systems (CPSs).
First, a CROPN is constructed to state “sufficient and necessary conditions” for the liveness of the
CROPN under resource failures and deadlocks. Then, a “fault diagnosis and treatment” technique is
presented, which combines the resulting network with IoT to guarantee the reliability of the CROPN.
In addition, a GPenSIM tool is used to verify, validate, and analyze the reliability of the IoT-based
CROPN. Comparing the results to those found in the literature shows that they are structurally
simpler and more effective in solving the deadlock issue and modeling AMS reliability.

Keywords: automated manufacturing systems; Petri net; reliability; deadlock; internet of things; simulation

1. Introduction

The growth of the “internet of things” (IoT) and “information and communications
technology” (ICT) [1] has made it possible for “cyber-physical systems” [2] to be used to
control and manage AMS. The IoT is a set of real objects equipped with “sensors”, “soft-
ware”, and other ICT systems that enable them to interact with other systems and devices
over the internet. ICT, on the other hand, is any type of “computing/communication”
equipment, “networking devices”, and “information systems” that make it easier to interact
in the digital world. The IoT is an essential component of the next generation of information
methods; it is the internet that connects physical objects, which in turn connect the internet
with the real world. In accordance with the agreement, physical objects are linked to the
internet for information communication and exchange via “radio frequency identification”
(RFID), “sensors”, and a few other tools. Therefore, things can be intelligently identified,
located, and controlled [3].

Cyber-physical systems (CPS) integrate sensor networks and embedded computing to
control and monitor the physical environment in the context of manufacturing systems,
including control loops that enable environmental stimuli to activate the control, commu-
nication, or computing automatically [4]. The development of the IoT and ICT provides
the capability to control, monitor, and manage CPS via the prompt delivery of real-time
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data from the manufacturing system. In CPS of manufacturing systems, machine/resource
failures are common. Managers are frequently concerned with whether the planned due
dates of orders can be achieved if machines fail, i.e., if the AMS is robust against failures.
Even though IoT and ICT can detect real-time information in CPS, including “resource
failures”, poor response to “resource failures” can damage CPS and reduce performance.
The CPS can only be robust when the real-time data presented by “IoT” and “ICT” is
employed to enhance decision-making and adapt to a dynamic environment in a timely
way. Information from IoT and ICT about “resource failures” in real time is only relevant
if an efficient system exists to assess and analyze the impacts of “resource malfunctions”
and deal with them [3]. Therefore, the CPS requires a strategy to evaluate the effects of
“resource failures”, support decision-making, and take the necessary actions in response
to “resource failures”. This motivates us to design a technique to evaluate the effects of
“resource failures” on CPS operations and provide the necessary decision support.

Several manufacturers have concentrated their efforts on improving the effectiveness
of computer numerical control (CNC) machine tools with high accuracy and superior
surface quality. In CNC machines, managing frequent failures, such as “tool wear”, “noise”,
and “tool breakage”, is a problem. Tool wear is a complex process to control because it is
not a linear operation; tools degrade quickly at first, then at a reasonable rate for a duration
of time, and finally at an increasing rate until complete failure. Tool wear is a common and
unavoidable problem during most machining processes. It presents a variety of obstacles to
the quality and productivity of automated machining operations, impeding the possibility
of intelligent and integrated industrial companies [5].

Nowadays, the construction of an intelligent online method for condition monitoring
based on industrial IoT for manufacturing systems has become a solution for advanced
predictive maintenance systems that continuously monitor and record the status of CNC
machine tools [6].

Recently, effective fault diagnosis and detection approaches based on IoT, CPS, and
artificial machine learning have been developed. The authors of [7] developed a new
IoT architecture for online monitoring of induction motor faults. The developed IoT
architecture recognizes the fault categories of the motor using effective machine learning
methods. In addition, cyber-attacks are considered, and the proposed IoT architecture
can detect and avoid cyber-attacks. The results highlight the advantages of the proposed
IoT infrastructure to accurately identify motor faults and cyberattacks. The authors of [8]
proposed a new smart IoT system for vibration monitoring and control of the milling
CNC machine center. The milling machine was connected to a force sensor to record
the vibrations caused by the cutting process. The IoT system employing the “message
queue telemetry transport” (MQTT) protocol was built to connect the sensor node to the
cloud server in order to record the cutting conditions. Deep learning neural networks
are used to classify cutting states such as “stable cutting”, “unstable cutting”, and “fake
cutting”. Moreover, if there is a cyberattack, the proposed method can switch the IoT
system automatically to the backup broker to keep cutting operations safe and reliable.
The authors of [9] developed and prototyped an “event-driven tool condition monitoring”
(EDTCM) system that is activated “just in time” after the workpiece begins processing.
The authors of [10] proposed a flexible and simple tool condition monitoring system in
which the algorithms use repetitive machining processes in mass production and employ
similarity analysis between the data of known conditions and received signals. The authors
of [11] reviewed and evaluated direct and indirect sensing approaches for tool condition
monitoring in milling, and discussed the strengths, drawbacks, and future prospects of such
measurement techniques. The authors of [12] conducted research on energy harvesting
systems for “wireless sensor nodes” (WSNs), directly addressing the issue of wireless
sensor batteries’ sustainability.

