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Abstract: The latest research on disturbance rejection mechanisms has shown active disturbance
rejection control (ADRC) to be an effective controller for uncertainties and nonlinear dynamics
embedded in systems to be controlled. The significance of the ADRC controller is its model-free
nature, as it requires minimal knowledge of the system model. In addition, it can actively estimate
and compensate for the impact of internal and external disturbances present, with the aid of its
crucial subsystem called the extended state observer (ESO). However, ADRC controller design
becomes more challenging owing to different system disturbances, such as output disturbances,
measurement noise, and varying time-delays persistent in the system’s communication channels.
Most disturbance rejection techniques aim to reduce internal perturbations and external disturbances
(input and output disturbance). However, output disturbance rejection with measurement noise
under time-delay control is still a challenging problem. This paper presents a novel predictive
ESO-based ADRC controller for time-delay systems by employing predictive methods to compensate
for the disturbances originating from time delay. The prediction mechanism of the novel (proposed)
controller design is greatly attributed to the extended state predictor observer (ESPO) integrated
with the delay-based ADRC inside the proposed controller method. Thus, the proposed controller
can predict the unknown system dynamics generated during the delay and compensate for these
dynamics via disturbance rejection under time-delay control. This approach uses the optimization
mechanism to determine controller parameters, where the genetic algorithm (GA) is employed with
the integral of time-weighted absolute error (ITAE) as the fitness function. The proposed controller is
validated by controlling second-order systems with time delay. Type 0, Type 1, and Type 2 systems
are considered as the controlled plants, with disturbances (unknown dynamics due to delay and
external disturbance), along with measurement noise present. The proposed controller method is
compared with state-of-the-art methods, such as the modified time-delay-based ADRC method and
the ESPO-based controller method. The findings indicate that the method proposed in this paper
outperforms its existing competitors by compensating for the dynamics during the time delay and
shows robust behaviour, improved disturbance rejection, and a fair extent of resilience to noise.

Keywords: modified time-delay-based ADRC; time-delay control; predictive ESO-based ADRC;
extended state predictor observer (ESPO); disturbance compensation; measurement noise

1. Introduction

In the field of robotics, automation, and teleoperation systems, the presence of time
delay is greatly attributed to the inefficient operation of a system [1–3]. Therefore, various
model-based and model-free control methods have been developed over time. A system’s
parameter uncertainties and unmodelled dynamics affect the former control method. In
contrast, the latter method considers various system uncertainties, such as internal pertur-
bations, external disturbances, unmodelled dynamics, and nonlinearity [4]. One widely
developed model-free controller is active disturbance rejection control (ADRC), whose
model has been modified over time to execute time-delay and disturbance compensations.
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The ADRC controller was first discovered and introduced by Han in 1995 [5,6], fol-
lowed by complete implementations by Gao in 2009 [7,8], wherein the ADRC is shown
independent of the model parameters of the controlled system. The ADRC contains an
important feature called the extended state observer (ESO), which can estimate the system
states and disturbances in real time, followed by the total disturbance compensation via
the feedback loop [6]. In this way, ADRC rejects different forms of disturbances, such as
parameter perturbations, unknown system dynamics, and internal or external disturbances
for both linear and nonlinear systems [7,9]. Over time, the ADRC controller having an
n-order design has been used for n-state systems (for n ≥ 1) [10–12]. The importance of
ADRC design has been highlighted in scenarios involving practical applications and areas
of academic research [13–17]. Several industrial applications, such as nuclear reactors,
thermal power plants, medical practice, speed control processes, uncertain robotic systems,
and teleoperation applications, were successfully controlled by the ADRC.

The presence of time delay and its impacts on real-world systems are inevitable. For
example, time delay negatively affects the control performance in various aspects, such
as reduced damping ratio for a closed-loop system showing a more oscillatory response,
increased percentage overshoot, and shifting the system closer to instability in the closed-
loop response [18]. In addition, the presence of these perturbations, as mentioned earlier,
often complicates the control system design. Thus, proposing a controller that provides
a decent control performance in the vicinity of time-delay effects and other uncertainties
has been a major global attraction for scholars. With this in mind, ADRC time-delay
control has evolved and developed recently to minimize the detrimental effects of time
delay and time-varying time-delay scenarios while keeping the disturbance compensation
mechanism [7,19–21].

1.1. Related ADRC Works

This subsection briefly explains ADRC-related works on time-delay compensation
and disturbance compensation mechanisms by both non-predictive and predictive-based
methods found in recent literature.

Different predictors were computed using both the input and output of the controlled
object, and their output was fed to the ESO of the ADRC to form a predictive ADRC. Here
the predictive ESO of the ADRC is designed by treating the disturbances and parametric
uncertainties associated with the processes as an extended state variable to be estimated in
real time using ESO. In [22], delay-less estimation of total disturbance is attained, maintain-
ing its stability margin and a better response than normal ESO. In [23], the combination of
a new Smith predictor (SP) with linear ADRC is proposed to improve the time synchro-
nization between the two input signals of the linear ESO. In [24], a predictor is designed to
obtain system state estimation and mismatched disturbance estimation values. In addition,
the output predictor is used to compensate for the influences of measurement delay and
sampling of output. In addition, more predictive ESO designs include consensus protocols
with delays and disturbances, designs based on the repetitive controller for rejection of
periodic signals under long input delays, and discrete control to prove the MIMO system’s
stability, as seen in [25–27].

Further, other predictive ADRC methods evolved include the Smith predictor-based
ADRC (SP-ADRC) [28], predictor observer/extended state predictor observer-based ADRC
(PO/ ESPO ADRC) [29], polynomial-based predictive ADRC (PP-ADRC) [30], predictive–
generalized ADRC [31,32], and internal model control (IMC) interpretation of several linear
ADRCs [33], to name a few. These methods proposed various strategies to deal with
time delay and uncertainties. In [28], a Smith predictor (SP) was introduced before the
ESO. However, this is heavily dependent on a nominal stable plant model, resulting in
oscillations due to model mismatch, which restricts the target tracking error convergence
rate of SP-ADRC [34]. On the other hand, PO-ADRC achieves fast convergence of tracking
error and stability, independent of time delay. Even though this method effectively rejects
uncertain dynamics and noise associated with sensor delay, further theoretical analysis
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is required to determine its optimal parameters [20,29]. Additionally, IMC configuration
was used to tune the modified PP-ADRC [33], where the time-delay term is approximated
by a polynomial using Taylor expansion seen in [7] or Pade approximation seen in [30].
Despite being straightforward, the IMC-related PP-ADRC structure needs improvement in
disturbance rejection and tracking performance. It was shown that PO-ADRC has a better
delay compensation mechanism than the SP-ADRC and DD-ADRC structures. However,
its parameters must be carefully tuned to achieve an acceptable performance.

Furthermore, some popular non-predictive ADRC time-delay-related works include
delay-designed ADRC (DD-ADRC) and its IMC structure [33,35]. To obtain synchronous
ESO input signals for DD-ADRC, the control signal was delayed to match the time delay in
the plant [35]. This strengthens stability and time-delay compensation, but the performance
depends on how big the time-delay and output disturbance intensity is [20]. Some other
methods include sliding mode control-based ADRC [36], ADRC for uncertain nonlinear
time-delay systems where the upper bound of ESO gains depends on small input delay
values [37], and ADRC with modified twice optimal control (ADRC-MTOC) [38]. The
ADRC-MTOC design showed strong disturbance rejection capacity and fast recovery
time [38]. However, future work demands performance improvement in the initial stages
of response and stable output disturbance rejection.

1.2. Novelty and Contribution of This Paper

In addition to the time delay, disturbances in the form of uncertainties and unknown
dynamics have a significant impact on the controller design. To achieve stability and
effective controller operation, time-delay compensation and disturbance compensation are
thus tightly related. Some of the related ADRC works have certain drawbacks. To begin
with, several ADRC time-delay-based techniques that delayed the control signal neglected
the dynamics that occurred during the delay. In addition, much of the existing research
primarily considers the input delay. However, the presence of output system delay with
measurement noise is receiving more attention. Further, while there is a physical difference
between time-delay (lag) and prediction (lead), the latter is difficult to achieve. Prediction
requires more room for improvement than delay because it is more challenging to imple-
ment. Most disturbance rejection methods intend to suppress both internal (initial states
and parameter perturbations) and external disturbances (input and output disturbance).
However, output disturbance rejection under time-delay control is still a challenging issue.

As a result, the objective of the paper is to construct a novel predictive-based ADRC
controller design constituting a model-free time-delay-based ADRC approach cascaded
with a model-based ESPO (extended state predictor observer) method. The novelty of
this proposed controller design (called the predictive ESO-based ADRC controller) is
attributed to its predictive feature; that is, it predicts the unknown system dynamics
generated during the delay and compensates them as a disturbance under time-delay
control. Firstly, this disturbance compensation is achieved by feeding the unknown system
dynamics (due to the delay) to the ESPO inside the novel integrated (proposed) controller
design. Secondly, the predicted plant output generated by the ESPO is fed to the novel
ESO of the proposed controller. Lastly, the total predicted disturbance (inclusive of all
uncertainties, such as unknown dynamics due to delay, external disturbance, and noise)
obtained from one of the two ESPO outputs is subtracted from the ADRC control signal
to help with the complete disturbance compensation under time-delay control. To the
best of the authors’ knowledge, the proposed design that follows the predictive idea for
both time-delay and disturbance compensation has not been discussed in previous ADRC
works. Therefore, the performance of the proposed methodology is compared with the
ESPO and the modified time-delay-based ADRC methods. The experiments conducted for
this work are categorized as separate case studies that address the various Type 0, Type
1, and Type 2 second-order control systems. Experiment results show that the proposed
controller method improves the stability of transient response, efficiently compensates
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for disturbances and measurement noise, shows adequate robustness, and attains quick
recovery from disturbance effect under time delay.

The remainder of the paper is structured as follows: Section 2 presents the prelimi-
nary concepts used to build the proposed controller design. Section 3 explains the novel
(proposed) controller design and algorithm obtained by hybridizing delay-based ADRC
and ESPO methods. Results of the comparative study for different types of second-order
systems are highlighted in Section 4. The results verifying the validity of the proposed
controller configuration are discussed in Section 5. Finally, the conclusion and future works
are put forth in Section 6.

2. Preliminary Concepts Used in the Proposed Controller Design

This section describes two different controller algorithms and some predominant
mathematical concepts used together to build the proposed controller design introduced in
Section 3 of this article.

2.1. Conventional ADRC

A typical ADRC executes the disturbance rejection mechanism using its model-free
method that requires little to no prior knowledge of the object to be controlled. An ADRC
controller’s order often corresponds to the relative order of the plant or system to be
controlled. Any system with an order greater than two can be analyzed using its second-
order approximation [39]. Figure 1 presents a standard second-order ADRC structure
composed of the tracking differentiator (TD), the ESO, and the nonlinear state error feedback
(NLSEF) controller. The controlled object seen here is a second-order system or a second-
order approximation of a higher-order system.
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Figure 1. Conventional second-order ADRC structure for a given system.