The authors of [13] presented a practical lightweight model EPN and a definition
“language EPNML” based on Petri nets (PNs) to represent the IoT services’ behavior and
business processes, such as process control and logic relationship architecture. To improve
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the efficiency and adaptability of IoT services, this model was developed. The authors
of [14] modeled the connection between different sensors and the “geographic environment”
by employing “colored Petri nets” (CPNs). As data and processing services, they categorize
the “IoT service”, the “geographic entity”, and the “Geographic Information System” (GIS)
service. In order to do this, CPNs and an algebra were used to represent and evaluate “geo
characteristics”, “IoT”, and “Geographic Information System” services, and the connection
activity between a “sensor” node and its “geographic environment”. Using three different
case studies, they illustrated the validity of the CPN-based assessment method. The authors
of [15] presented a CPN technique to represent the global behavior of “wireless sensor
networks”, which contains the energy usage of the network. CPNs and the principle of
“component-oriented modeling” form the basis of their method. Two components are
highlighted: the “radio system” and the “MAC Protocol”. Models for each subnet and
interface were then developed separately. The study evaluated the network based on its
energy usage, allowing them to estimate its life. In [16], CPNs were used to represent the
“1-wire protocol” that is employed to connect a master device with many small, inexpensive
devices, including “digital thermometers” and “weather sensors”, throughout a single
shared bus with “low data rates” and “large ranges”.

As aforementioned in the literature, manufacturers use careful operational technology
to avoid these failures in order to avoid costly tool wear and damage [17]. This, unfortu-
nately, leads to less productive and costly operations due to the requirement to replace
the tool early, the downtime of a machine, and replacement costs. To solve this problem,
manufacturers can apply sensors to monitor tool conditions and manage the system in
real time. These sensors include acoustic emission sensors [18], accelerometers and current
sensors [19]. Because a single sensor cannot accurately determine the status of a tool
under varying operational conditions, combining the data from multiple sensors can be
the main obstacle. Using information that is partially redundant, this data acquisition can
provide decision-making information for a process with less uncertainty. Earlier solutions
attempted to derive a tool’s status from data by extracting relevant characteristics. There-
fore, this study aims to propose a “colored resource-oriented Petri nets” (CROPNs)-based
IoT for sensor systems in order to detect and remedy failures. Using the main CROPN
properties, we are able to construct a system with a huge number of sensors. The study’s
purpose is to present a technique for modeling reliability, based on CROPN and IoT, to
identify critical reliability measures in AMS, including “mean time to failure”, “mean time
to repair”, and “availability”. First, a CROPN that considers “resource failures” is designed
to guarantee the liveness of the CROPN. Then, a method is developed for “fault detection
and treatment” that integrates IoT and CROPN to ensure the system’s reliability. Moreover,
the system’s reliability is evaluated using CROPN and IoT. The following is a list of the
significant contributions of the study:

(1) The development of a new approach for modeling the reliability and deadlock control
of complicated AMS.

(2) The IoT-based CROPN is used to present tool-wear monitoring on a milling ma-
chine as an example of an actual system that is generally difficult to model, evaluate
performance, and monitor tool status on various machines.

(3) The GPenSIM tool [20–24] is used to propose a comprehensive simulation program for
the IoT-based CROPN that is then employed to simulate, verify, and evaluate results.

The rest of this paper is structured as follows: Section 2 shows the development of
the CROPN and its “deadlock avoidance” strategy. The CROPN and IoT combination
for “fault detection and treatment” and the reliability model are illustrated in Section 3.
In Section 4, we present the actual AMS example that demonstrates the experimental
outcomes of the designed methodology. In Section 5, the developed CROPN based on the
IoT is validated and compared to other existing approaches. Conclusions and research
directions are presented in Section 6.
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2. Synthesis Method of CROPN

Based on its stated processing paths, a ROPN defines a component production process
as a component sequentially visiting the resources. ROPN expresses machines and buffers
as H-resources [25–28] of the same resource type. Each resource is created in a single
location. The paths a product travels to obtain its resources define its production processes.
If each component’s production process is constructed in an efficient manner, the model
is highly compressed and demonstrates a number of important structural characteristics.
Moreover, the ROPN considers material handling equipment to be a special type of resource,
known as G-resources [25–28]. Due to the restricted resources available in the production
system, a limited capacity PN with its related firing rules is employed. A transition in
a ROPN indicates the movement of a part from one resource to another. The AMS can
be modeled by the ROPN in two steps: (1) designing the component manufacturing
process regardless of component transportation, and (2) designing the component handling
operations using the model constructed in step 1.

A CROPN can be expressed by N = (P, T, C, I, O, K, M), where

(1) P = {po} ∪ {pr} ∪ PR is a number of model places, where po is a load/unload idle
place, pr is a global place that represents material handling equipment resources, and
PR = ∪i∈m{pi}, represents a set of model resource places, m > 0;

(2) T = ∪j∈n{tj} represents a number of model transitions, where n > 0, P ∩ T = ϕ, and
P ∪ T 6= ϕ;

(3) C(p) and C(t) are, respectively, the sets of color related to CROPN places and transi-
tions, where

(4) ∀pi ∈ P, C(pi) = ∪i∈m{aiu}, u = |C(pi)|
(5) ∀tj ∈ T, C(tj) = ∪j∈n{bjv}, v = |C(tj)|;
(6) I(p, t): C(p) × C(t) → IN represents the function of the input of the CROPN, and

IN = {0, 1, 2,...};
(7) O(p, t): C(p) × C(t)→ IN represents the function of the output of the CROPN;
(8) K: P→ IN denotes the capacity function, which allocates the maximum tokens for

each pi ∈ P and is represented as K(pi);
(9) M: P→ N indicates the function of the CROPN state (marking) that adds tokens to

each place in a CROPN. M(pi) represents the tokens in place pi regardless of its color.
M(pi, aij) represents the tokens in place pi with color aij. Mo denotes the initial state of
the CROPN.