The model of the system or object to be controlled (seen in Figure 1) is a second-order
single-input–single-output (SISO) system and is represented by Equation (1) [40]:

.
x1 = x2
.

x2 = f (x1, x2, w(t), t) + bu
y = x1

(1)

where x, y, w(t), b, and u are the systems states, output variable, external disturbance,
magnification factor, and control variable, respectively. The total internal and external
disturbances function is denoted by f (x1, x2, w(t), t). The structural components and their
algorithms of a conventional second-order ADRC design seen in Figure 1 are as follows:

(1) Tracking differentiator (TD): When the reference signal given by v(t) passes through
the TD, it is softened to signal v1(t), and a differentiated signal v2(t) is obtained, as seen in
Figure 1. In this way, the TD provides a desired transient profile and an improved response
of the reference input signal [7]. Equations (2) and (3) provide the desired transient profile
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that the output of the plant (controlled object) can adequately follow. Continuous-time
representation of the TD is given by Equation (2):{ .

v1 = v2
.
v2 = −rsign

(
v1 − v(t) + v2|v2|

2r

) (2)

where v(t) is the control objective, v1 is the desired trajectory, and v2 is its derivative.
Parameter r is chosen to accelerate or decelerate the transient profile. However, time-
optimal solution in continuous time (

.
v2) can cause significant numerical inaccuracies in a

discrete-time implementation. This discrete-time implementation is given by Equation (3):{
v1(k + 1) = v1(k) + h · v2

v2(k + 1) = v2(k) + h · fhan(v1(k)− v(k), v2(k), r0, h)
(3)

Hence, to address the numerical error in discrete time, the term fhan(v1(k)− v(k), v2(k), r0, h)
is provided in Equation (3), where the two important TD controller parameters are r0 and h,
which provide the speed of the transition process and the simulation step, respectively. For
the sake of simplicity, the discrete time is ignored, so v, v1, and v2 instead of v(k), v1(k),
and v2(k) are used in the rest of the paper. The remaining variables r0 and h are treated as
they are.

By setting r0 to r and for a given h, the fastest convergence from v1 to v with no over-
shoot is obtained by the nonlinear function, “fhan(v1 − v, v2, r0, h)” in Equation (4). This
time-optimal solution is calculated step-by-step using the set of relations in Equation (4) [41]:

d = r0h2

a0 = hv2

y = v1 − v + a0

a1 =
√

d(d + 8|y|)
a2 = a0 +

[
sign(y)(a1−d)

2

]
sy = [sign(y+d)−sign(y−d)]

2
a = (a0 + y− a2)sy + a2

sa =
[sign(a+d)−sign(a−d)]

2
fhan = −r0

( a
d − sign(a)

)
sa − r0 sign(a)

(4)

(2) Nonlinear state error feedback (NLSEF) controller: The NLSEF controller improves
the proportional–integral–derivative (PID) controller’s control law which has long been
a standard in the industry, mainly because of its ability to handle state errors in the past,
present, and future times. However, the PID fails to update its parameters in real time
to achieve the required performance. Therefore, the nonlinear functions are proposed in
Equation (5) [7]:  fal(e, α, ε) =

{ e
d1−α , |e| ≤ ε

|e|∝sign(e), |e| > ε

fhan(v1 − v, v2, r, h1)

(5)

where α is the tuning parameter and e is the error and must attain zero quickly for α < 1. r
is the control gain, and h1 is the precision factor. The “fhan” function is computed the same
way as Equation (4), containing the NLSEF parameters r and h1.

The NLSEF receives the difference between the signals generated from the TD and
the estimated system states (z1 and z2 in Figure 1) obtained from the ESO, to generate the
control variable (uo in Figure 1). Thus, inputs to the NLSEF controller are the difference
signals e1 and e2 as seen in Figure 1. The disturbance w(t) is then compensated by the
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estimated total disturbance (z3 in Figure 1) from the control variable (uo) in real time. Thus,
the NLSEF is given by the following equations in Equation (6):

e1 = v1 − z1

e2 = v2 − z2

uo = −fhan(e1, c · e2, r, h1)

(6)

where c is the damping coefficient and uo is the control volume or the output of the
NLSEF controller.

Controller parameters c, r, and h1 can be varied from system to system. Therefore,
the actual control variable “u” is generated and applied to the controlled object, as seen
in Figure 1. Because the nonlinear controller (NLSEF) can achieve zero steady-state error
(SSE) in a finite amount of time, it is employed instead of a linear controller (LSEF), which
is why the NLSEF outperforms the PID controller.

(3) Extended state observer (ESO): The ESO is a crucial subsystem of the ADRC, with
minimum dependence on the system details. It estimates the system state variables (z1 and
z2 in Figure 1) and observes the total disturbance (z3 in Figure 1) in real time, as shown
in Equation (7) [42]. The total disturbance includes uncertainties such as unmodelled
dynamics, internal disturbances (internal perturbations), and external disturbances.

e = z1 − y
.
z1 = z2 − β01e
.
z2 = z3 − β02fe + b0u
.
z3 = −β03fe1

(7)

where β01, β02 and β03 are ESO design parameters (also called observer gains) and are
related to the ESO bandwidth [7]. These ESO parameters have no fixed values and can
be selected differently as per a specific problem. In [7], various relations in terms of ESO
simulation step size (hESO) have been provided to obtain β01, β02, and β03. u is the input,
y is the controlled object output, and b0 is the gain factor, as seen in Figure 1. Nonlinear
feedback functions “fe” and “fe1” are indicated by Equation (8):{

fe = fal(e, 0.5, hESO)

fe1 = fal(e, 0.25, hESO)
(8)

From Figure 1, one obtains the control law of the ADRC seen in Equation (9):

u = (u0 − z3g0)b0Dc (9)

where g0 and b0Dc are the gain factor and disturbance compensation factor of the ADRC,
respectively. When the ADRC controls an object, the gain factors b0, g0, and b0Dc are tuned
to obtain an acceptable and stable transient response.

However, though the conventional ADRC (Figure 1) extends to a new state variable (z3)
to actively estimate and compensate for disturbances, it does not have the characteristics of
compensating for these uncertainties in the presence of time delay.

In [19,20,33,35], the ADRC structure considered is commonly modified from the
conventional ADRC, as illustrated in Figure 2. This modified structure comprises a time-
delay block connected to one of the inputs of ESO (after the b0Dc block seen in Figure 2). This
will synchronize the signals entering the observer and enable it to effectively estimate the
delayed system states and disturbances as the system’s output is already delayed according
to the system dynamic. Thus, this feature can accommodate time-delay compensation [35].

In this paper, the ADRC method used for experimentations and comparisons in
Section 4 is the modified time-delay-based ADRC shown in Figure 2. Time-delay blocks
are added, one at the input fed to the ESO subsystem and the other at the output of the
controlled object. The former delay block constitutes the delay to the input signal, whereas
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the latter delay block (after the controlled object) is called the output delay and constitutes
the system delay.