Assuming that F= I(pi, tj) ∪ O(pi, tj), ∀(pi, tj) ∈ F, the preset (input) and postset (output)
transitions of place pi can be expressed as “•pi = {tj ∈ T | (tj, pi) ∈ F}” and “pi

• = {tj ∈ T | (pi,
tj) ∈ F}”, respectively. Similarly, the preset (input) and postset (output) places of transition
tj can be, respectively, expressed as “•tj = {pi ∈ P | (pi, tj) ∈ F}” and “ tj

• = {pi ∈ P | (tj, pi) ∈ F}”.
A CROPN can be called

(1) ordinary when “I(pi, tj)(aih, bjk) = 1”, ∀(pi, tj) ∈ F, pi ∈ P, tj ∈ T;
(2) weighted when “I(pi, tj)(aih, bjk) > 1”, (pi, tj) ∈ F, ∃pi ∈ P, and ∃tj ∈ T;
(3) self-loop-free when “I(pi, tj)(aih, bjk) > 0”, “O(pi, tj)(aih, bjk)= 0”, and ∀(pi, tj) ∈ P ∪ T;
(4) self-loop when “I(pi, tj)(aih, bjk) > 0”, “O(pi, tj)(aih, bjk) > 0”, and ∀(pi, tj) ∈ P ∪ T.

In a CROPN, a tj ∈ T is “process-resource-enabled” [28] if

“M(pi, aih) ≥ I(pi, tj)(aih, bjk), ∀pi ∈ P, ∀pi ∈ •tj, aih ∈ C(pi), bik ∈ C(tj),” (1)

and

“K(pi) ≥M(pi, aih) + O(pi, tj)(aih, bjk) − I(pi, tj)(aih, bjk), ∀pi ∈ P, ∀pi ∈ tj
•, aih ∈ C(pi), bik ∈ C(tj).” (2)

At state M, if a transition tj ∈ T is enabled, it fires, and the state changes from M to M’,
denoted as M[tj〉M′ and stated as

“∀pi ∈ P, aih ∈ C(pi), bik ∈ C(tj), M′(pi, aih) = M(pi, aih) + O(pi, tj)(aih, bjk) − I(pi, tj)(aih, bjk).” (3)
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A CROPN has multiple circuits due to its high connectivity. Production process circuits
(PPCs) are unique circuits in a CROPN that play a significant influence in its liveness. There
are no idle places in PPCs, which are denoted as PPCs = {e1, e2, . . . , er}, r > 0, where er
is a circuit in PPCs. When an er flows from a node a to multiple nodes and then back to
the originating node a without duplicating any nodes, it said to be an elementary circuit.
An er is non-elementary if it does not return to the initial node a. Moreover, in the er, the
sets transitions must equal the sets of places, such that “|P(er)| = |T(er)|”, where P(er)
represents the number of places in the er and T(er) denotes the number of transitions in
the er, respectively, and the input places of transition tj for an er “(•tj∈ P(er), pi ∈ •tj)” must
be included in the er. If the tj in a circuit er fires and the tokens leave the er, the tokens are
described as the “departing tokens” and the “cycling tokens” when they do not leave a
circuit er, and can be formulated as

pi ∈ P(er), M(er) = ΣM(pi, er) (4)

where M(pi, er) indicates the number of tokens in pi, which enables tj in an er.
It is said that a circuit er

c is an interactive subnet, which contains c PPCs, c > 0, if its
transitions and places are shared with at least one other PPC and its connections are strong.
If a transition tj in er

c (pi ∈ P(er
c) and tj

•∈ (pi
•∩ T(er

c))) fires and the tokens leave the er
c,

where P(er
c) represents the set of places and T(er

c) denotes the set of transitions in an er
c,

the tokens in er
c are known as the “departing tokens”; otherwise, they are said to be the

“cycling tokens”, and can be stated as

pi ∈ P(er
c), M(er

c) = ΣM(pi, er
c) (5)

where M(pi, er
c) denotes the number of tokens in pi, which enables tj in an er

c.
In a CROPN,

(1) if the tj satisfies conditions in Equations (1) and (2), it said to be a controlled transition;
(2) if there is at least one controlled transition tj, then the CROPN is called a controlled net;
(3) if a circuit er satisfies the conditions in Equations (1) and (2), then it is said to be enabled;
(4) if the tj ∈ T(er) is live (deadlock-free), the tj is called live;
(5) the tj is called an input and output transition of an er

c if the tj 6⊂ T(er
c), tj

• ∈ P(er
c), and

•tj ∈ P(er
c).

The following are the conditions necessary for a deadlock-free CROPN:

1. Condition 1 [28]: A CROPN is not deadlock-free if

“Mo(po) ≥ K(er).” (6)

2. Condition 2 [28]: At any state M ∈ R(N, Mo), a circuit er is live if

“S′(er) ≥ 1,” (7)

where R(N, Mo) represents the CROPN reachable states, and S′(er) is the current number of
spaces in an er, and can be expressed as

“S′(er) =K(er) −M(er).” (8)

3. Condition 3: At any state M ∈ R(N, Mo), when Condition 2 is satisfied, transitions in
T(er) and TI(er) are controlled, where TI(er) represents the set of input transitions in an
er (see DFC-Policy in [29]);

4. Condition 4 [28]: At any state M ∈ R(N, Mo), a circuit er
c is deadlock-free if

“S′(er) ≥ 1,” ∀er (9)

and
“η(er

c, M) ≥ 1,” (10)
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where η(er
c, M) denotes the enabled PPCs in an er

c

5. Condition 5 [28]: At any marking M, an er
c is deadlock-free if

(a) any tj ∈ TI(er
c) is controlled, where TI(er

c) denotes the set of input transitions
in the er

c;
(b) before a controlled tj fires, each er ∈ Ven(tj), S′(er) ≥ 2, where Ven(tj) repre-

sents the set of PPCs in the CROPN and the tj denotes the input transition of
these PPCs;

(c) the state M can be modified to M’ after the firing of the tj, such that “η(er
c, M)≥ 1”.

6. Condition 6 [28]: If a CROPN has no PPC, then it is always live.

Based on the above conditions, Algorithm 1 shows the deadlock avoidance algorithm
for a CROPN model.

Algorithm 1 Policy for avoiding deadlock in the CROPN.