For the sake of simplicity, in this paper, the system to be controlled in Figure 2 is
a linear controlled object, which is a second-order system represented by its state-space
model given in Equation (10):

.
x(t) = Ax(t) + B(u(t) + δ(x(t), t))
y(t) = CTx(t− τ) + n(t), t ≥ 0

x(0) = [0 0]T
(10)

where x(t) = [x1(t), x2(t)]
T is the system state vector, n(t) is the measurement noise, u(t)

is the control input, y(t) is the measured delayed output, and τ is the time delay. δ(x(t), t)
and n(t) are the total disturbance and measurement noise acting on the system. δ(x(t), t)
includes unknown internal system dynamics due to delay, external disturbances, and
measurement noise. Matrices A, B, and C are the state transition matrix, input matrix, and
output matrix of the plant, respectively.
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Figure 2. Modified time-delay-based ADRC structure for a given system.

2.2. ESPO-Based Controller

The ESPO-based controller is model-based contrary to the ADRC, which is a model-
free controller. This controller shows a decent disturbance estimation and rejection for
systems with sensor delay (measurement delay) by constructing an extended state for the
predictor observer (PO) [29]. In an ESPO-based controller, the object to be controlled is a
delayed system with uncertainties given in Equation (10).

The ESPO [29] heavily relies on the system model. When the system model is changed,
the controller parameter “K” is recalculated using the full state feedback pole assignment
method, such that

(
A− BKT), for the system in Equation (10), provides a desired transient

response (small rise time, zero SSE, less overshoot) at the desired eigenvalues. The ideal
trajectory x∗(t) follows the signal x(t) and is given by Equation (11):{ .

x∗(t) = Ax∗(t)− BKT(x∗(t)− r(t))
x∗(t0) = x(t0), t ∈ [t0, ∞)

(11)

where t0 is the initial time and r(t) is the reference signal of x(t).
The estimation and compensation of the total system disturbances by the extended

state of the predictor observer are pictorially represented in Figure 3.
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The ESPO is designed using Equations (12)–(14):[ .
x̂(t)
.
δ̂(t)

]
= Ae

[
x̂ (t)
δ̂ (t)

]
+ eAeτ Le(y(t)− ŷ(t)) + Beu(t) (12)

ŷ (t) = CT
e

[
x̂ (t− τ)
δ̂(t− τ)

]
+ CT

e

∫ t

t−τ
eAe(t−s)Le(y(s)− ŷ(s))ds (13)

where 
Ae =

[
A B
0 0

]
, Be =

[
B
0

]
Ce =

[
C
0

]
, Le =

 3ωe
3ω2

e
ω3

e

 (14)

and the estimation of x(t) and δ(x(t), t) is given as x̂ (t) and δ̂ (t), respectively. eAeτ denotes
the state transition matrix. The choice of the parameter matrix Le is explained in Lemma 1.

Lemma 1: Let ωe be the ESPO bandwidth and the parameter vectorLeε R (n+1)×1 be the observer
gain. The parameter Le is tuned such that the matrix ALe in Equation (15) is Hurwitz stable.

ALe , Ae − LeCT
e (15)

The individual ESPO gains li (for i = 1,2,3) are selected such that Le satisfies Equation (15);
that is, the eigenvalues of the matrix (Ae− LeCT

e ) when placed at -ωe give values of l1 = 3ωe,
l2 = 3ω2

e , and l3 = ω3
e . This selection is performed as per the scaling and bandwidth

parameterization technique seen in [43] and the pole placement technique [44]. Further, [45]
gives an algorithm explaining the calculation of Le �.

The control law for the ESPO is given in Equation (16):

u(t) = −KT(x̂(t)− r(t))− δ̂(t) (16)

From the above equations, the disturbance δ(t) is replaced by its estimate δ̂ (t) that
contains disturbances and other unknown dynamics. The Ae and Be matrices indicate the
variation of disturbance over time, eAeτ Le(y(t)− ŷ(t)), as per Equations (12)–(14). Expres-
sion y(t)− ŷ(t) represents the estimation error. Thus, ESPO estimates total disturbance in
a time-delayed system and compensates for it in real time.

2.3. Integral of Time-Weighted Absolute Error (ITAE) Criterion

The ITAE criterion [46] given in Equation (17) is a commonly used performance index
that gives the controller parameters with a reduced system error. The controller tuned in
this context refers to the modified time-delay ADRC design in Figure 2. The parameters of
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the delay-based ADRC were tuned using a genetic algorithm (GA) to minimize the ITAE
(objective cost function).

ITAE =
∫ ∞

0
t|e(t)|dt (17)

where t is the time and e(t) denotes the difference between the reference signal and con-
trolled output.

2.4. Optimizing the Controller Parameters using GA

The GA is an intelligent optimization algorithm that is used to find an optimal solution
for a given problem by maximizing or minimizing a particular cost function. At every iteration,
GA calculates the best f (x) value and the mean f (x) value of the specified fitness function,
and these values are targeted to be minimized in each successive generation [47,48]. In
this paper, GA optimization is performed offline to find the optimal parameters of the
delay-based ADRC shown in Figure 2. The steps followed during the GA optimization are
presented in a flowchart shown in Figure 4.
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3. Proposed Predictive ESO-based Active Disturbance Rejection Control Design

The novel controller design (called the predictive ESO-based ADRC) proposed in
this paper combines the advantages of both the ADRC and ESPO-based controllers, as
shown in Figure 5. In the proposed method, ADRC contributes to the transient profile
generation, the nonlinear state error feedback control, and the total disturbance estimation
and compensation. To be more specific, the ADRC uses TD for fast input tracking, and in
turn, the outputs of TD are fed to the NLSEF, which is used to reduce the SSE significantly
and to reach a zero steady state faster in a finite time.