Input: The CROPN model;
Output: The controlled CROPN model;

1. Compute PPCs = {e1,e2, . . . , er}, r > 0 of the CROPN model;
2. Compute all reachable markings R (N, Mo) of the CROPN model;
3. if the PPCs 6= ϕ, then
4. for (1 ≤ | PPCs | ≤ r++), do
5. if an er is not an interactive and p ∈ P(er), then
6. for (0 ≤ | R (N, Mo)| ≤ k++), do
7. K(er) = ΣK(p, er);
8. Mk(er) = ΣMw(p, er);
9. S′(er) =K(er) −Mk(er);
10. if S′(er) ≥1, then
11. The er has no deadlock states;
12. else if
13. The er has deadlock states;
14. Implement the DFC-Policy in [29] to avoid deadlock states;
15. end for
16. else if an er is an interactive and p ∈ P(er), then
17. for (0 ≤ | R (N, Mo)| ≤ j++) do
18. K(er) = ΣK(p, er);
19. Mk(er) = ΣMj(p, er);
20. S′(er) =K(er) −Mj(er);
21. if S′(er) ≥ 1 and η(er

c, Mj) ≥1, then
22. The er has no deadlock states;
23. else if
24. The er has deadlock states;
25. Implement the condition 5 to avoid deadlock states;
26. end for
27. end if
28. end for
29. else if
30. The er is deadlock-free based on condition 6;
31. end if
32. Output: A controlled CROPN model
33. End

3. Hybrid CROPNs and IoT
3.1. CROPN Synthesis Based on IoT

In AMSs, the “resource failure” represents a problem with temporal uncertainty. If a
“resource failure” happens, we construct a “recovery subnet” that is capable of repairing
it. The resource is then reusable. Moreover, for AMS to work effectively, reliably, and
safely, “fault detection and treatment” should occur rapidly [21–23,30]. In this section,
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formal definitions are presented in order to build “recovery”, “detection”, and “treatment”
networks for faults in AMS using IoT. Assume the system uses sensors to detect resource
failures. The sensors transmit the data to the internet. Thus, the collected data can be
viewed from any location in the world. Once the data have been sent to the internet, a
computer will download them and use them to find and fix failures. Thus, if one of the
resources fails, online operations can continue with the remaining resources. The value
measured by the sensors is used as a “set point” or “threshold value” to help the system
decide how to control itself. The flowchart and structure of the implemented systems are
depicted in Figure 1.

The “open systems interconnection model” (OSI) application layer communication
protocols, including “dynamic host configuration protocol” (DHCP) and “hypertext transfer
protocol” (HTTP), were implemented for the capture and data processing system using
C++ libraries. “Transmission Control Protocol” is implemented at the transport layer.
The wireless connection between the sensors and the router is performed by employing
the “Wi-Fi libraries” of the capture and data processing system to detect the “service set
identifier” (SSID) and password for the “Wi-Fi protected access” or “wired equivalent
privacy” security protocol, which is linked to the “Wi-Fi shield” [31]. Computer software is
used to transfer all data to the cloud.
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Let N be a CROPN with N = (P, T, C, I, O, K, M0). Let NIoT = ({pi, pSij, pDT, pRT, pX,
pPC}, {tfi, tri, tDT, tRT, tX, tPC}, FIoT, crni) be a “recovery net” of pi based on IoT and MIoTo
represents initial states of the NIoT, and FIoT = {(pi, tfi), (tfi, pSij), (pSij, tDT), (tDT, pDT), (pDT,
tRT),(tRT, pRT), (pRT, tX), (tX, pX), (pX, tPC), (tPC, pPC), (pPC, tri)}, and MIoTo(pi) ≥ 0, where
pSij, j > 0 is the sensor’s system for resource pi failure sensing, pDT represents the “data
capture with wireless shield”, and pRT denotes the router. The sensors pSj transmit the data
to the Internet (represented by pX), namely to the servers of Xively (“a platform designed
for the IoT”). The collected data can be viewed from PC-LabVIEW (represented by pPC).
The transitions tfi, tri, tDT, tRT, tX, and tPC indicate a "failure transition" of the resource pi, a
"recovery transition" of the resource pi, a transition of the data capture, a transition of the
router, a transition of the data capture, the transition of the Xively, and a transition of the
PC/lab view, respectively. An unreliable net is constructed if CROPN (N, Mo) is combined
with the recovery net (NIoT, MIoTo); this is represented by the expression (NU, MUo) = (NIoT,
MIoTo) ‖ (N, Mo), where ‖ represents the integration of (NIoT, MIoTo) and (N, Mo).
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Based on the above notations, Algorithm 2 presents the IoT-based synthesis of CROPN.
Algorithm 2 can immediately observe the change in sensors using the monitoring function
software of the resource failure monitoring system. When a significant failure occurred
in any machine in the system, the sensors’ amplitude also increased significantly. The
software will provide a warning if the resource has a significant failure and the sensor data
exceed the threshold. At this time, the machine tool number with the corresponding red
symbol on the PC-LabVIEW represents an abnormal tool, while the green symbol denotes
the tool is online and operating normally.

Algorithm 2 Constructing CROPN based on IoT.

Input: The controlled CROPN with N = (P, T, C, I, O, K, M0);
Output: The controlled CROPN based on IoT;

1. Insert places pDT, pRT, pX, pPC to the CROPN ;
2. Add transitions tDT, tRT, tX, tPC to the CROPN;
3. Draw arcs (tDT, pDT), (pDT, tRT), (tRT, pRT), (pRT, tX), (tX, pX), (pX, tPC), (tPC, pPC);
4. for (1 ≤ |PR| ≤ i++), do
5. Add a sensor transition tfi of the resource pi, pi ∈ PR;
6. Add a recovery transition tri of the resource pi, pi ∈ PR;
7. for (1≤ ψi ≤ j++), do/* ψi represents the number of sensors in pi*/
8. Add a sensor place psj for resource pi failure sensing;
9. Draw an arc from sensor transition tfi to a sensor psj;
10. Add an arc from sensor psj to a transition tDT;
11. end for
12. Draw an arc from the PC-LabVIEW pPC to a transition tri;
13. Add an arc from a transition tri to the resource pi;
14. end for
15. Output: A controlled CROPN based on IoT;
16. End

3.2. Reliability Design of IoT-CROPN

The proposed unreliable net based on IoT was changed so that the reliability parame-
ters of the AMS could be estimated. Note that both the “unreliable net” and the method for
estimating reliability described in [22,32] were employed to determine the system’s relia-
bility parameters. Let (NU, MUo) be a CROPN based on IoT. Let NRM = ({pup, pdown, puptime,
pdowntime, pfailures}, {tfi, tri, tuptime, tdowntime}, FRM) be a “ reliability model” of CROPN based
on IoT and MRMo represent the initial states of the NRM, and FRM = {(pup, tfi), (tfi, pdown),
(pdown, tri), (tri, pup), (pup, tuptime), (tuptime, puptime), (pdown, tdowntime), (tdowntime, pdowntime)}, and
MRMo(pup) =1, MRMio(pdown) = 0, MRMo(puptime) =0, and MRMo(pdowntime) = 0, where pup is
the “on condition place”, pdown represents the “off condition place”, puptime denotes the on
time counter place, pdowntime represents the downtime counter place, and pfailures denotes
the number of occurred failures in a system. The transitions tuptime and tdowntime represent
an uptime deterministic transition and the downtime deterministic transition of the sys-
tem, respectively. The reliability model of the CROPN based on IoT is constructed if a
CROPN based on IoT (NU, MUo) is combined with the reliability model (NRM, MRMo); this
is represented by the expression (NRU, MRUo) = (NRM, MRMo) ‖ (NU, MUo).

The “failure transition” tfi and “recovery transition” tri of the CROPN based on IoT
presented in Section 3.2 are connected to two places: the “off condition place” pdown and
“on condition place” pup {(pup, tfi), (tfi, pdown), (pdown, tri), (tri, pup)}, and the initial marking of
the pup = 1 and pdown = 0 that define the system’s down and up conditions. When a “failure
transition” tfi is fired, a token is removed from the “pup” and a token is added to the “pdown”.
The uptime and downtime of a system can be easily estimated by introducing a “time
counter” expressed by a “test arc”, a downtime deterministic transition “tdowntime” and an
uptime deterministic transition “tuptime”, and two places a downtime place “pdowntime” and
a uptime place “puptime” with arcs (pup, tuptime), (tuptime, puptime), (pdown, tdowntime), (tdowntime,
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pdowntime), and the initial marking of the place puptime = 0 and the place pdowntime = 0. In
addition, a place “pfailures” is inserted in the net to calculate the number of actual failures
(denoted as “Nfailures”). The parameters of reliability can be determined as follows:

“TMTTF = Tuptime/Nfailures.” (11)

“TMTTR = Tdowntime/Nfailures.” (12)

“As = Tuptime/(Tuptime+ Tdowntime).” (13)

where TMTTF, TMTTR, and As represent the “mean time to failure”, the “mean time to repair”,
and the “availability” of the IoT-based unreliable CROPN, respectively.

3.3. Computational Complexity

The computation time required to execute an algorithm can be considerable, depend-
ing mainly on the complexity of the algorithm. Computer scientists have devised a method
for categorizing algorithms according to the number of operations they must execute; more
operations require more time. Therefore, Theorems 1 and 2 demonstrate the computational
complexity of Algorithms 1 and 2, respectively.

Theorem 1. The computational complexity of Algorithm 1 is polynomial.

Proof. Algorithm 1 is used to show the deadlock avoidance policy for a CROPN model (N,
Mo) (N, Mo) with N = (P, T, C, I, O, K, Mo). Algorithm 1 contains nested loops; let y represent
the number of production process circuits (PPCs) in a CROPN model, i.e., y = |PPCs|. For
each state M ∈ R(N, Mo), the liveness of each PPC will be verified using conditions 1–4;
consequently, we refer to z as the CROPN reachable states, i.e., z = | R(N, Mo)|. The number
of times “nested for loops” are conducted is yz when designing the deadlock avoidance
policy for a CROPN model (N, Mo). Thus, the computational complexity of Algorithm 1 is
O(yz). As the computational complexity of Algorithm 1 is polynomial, it is applicable to
large-scale systems. �

Theorem 2. The computational complexity of Algorithm 2 is polynomial.

Proof. Algorithm 2 is used to design the CROPN-model-based IoT (NU, MUo) with (NU,
MUo) = (NIoT, MIoTo) || (N, Mo), where N = (P, T, C, I, O, K, Mo) and NIoT = ({pi, pSj, pDT, pRT,
pX, pPC }, {tfi, tri, tDT, tRT, tX, tPC}, FIoT, crni, MIoTo). Algorithm 2 has nested loops; let β be the
number of machines (resources places) in a CROPN model, i.e., β = |PR|, where PR is the
set of resource places in (NU, MUo). For each resource place pi, where pi ∈ PR, the sensors
will be connected to it using steps 7–11 of Algorithm 2; thus, we define the parameter λ to
be the number of sensors in resource place pi, and this is constant for all resource places
in (NU, MUo). When designing the CROPN-model-based IoT, the number of “nested for
loops” executed is βλ. Therefore, Algorithm 2 has a computational complexity of O(βλ), is
polynomial, and is appropriate for large-scale systems. �

3.4. Illustrative Example

Consider the AMS [24] presented in Figure 2a to illustrate the CROPN construction.
It consists of one CNC machine m1 (operation resource), one robot r1 (material handling
equipment resource), and a load/unload station. The AMS produces one component type
A. The AMS operation route is presented in Figure 2b.
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Figure 2. (a) Example of an AMS and (b) its processing route.