Time-delay blocks are present in the proposed method. As seen in Figure 5, one is at
the inputs of the ESO, and the other is at the plant’s output.
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The ESPO-based controller’s operation seen in Figure 5 is designed using the set of
Equations (11)–(14). ESPO estimates the total disturbance which is contributed by all factors
(unknown dynamics due to delay, external disturbance, and noise). The estimated total
disturbance given by δ̂ (t) is compensated by removing it from the control input signal
u(t), seen in Equation (19) and Figure 5. This δ̂ (t) can be obtained from Equation (12) and
is inclusive of the external disturbances and unknown system dynamics generated during
the delay. In addition, from Figure 5, the variation of δ̂ (t) depends on the estimation error
that is indicated by the difference between plant output and the ESPO predicted output,
“y(t)− ŷ(t)”.

The delayed control input u(t) and the ESPO predicted output ŷ (t) are fed to the ESO.
In the proposed controller design, instead of feeding the plant output y(t) to the ADRC’s
ESO (which is not available due to the time-delay and output disturbances present), the
predicted output ŷ (t) from the ESPO is fed to the ESO.

The system or object to be controlled by the proposed controller is specified in
Equation (18): { .

x(t) = Ax(t) + B(uP(t) + δ1(x(t), t))
y(t) = CTx(t− τ) + δ2(x(t), t) + n(t)

(18)

where x(t) = [x1(t), x2(t)]
T , uP(t), y(t), and τ are the system state vector, control input,

measured output, and time delay, respectively. Matrices, A, B, and C are the state transition
matrix, input matrix, and output matrix of the plant. δ1(x(t), t) and δ2(x(t), t) correspond
to the input and output disturbances present in the system. The measurement noise n(t) in
Figure 5 is a sequence of the white noise signal.

The control law uP(t) for the proposed controller design is given by Equation (19):
uP(t) = u(t)− δ̂ (t)
uP(t) = (u0(t)− z3g0)b0Dc − δ̂ (t)
uP(t) = (−fhan(e1, c · e2, r, h1)− z3g0)b0Dc − δ̂ (t)

(19)

The novel ESO algorithm of the proposed controller is given in Equation (20):
e = z1 − ŷ
.
z1 = z2 − β01e
.
z2 = z3 − β02fe + b0u(t− τ)
.
z3 = −β03fe1

(20)

where g0 and b0 are the gain factors and b0Dc is the disturbance compensation factor. β01,
β02, and β03 are the ESO gains. r and h1 are control gain and precision factors of the NLSEF.
Functions fhan, fe, and fe1 are the nonlinear functions given in Equations (5) and (8). The
remaining parameters used in Equations (19) and (20) are defined in Section 2.1 (Conven-
tional ADRC) of this paper.

The objects or systems with delay to be controlled by the proposed controller design
include the second-order Type 0, Type 1, and Type 2 systems. The transfer functions and
state-space representations for all the systems are given in Section 4. It was observed that
the Type 1 and Type 2 systems are more challenging to control because their dynamics are
usually more aggressive than those of the Type 0 systems. Thus, in the experiments for
the Type 0 system, a GA algorithm could optimize six parameters (c, h1, r, g0, b0, and b0Dc)
of the modified time-delay-based ADRC structure seen in Figure 2. However, only three
parameters (c, h1, and r) could be optimized for Type 1 and Type 2 systems, with the other
three parameters (g0, b0, and b0Dc) being manually determined.

The control strategy of the novel proposed controller method, obtained by cascading
the delay-based ADRC with ESPO-based controllers, is shown in an algorithmic procedure
shown in Algorithm 1.
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Algorithm 1. Control Design of the Proposed Predictive ESO-based ADRC Controller

1:

Design the controller NLSEF of the modified time-delay-based ADRC structure: Use GA
to find the optimal damping coefficient c, the precision factor h1, and the control gain r
that minimizes the ITAE between the output response and the desired response. An
automatic stop condition is incorporated. The optimization is conducted using the GA
for Type 0 system given bounds on c, h1, r, g0, b0, and b0Dc for a time-delay τ, whereas
the optimization is conducted using the GA for Type 1 and Type 2 systems given
bounds on c, h1, and r for a time-delay τ. β01, β02, β03, and hESO for the ESO are kept
constant. h and r0 for TD are kept constant.

2:
if c, h1, r, g0, b0, or b0Dc (for Type 0) value or c, h1, or r (for Type 1 and Type 2 systems)
value falls on the bound after an optimization run
then

3: bounds are changed and the ADRC is re-optimized.

4: Else

5:
Save the best c, h1, r, g0, b0, and b0Dc (for Type 0) or c, h1, and r (for Type 1 and

Type 2 systems).

6: end if

7:
Design the observer ESPO: Use Equations (11)–(14). The bandwidth ωe is tuned to
obtain the best disturbance compensation performance, given the input disturbances
δ1(t) and output disturbance δ2(t).

8: Obtain the control law (uP(t)) of the proposed controller design using Equation (19).

9:

Simulate, with time-delay τ, the control of the plant by the proposed predictive
ESO-based ADRC: The aim is to assess the proposed design’s controller performance for
disturbance compensation in the presence of time delay. Keep the constants of ESPO
found in line 7, delay-based ADRC constants, and NLSEF parameters found through the
optimization in line 2 of Algorithm 1, with the input disturbances δ1(t) and output
disturbance δ2(t), and measurement noise n(t).

4. Experiments and Results

This section presents the results of experiments wherein the proposed controller
(predictive ESO-based ADRC) is compared with the modified delay-based ADRC and
ESPO-based controller methods. First, the different controllers are simulated with time-
delay τ, to control each plant type (Type 0, Type 1, and Type 2 system) individually. This is
followed by assessing the respective controller performances for disturbance compensation
in presence of delay, given the input disturbances δ1(t), output disturbance δ2(t), and noise
n(t), because different system types challenge a controller differently.

As shown in Figure 5, the proposed predictive ESO-based ADRC design is composed of
two control methods integrated: (1) modified time-delay-based ADRC structure and (2) ESPO-
based controller. The choice of parameters for each is explained in the following text:

(1) Modified time-delay-based ADRC:

The modified ADRC system given in Figure 2 was optimized using GA, as explained in
line 1 of Algorithm 1. The GA optimization was performed offline, using the Optimization
Tool Window in MATLAB version R2020a. To perform GA optimization to find an optimal
parameter set of the modified delay-based ADRC structure (in Figure 2), the following
stopping criteria were used: number of generations = 100 times the number of variables,
stall generation = 50, function tolerance = 1 × 10−6, and constraint tolerance = 1 × 10−3.
When optimizing, the stop time of all Simulink models was set to 80 s.

Table 1 lists the ADRC parameter values k = [c, h1, r, g0, b0, b0Dc] that were optimized
for the Type 0 system. For Type 1 and Type 2 systems, three of the ADRC parameter values
k = [c, h1, r] were optimized. The remaining ADRC values were kept fixed: r0 = 10 and
h = 0.03 for the TD subsystem and β01 = 100, β02 = 300, β03 = 1000, and hESO = 0.01 for the
ESO subsystem were taken from [40]. ESO gains (β01, β02, and β03) have no predetermined
values and can be chosen in many ways depending on a certain problem. For instance, to
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calculate the ESO gains, different relations in connection with hESO (ESO step size) have
been given in [7]. Therefore, for an ADRC, the important parameters to be tuned are the
damping coefficient (c, to be regulated around unity), precision coefficient (h1, is usually at
least 4 times the sampling period h), amplification coefficient (r), and gain/compensation
factors (b0) [7,40]. Hence, these parameters were optimized to obtain an appropriate
performance in terms of transient response, and steady state, for the system concerned.

Further, g0 and b0Dc are the gain factor and disturbance compensation factor, respec-
tively. When the ADRC controls the Type 0 system, the gain factors b0, g0, and b0Dc are also
tuned to obtain an acceptable and stable transient response. However, for Type 1 and Type
2 systems, the gain factors were set to unity. It is important to note that Type 1 and Type
2 systems are more difficult to control as their dynamics are more aggressive; thus, more
parameters could be controlled (optimized) for the Type 0 system.

Table 1. ADRC parameter values of the proposed controller design.

Delay-Based ADRC c h1 r g0 b0 b0Dc

Type 0 System 0.7645 1.0831 56.0350 0.3097 3.1303 1.0314

Type 1 System 1.0710 0.9340 41.5480 1.0000 1.0000 1.0000

Type 2 System 0.8990 2.0216 62.9887 1.0000 1.0000 1.0000

(2) ESPO-based controller:

ESPO was designed for each system using Equations (11)–(14). The reference signal
r(t) seen in Equation (16) is set to [1 0] T . Each system has specific K values, with which
the desired real eigenvalues satisfying the transient response and SSE are obtained. The
following K values were obtained for each system type, at which the fastest stable response
with no overshoot and having a unit gain was obtained: K = [49/72 −1/3] for the
Type 0 system (seen in Equations (23) and (24)), K = [1/4 0] for the Type 1 system
(given in Equations (25) and (26)), and K = [4 4] for the Type 2 system (provided in
Equations (27) and (28)).

To agree with the ESPO-based controller’s [29] method for comparison, the ESPO
bandwidth (ωe = 5) and time delay (τ = 0.1 s) for the proposed controller are kept the same
in Sections 4.1–4.4. When studying the time-delay effect, τ is varied in Section 4.5. The
state-space model of each system is represented using the form in Equation (18).

In the proposed controller structure (proposed predictive ESO-based ADRC) seen
in Figure 5, it must be noted that the reference input signal v(t) to TD of ADRC was a
step signal with a final unity value applied at t = 0 s. The input disturbance δ1(t) is
added after 20 s, while output disturbance δ2(t) starts from the 40th second. The input
disturbance δ1(x(t), t) and step output disturbance δ2(x(t), t)) seen in Equation (18) are
given by Equations (21) and (22), respectively. In addition, the measurement noise n(t) is a
sequence of white noise signals having a standard deviation of 0.005, as seen in [29].

C1 : δ1(x(t), t) = 0
C2 : δ1(x(t), t) = 0.4 sin(x1)− 0.1u + 0.2 sin

(
π
8t
)

C3 : δ1(x(t), t) = −0.2ecos x2 + 0.1u + 0.2 sign
(
sin
(

π
8t
))

C4 : δ1(x(t), t) = 0.1x2 + min
{

1, max
{

t−5
5,0

}}
C5 : δ1(x(t), t) = 0.3 step(t− θ)

(21)

δ2(x(t), t)) = 0.3step(t− θ) (22)
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In this study, different performance criteria have been tabulated, including the ITAE
corresponding to the durations in which input disturbance (at 20 s) and step output
disturbance (at 40 s) are applied. Additionally, the transient response characteristics are
also displayed, including the overshoot at startup from reference (OS, %), rise time (Tr, s),
the maximum deviation from the reference due to input disturbance (Dm,i), the maximum
drop from the reference due to output disturbance (dm,o), and the adjustment time to
return to reference after output disturbance is applied (Ta, s). Furthermore, discussions
on disturbance compensation capability (depression width) and suppression of initial
overshoot due to time delay present are also provided. Thus, these transient response
characteristics will serve as a measure for interpreting the transparency of these systems
controlled by the proposed method.

4.1. Experiment 1: Second-Order Type 0 System

The Type 0 system studied in this experiment is represented by its transfer function
and state-space model in Equations (23) and (24), respectively.

GType0(s) =
2

s2 + 3s + 2
e−τs ; τ = 0.1s (23)


.
x = Ax + Bu
y = Cx(t− τ)

where A =

[
−3 1
−2 0

]
, B =

[
0
2

]
, C = [1 0 ]

(24)

The responses for the controlled second-order Type 0 system are shown in Figures 6 and 7,
respectively. For the cases of input disturbance only and both input disturbance and step
output disturbance included, under time-delay control, performance index criteria are
summarized in Tables 2 and 3.

The following key observations are inferred from Tables 2 and 3 for the performance
index values for the Type 0 system under various scenarios:

1. The values of the maximum drop from reference (dm,o) due to output disturbance
are similar for all methods, but the adjustment time needed to return to reference
(Ta) is small for the proposed design compared with the delay-based ADRC (refer
to Table 3). For the ESPO method, the response curve does not attain zero SSE after
output disturbance compensation (refer to Figure 7a,d,e).