The developed CROPN is shown in Figure 3. As illustrated in Figure 3, places p1
and pr model machine m1 and robot r1, respectively. Transitions t01A and t10A model the
transporting component A to/from p1, respectively. The initial marking of the developed
CROPN model is Mo(po, p1 pr) = Mo(cp1, 0, ct1), where cp1 indicates that a raw component
A is available at the load/unload station po, ct1 denotes robot r1, which means that the
robot r1 is idle and can transport the raw component A, and Mo(p1) = 0 means that the
machine m1 is free and available to process a raw component A. The component process
route is as follows: a component A is placed at the place po, the robot r1 transports a
component to the machine m1 (p1) via a transition t01A, and if the processing time of the
machine m1 is finished, the robot r1 transports the completed component via a transition
t10A to the place p0. The CROPN’s behavior is as follows: When a transition t01A is enabled,
it fires, and selects, respectively, from places po and pr, one token cp1 and one token ct1. If a
transition t01A is fired, it adds, respectively, to places p1 and pr, one token cp1 and one token ct1.
When the machine’s m1 processing time is finished, a transition t10A is enabled, and it selects,
respectively, from places p1 and pr, one token cp1 and one token ct1. If a transition t10A is fired,
it adds, respectively, a token cp1 and a token ct1 to the po and the pr. According to Algorithm
1, the CROPN has no production process circuits that meet condition 6. Thus, it is live.
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the signal was amplified to meet equipment threshold requirements. Specifically, the data 
from the “acoustic emission sensors” and the “vibration sensors” were amplified to be 
within the range of ±5 V for maximum load, taking into account the equipment’s maxi-
mum permitted range. The signals were screened using a “high-pass filter”, and the “vi-
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Figure 3. The CROPN of the system shown in Figure 2a.

Figure 4 illustrates the CROPN based on an IoT network for the system depicted in
Figure 3 in order to demonstrate how to recognize and treat tool wear. We used a part of a
mill dataset to evaluate the tool status under a single operational condition, as performed
by [33]. This data set was collected through controlled laboratory experiments of milling
machine operations performed using a variety of parameters, including depth of cut, feed
rate, and material type. The collection of data was sampled by three different types of
sensors (“acoustic emission sensor”, “vibration sensor”, and “current sensor”) at various
positions [33].
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In [33], a high-speed data acquisition board with a maximum sampling rate of 100 kHz
was used to transmit the data. The output of the sampled data was utilized by the signal
processing software. Multiple sensor signals were preprocessed. In most instances, the
signal was amplified to meet equipment threshold requirements. Specifically, the data from
the “acoustic emission sensors” and the “vibration sensors” were amplified to be within
the range of ±5 V for maximum load, taking into account the equipment’s maximum
permitted range. The signals were screened using a “high-pass filter”, and the “vibration
sensor” signals were further screened using a “low-pass filter”. The corner frequencies
were selected based on the noise noticed on an “oscilloscope”. On the oscilloscope, 180 Hz
of periodic noise was observed for the vibration signal, matching the third harmonic of
the primary power source. Consequently, 400 Hz was chosen as the corner frequency for
the “low-pass filter”. The 1 kHz “high-pass filter” was selected. The range of the “acoustic
emission sensor” ends at 8 kHz. Thus, observations exceeding this frequency cannot be
attributable to any machining process occurrence. Because it unnecessarily muddies the
signal, it was filtered out.

As seen in Figure 4, the system uses six sensors for tool failure sensing: the current
sensors ps1 and ps2, which, respectively, gauge variations in an alternating current (AC)
and a direct current (DC) spindle motor; the accelerometer sensors ps3 and ps4, which,
respectively, gauge table and spindle vibrations; and the acoustic emission sensors ps5 and
ps6, which, respectively, measure acoustic stress wave effects at the table and spindle for the
diagnosis of a tool break. There are multiple phases to the process of transmitting data to the
Internet. The sensors ps1, ps2, ps3, ps4, ps5, and ps6 first take the readings and send them to
the “Wi-Fi wireless shield” (represented by tDT and pDT). The shield then transfers the data
to a “wireless router” (denoted by tRT and pRT). Integrating objects into a communication
network is an important component of the IoT. In other words, it symbolizes a new method
in which all objects are integrated into the Internet and interact in real time. Practically, it is
built on the integration of sensors, equipment, and “household” items with the internet via
“wired or wireless networks”. The use of this method is achievable, and its implementation
will be cost-effective due to the Internet’s global reach. It will enable the “sensors” to be
connected in “homes”, “workplaces”, and various “automation operations”. Thus, every
object can be linked to a web environment in order to save all of its data and display it
in the actual world. The objective of this research is to introduce the PC-LabVIEW-based
system designed to communicate Internet data to the CROPN. Using a PC equipped with
Labview (represnted by tPC and pPC), the cloud-stored data is downloaded for processing
and transmission to the CROPN. Through the OPC communication standard, the CROPN
is responsible for executing the PC-LabVIEW-programmed fault detection and treatment
control (communication between the CROPN and PC-LabVIEW). Figure 5 shows the
reliability design of the net illustrated in Figure 4.
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The system depicted in Figure 6 is the “graphical user interface” (GUI) that enables
communication with the sensor system and presents the collected information. Conse-
quently, it supervises and monitors the operation. If the sensor data exceed the threshold,
the CROPN executes the system’s action.
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The information gathered by the “sensors” and sent to the Internet is depicted in
Figure 7. It enables the filtering and graphing of data to identify potential patterns or
important events. Regardless of the exact location of the sensors, the data can be accessed
from anywhere on Earth.
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4. Experimental Results

This section uses an existing automated manufacturing system in [21,24] to describe
the implemented sensor system. The system is illustrated in Figure 8. It includes three
machines, m1–m3 (resources for operations); two robots, r1 and r2 (resources for material
handling equipment); and a load/unload station. The AMS produces two component
types, A and B. The experimental conditions and parameters were determined by industry
applicability and manufacturer-recommended settings. The conditions and parameters of
the system were as follows: For machine 1, the cutting speed was set to 200 m/min, which
corresponds to 826 rev/min, the depth of cut was 1.5 mm, and the feed rate was 0.5 mm/rev,
which translates to 413 mm/min. For machine 2, the cutting speed was set to 200 m/min,
the depth of cut was 0.75 mm, and the feed rate was 0.25 mm/rev, which translates to
206.5 mm/min. Cast iron (component A) and stainless steel J45 (component B) were used
as the materials. The collection of data was sampled by three different types of sensors
(“acoustic emission sensor”, “vibration sensor”, and “current sensor”) at various positions.
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The description of places, transitions, and colors in the CROPN model presented in
Figure 9 is as follows: Places p1, p2, pr, and p0 represent a machine m1, a machine m2, a
transportation place for robots r1 and r2, and the loading and unloading station, respectively.
Transitions t01A, t12A, t20A, t01B, t13B, t31B, and t30B model, a transporting of the component
A from the p0 to the machine m1 by robots r1, a transporting of the component A from the
machine m1 to the machine m2 by robots r1, a transporting of the component A from the
machine m2 to the p0 by robots r1, a transporting of the component B from the p0 to the
machine m1 by robots r2, a transporting of the component B from the machine m1 to the
machine m3 by robots r2, a transporting of the component B from the machine m3 to the
machine m1 by robots r2, and a transporting of the component B from the machine m3 to the
p0 by robots r2, respectively. The colored tokens cp1, cp2, ct1, and ct2 represent component
A, a component B, a robot r1, and a robot r2, respectively.

The initial states of the developed CROPN are Mo(po, p1, p2, p3, pr) = Mo({cp1, cp2}, 0,
0, 0, {ct1, ct2}), where cp1 and cp2 indicate, respectively, that raw components A and B are
available at load/unload station po; ct1 and ct2 denote, respectively, robots r1 and r1, which
mean that the robot r1 is idle and can transport the raw component A and the robot r2 is
idle and can transport the raw component B; and Mo(p1) = Mo(p2) = Mo(p3) = 0, which mean
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that the machines m1–m3 are free and available to process raw components. In addition,
the following describes the process routes of the components A and B:

(1) Component A is available in the place po and the robot r1 transports it to the place p1
(m1) via a transition t01A. If the processing time of the m1 is finished, the r1 transports
the component from m1 to the place p2 (m2) via a transition t12A. If the processing time
of the m2 is finished, the robot r1 transports the completed component via a transition
t20A to the place p0.

(2) Component B is available in the place po and the robot r2 transports it to the place p1
(m1) via a transition t01B. If the processing time of the m1 is finished, the r2 transports
the component from to the place p3 (m3) via a transition t13B, when the component has
no defects, the r2 places the completed component via a transition t30B to the place p0;
otherwise the component returns to the place p1 (m1) via a transition t31B, then to a
transition t13B, a place p3, a transition t30B, and a place p0.
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To determine if the developed CROPN is live, reconsider the net presented in Figure 9.
Figure 10 depicts its reachability markings and can be stated as

M0 = ({cp1, cp2}, 0, 0, 0, {ct1, ct2}).

M1 = (cp2, cp1, 0, 0, {ct1, ct2}).

M2 = (cp1, cp2, 0, 0, {ct1, ct2}).

M3 = (cp2, 0, cp1, 0, {ct1, ct2}).

M4 = (cp1, 0, 0, cp2, {ct1, ct2}).

The CROPN consists of a PPC: e1 = {p1, t13B, p3, t31B}. We assume that p1, p2, and p3
each have a capacity of one. The control condition 6 stated in Equation (8) is employed
to determine the number of available spaces in an e1, which are displayed in Table 1. As
illustrated in Table 1, the condition 6 was achieved for all markings displayed in Figure 10,
and the subnet e1 was live. Thus, we can concluded that the developed CROPN was live.
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Table 1. The free spaces in an e1.

State K(e1) = ΣK(pi, e1) M(e1) = ΣMk(pi, e1) S′(e1) = K(e1) −M(e1)

0 2 0 2 ≥ 1
1 2 1 1 ≥ 1
2 2 1 1 ≥ 1
3 2 0 2 ≥ 1
4 2 1 1 ≥ 1

Next, Figure 11 illustrates the IoT-based CROPN and reliability model for the system
depicted in Figure 9 in order to demonstrate how to recognize and treat faults. As seen in
Figure 11, we have the following nomenclature: Places ps11 and ps21 represent the “current
sensors”, which gauge changes in an AC of the spindle motor for machines m1 and m2,
respectively; ps12 and ps22 model the “current sensors”, which gauge changes in a DC of the
spindle motor for machines m1 and m2, respectively; ps13 and ps23 represent accelerometer
sensors that gauge table vibration for machines m1 and m2, respectively; ps14 and ps24
model the “accelerometer sensors” that gauge spindle vibration for machines m1 and m2,
respectively; ps15 and ps25 represent the “acoustic emission sensors” that gauge “acoustic
stress wave” impacts at the table for machines m1 and m2, respectively; ps16 and ps26 model
the “acoustic emission sensors” that gauge “acoustic stress wave” impacts at the spindle for
machines m1 and m2, respectively. In addition, places pDT, pRT, pX, pPC, pup, pdown, puptime,
pdowntime, and pfailures represent the “data capture with wireless shield,” the router, the
transmitting the data from sensors pSij to the Internet, the PC-LabVIEW, the “on condition
place” for machines m1 and m2, the “on condition place” for machines m1 and m2, the “off
condition place” for machines m1 and m2, the “uptime place” for machines m1 and m2,
the “downtime place” for machines m1 and m2, and number of actual failures in machines
m1 and m2, respectively. Finally, transitions tf1, tf2, tr1, tr2, tDT, tRT, tX, tPC, tdowntime, and
tuptime represent the failure of the machine m1, the failure of the machine m2, the recovery of
the machine m1, the recovery of the machine m2, the data capture, the router, the Xively,
the PC-LabVIEW, the downtime deterministic for machines m1 and m2, and the uptime
deterministic for machines m1 and m2, respectively.
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5. Performance Evaluation