2. As shown in Table 2, in the case of both disturbances present, i.e., input (C2) and step
output disturbances, the proposed system gives the smallest ITAE values of 3.4517
(from 0 s to 40 s), 19.0940 (from 40 s to 80 s), and 22.5330 (from 0 s to 80 s), whereas
the corresponding ITAE values for ADRC and ESPO are relatively higher.

3. A comparison of the rise time (Tr) values in Table 3 shows that the considered ADRC
and the proposed method had similar readings, unlike high rise times such as 3.0323 s
and 2.5485 s as seen for the ESPO design. Further, for the proposed method, in
Figure 7b,d, the overshoot (OS) at the beginning of the response curve due to the
time delay present is reduced by about 1% and 3.6% when compared to that of the
delay-based ADRC.

4. Thus, it is shown from Figures 6 and 7 that the proposed method presented for the
Type 0 system performed more robustly when compensating both the input and step
output disturbances with noise in the presence of time delay, as compared to the
modified time-delay-based ADRC and ESPO methods.
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bance present; (d) only C4 input disturbance present; (e) only C5 input disturbance present.
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Figure 7. Responses for the different input disturbances and step output disturbance with noise for the
Type 0 system: (a) C1 of δ1(x(t), t)), δ2(x(t), t)), and noise present; (b) C2 of δ1(x(t), t)), δ2(x(t), t)),
and noise present; (c) C3 of δ1(x(t), t)), δ2(x(t), t)), and noise present; (d) C4 of δ1(x(t), t)), δ2(x(t), t)),
and noise present; (e) C5 of δ1(x(t), t)), δ2(x(t), t)), and noise present.
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Table 2. ITAE performance index values for Type 0 system.

Input
Disturbance

Number
Method

With Input Disturbance (Ci) * With Input Disturbance (Ci) *, Output
Disturbance, and Noise

ITAE
(0–40 s)

ITAE
(40–80 s)

ITAE
(0–80 s)

ITAE
(0–40 s)

ITAE
(40–80 s)

ITAE
(0–80 s)

i = 1
ADRC 0.6676 0.0009 1.0607 1.6124 31.1490 32.7500

Proposed 0.6676 0.0009 0.6685 2.5574 17.4630 20.0080
ESPO 2.3805 ≈0 2.3805 4.3932 50.4860 54.8670

i = 2
ADRC 9.6014 27.387 36.988 9.7792 53.7620 63.5280

Proposed 2.25885 5.1091 7.3678 3.4517 19.0940 22.5330
ESPO 21.6490 62.9280 84.5760 21.2200 72.2790 93.4850

i = 3
ADRC 8.2367 24.8410 33.0780 8.6993 53.2740 61.9610

Proposed 3.8284 10.7540 14.5830 4.6495 21.6770 26.3140
ESPO 18.3780 54.2800 72.6580 18.8440 77.7070 96.5380

i = 4
ADRC 3.0302 0.0003 3.0304 3.9263 30.2750 34.1890

Proposed 1.0168 0.0009 1.0177 2.9576 18.5780 21.5230
ESPO 6.6778 ≈0 6.6778 8.6929 52.2850 60.9650

i = 5
ADRC 2.2397 0.0006 2.2403 3.1505 31.1490 34.2880

Proposed 1.3506 0.0009 1.3515 3.1726 17.4630 20.6230
ESPO 5.7809 4.7184 × 10−6 5.7809 7.7430 50.4860 58.2160

* Ci is input disturbance that corresponds to input disturbance number i (C1, C2, C3, C4, C5 of δ1(x(t), t)).

Table 3. Other performance index values for Type 0 system.

Input
Disturbance

Number
Method

With Input Disturbance (Ci) * With Input Disturbance (Ci) *, Output Disturbance,
and Noise

OS (%) Tr (s) Dm,i OS (%) Tr (s) dm,o Ta (s)

i = 1
ADRC 6.0700 0.6478 ≈0 6.0700 0.6298 0.2721 8.0300

Proposed 6.0700 0.6478 ≈0 5.8200 0.6308 0.3051 5.6500
ESPO ≈0 2.8782 ≈0 0.7200 3.0323 0.3051 Non-zero finite SSE

i = 2
ADRC 10.7500 0.6459 0.0182 10.7300 0.6299 0.3190 7.0600

Proposed 9.8400 0.6121 0.0031 9.3800 0.6002 0.3085 5.3800
ESPO 1.8300 2.4102 0.0418 1.8400 2.4449 0.3374 4.2400

i = 3
ADRC 7.5100 0.5966 0.0387 7.5200 0.5943 0.3088 8.1700

Proposed 5.4900 0.5982 0.0358 5.6300 0.5960 0.3052 5.5500
ESPO ≈0 2.3637 0.0946 0.4800 2.3880 0.3052 3.2300

i = 4
ADRC 8.9500 0.6075 0.0030 8.9000 0.6019 0.2678 9.0200

Proposed 8.9500 0.6075 0.0030 5.2100 0.6060 0.3056 5.7200
ESPO 1.0270 2.5169 0.1030 10.4200 2.5485 0.3056 Non-zero finite SSE

i = 5
ADRC 6.0700 0.6478 0.0320 6.0700 0.6298 0.3051 8.0100

Proposed 6.0700 0.6478 0.0290 5.8200 0.6308 0.3057 5.5000
ESPO 7.3900 2.8782 0.0740 0.7200 3.0323 0.3000 Non-zero finite SSE

* Ci is input disturbance that corresponds to input disturbance number i (C1, C2, C3, C4, C5 of δ1(x(t), t)).