Finally, a MATLAB-based GPenSIM tool [20,24,30,34,35] was used to execute veri-
fication and validation of the constructed IoT-based CROPN and the reliability model
presented in Figure 11. The GPenSIM tool was developed in order to simulate and evaluate
AMS. Using MATLAB R2015a, the developed code for the reliability model was executed.
The length of the simulation (denoted as TSimulation) was 450 min. Table 2 provides data on
machine maintenance for the system depicted in Figure 10. Moreover, Table 3 summarizes
the result of the simulation, which contains the total components that go through the time
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of simulation (denoted as NThroughput), the throughput time for component (represented by
TThroughput), which can be expressed as

TThroughput =
TSimulation

NThroughput
, (14)

and the utilization of the machine, that can be formulated as

UMachine =

(
TMachine

TSimulation

)
·100 (15)

where UMachine and TMachine represent the utilization of the machine and the total occupation
time of the machine, respectively.

Table 2. Data of the machine maintenance for the model illustrated in Figure 11.

Machine
Processing Time (min) TMTTF (min) TMTTR (min)

Com. A Com. B Without Sensor
System

With Sensor
System tt1 tt2

m1 5 7 74 Based on
sensor system

10 -
m2 6 84 - 13
m3 - 2 - - -

Table 3. Comparison of the proposed IoT-CROPN shown in Figure 11 with existing methods.

Performance

Throughput (Components) Throughput Time (min/Component) Utilization (%)

Com. A Com. B Com. A Com. B m1 m2 m3

Al-Shayea et al. [30] 26 27 17.31 16.67 76.23 34.98 13.45
Kaid et al. [22] 28 29 16.07 15.52 81.61 37.67 14.35

Al-Ahmari et al. [23] 27 28 16.67 16.07 80.94 36.77 13.90
Alzalab et al. [36] 29 29 15.52 15.52 83.56 38.06 14.19

IoT-CROPN 29 30 15.52 15 84.68 39.19 14.86

As depicted in Figure 12, the results of these experiments were compared with [22,23,30,36],
where the same conditions and parameters were used for all studies. In terms of “through-
put”, “throughput time”, and “utilization”, the results show that the IoT-based CROPN
outperformed the other approaches. Moreover, Table 4 contains the reliability metrics of
the IoT-based CROPN: “uptime”, “downtime”, and “availability”. The availability of the
model was observed to be 88.22%, outperforming two existing approaches.

Table 4. The parameters of the reliability for the IoT-CROPN shown in Figure 11.

Reliability Parameter

Tuptime (min) Tdowntime (min) As (%)

Al-Shayea et al. [30] 347 103 77.11
Kaid et al. [22] 372 78 82.67

Al-Ahmari et al. [23] 384 66 85.53
Alzalab et al. [36] 394 56 87.55

IoT-CROPN 397 53 88.22
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6. Conclusions

In this paper, we emphasize the significance of techniques, tools, and procedures
designed to support automatic threat (i.e., fault, error, and failure) diagnosis and recovery
due to the immense interest and development of IoT-based cyber-physical systems in
AMS, where a certain degree of adaptability is crucial. We propose an IoT-based CROPN
to facilitate self-detection and self-treatment of failures and to obtain essential reliability
measurements in the IoT-based CROPN, such as “uptime”, “downtime”, and “availability”.
Existing system examples are used to demonstrate the effectiveness of the developed
technique. First, the tool wear condition of a CNC milling machine was evaluated using
an IoT-based CROPN that provided a systematic classification of tool wear status. This
technique can lead to more effective monitoring of tool replacement due to a more effective
evaluation of tool wear. First, “sufficient and necessary conditions” were presented for the
liveness of the CROPN. Second, we developed a “fault diagnosis and treatment” method,
which combines the obtained CROPN with IoT to guarantee the reliability of the CROPN.
A simulation tool was used to verify, validate, and analyze the reliability of the IoT-based
CROPN, and the results were compared with those reported in the literature.

The advantages of the IoT-based CROPN are as follows:

(1) Compared to the research in [22,23,30,36], it has been demonstrated to be simpler
in configuration and more effective at overcoming the deadlock problem, “fault
diagnosis and treatment”, and designing CROPN reliability.

(2) It provides a hybrid model that is simultaneously simulated in real time and on the
plant floor.

(3) It was experimentally validated to demonstrate how to evaluate performance and
monitor tool status on various machines.

Future research will address other discrete variables, such as product quality, overall
energy utilization, reconfiguration of an AMS, and product rescheduling. In addition,
operations on an “intelligent vehicle highway system” (IVHS) are highly non-linear and
subject to rapid environmental change. In order to guarantee safe travel for humans,
accurate diagnosis and reliable sensor data are required. Therefore, an internet-of-things-
based CROPN can be employed to improve IVHS capacity and safety on the highway.
Finally, in some occurrences of multiple failures, symptoms may be mutually exclusive. In
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large-scale problems, it may not be as simple to recognize and model these occurrences that
deviate from the default model. Thus, a technique for capturing these occurrences should
be designed.
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