4.2. Experiment 2: Second-Order Type 1 System

The transfer function and state-space representation of the second-order Type 1 system
experimented with are given by Equations (25) and (26), respectively.
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GType1(s) =
1

s2 + s
e−τs ; τ = 0.1s (25)

.
x = Ax + Bu
y = Cx(t− τ)

where A =

[
−1 1
0 0

]
, B =

[
0
1

]
, C = [1 0 ]

(26)

Figures 8 and 9 show the responses obtained for the Type 1 system for the cases
of input disturbance only (C1, C2, C3, C4, C5), and input disturbance and step output
disturbance are both included under the time-delay scenario. Performance index criteria
are reported in Tables 4 and 5.
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Figure 9. Responses for the different input disturbances and step output disturbance with noise for the
Type 1 system: (a) C1 of δ1(x(t), t)), δ2(x(t), t)), and noise present; (b) C2 of δ1(x(t), t)), δ2(x(t), t)),
and noise present; (c) C3 of δ1(x(t), t)), δ2(x(t), t)), and noise present; (d) C4 of δ1(x(t), t)), δ2(x(t), t)),
and noise present; (e) C5 of δ1(x(t), t)), δ2(x(t), t)), and noise present.
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Table 4. ITAE performance index values for Type 1 system.

Input
Disturbance

Number
Method

With Input Disturbance (Ci) * With Input Disturbance (Ci) *, Output
Disturbance, and Noise

ITAE
(0–40 s)

ITAE
(40–80 s)

ITAE
(0–80 s)

ITAE
(0–40 s)

ITAE
(40–80 s)

ITAE
(0–80 s)

i = 1
ADRC 1.5766 9.8378 × 10−11 1.5766 2.8122 47.5200 50.3200

Proposed 1.5766 9.8378 × 10−11 1.5766 3.3515 22.6150 25.9540
ESPO 12.4050 4.0049 × 10−6 12.4050 Unstable Unstable Unstable

i = 2
ADRC 8.2185 20.4950 28.7130 8.9441 62.972 71.903

Proposed 3.4850 6.3879 9.8729 4.4819 24.3140 28.7830
ESPO 93.1820 280.2800 373.4600 Unstable Unstable Unstable

i = 3
ADRC 7.0513 18.5120 25.5630 7.8534 63.0580 70.8990

Proposed 4.6276 10.1540 14.7820 5.3395 28.0510 33.3780
ESPO 102.6800 284.4000 387.0800 Unstable Unstable Unstable

i = 4
ADRC 3.2785 1.1437 × 10−10 3.2785 4.4735 47.4000 51.8610

Proposed 2.0698 1.3578 × 10−10 2.0698 3.7814 22.9790 26.7480
ESPO 38.9340 0.0006 38.9340 Unstable Unstable Unstable

i = 5
ADRC 2.7463 2.2000 × 10−7 2.7463 3.9124 47.5200 51.4200

Proposed 2.2268 2.0090 × 10−7 2.2268 3.9120 22.6150 26.5150
ESPO 33.1020 0.0229 33.1250 Unstable Unstable Unstable

* Ci is input disturbance that corresponds to input disturbance number i (C1, C2, C3, C4, C5 of δ1(x(t), t)).

Table 5. Other performance index values for Type 1 system.

Input
Disturbance

Number
Method

With Input Disturbance (Ci) * With Input Disturbance (Ci) *, Output Disturbance,
and Noise

OS (%) Tr (s) Dm,i OS (%) Tr (s) dm,o Ta (s)

i = 1
ADRC 15.5500 0.6940 ≈0 15.5800 0.6750 0.3903 9.0100

Proposed 15.5500 0.6940 ≈0 16.1500 0.6771 0.3054 9.0100
ESPO ≈0 6.7158 ≈0 Unstable Unstable Unstable Unstable

i = 2
ADRC 19.7100 0.6767 0.0140 19.4800 0.6596 0.4049 7.0000

Proposed 17.3800 0.6534 0.0041 17.1600 0.6399 0.3095 7.0000
ESPO 4.7300 3.5289 0.1847 Unstable Unstable Unstable Unstable

i = 3
ADRC 14.6700 0.6884 0.0250 14.8900 0.6691 0.4173 8.0400

Proposed 15.0200 0.6991 0.0242 16.0800 0.6803 0.3054 8.0400
ESPO ≈0 5.1066 0.2147 Unstable Unstable Unstable Unstable

i = 4
ADRC 16.1500 0.6781 0.0340 16.1200 0.6598 0.3916 8.0000

Proposed 15.1300 0.6789 0.0086 15.7500 0.6622 0.3055 8.0000
ESPO 41.4200 5.2571 0.4140 Unstable Unstable Unstable Unstable

i = 5
ADRC 15.5500 0.6940 0.0200 15.5800 0.6750 0.3899 8.0000

Proposed 15.5500 0.6940 0.0190 16.1500 0.6771 0.3055 7.3200
ESPO 15.3600 6.7158 0.1540 Unstable Unstable Unstable Unstable

* Ci is input disturbance that corresponds to input disturbance number i (C1, C2, C3, C4, C5 of δ1(x(t), t)).
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The following key results are obtained from Tables 4 and 5 based on the performance
index values for the Type 1 system under different scenarios:

1. The maximum drop from reference due to output disturbance (dm,o) is slightly small
for the proposed design when compared with that of the modified ADRC. However,
the adjustment time needed to return to reference (Ta) is similar for both the former
and latter methods. The ESPO method is found to be unstable due to the application
of step output disturbance at 40 s (refer to Table 5).

2. For input (C2) and step output disturbances present, the proposed system gives
smaller ITAE values of 4.4819 (from 0 s to 40 s), 24.3140 (from 40 s to 80 s), and 28.7830
(from 0 s to 80 s). The corresponding ITAE values for ADRC are relatively higher, and
the ESPO shows unstable behaviour due to step output disturbance.

3. For the proposed method, in Figures 8b and 9b, the overshoot (OS) at the beginning of
the response curve due to the time delay present is reduced by 2.3% when compared to
that of the delay-based ADRC structure. Further, at 40 s when step output disturbance
is applied (refer to Figure 9a–e), the amplitude of the output disturbance undershoot
is reduced by around 25% to 27% in the proposed design, as compared to that of the
time-delay-based ADRC structure.

4. A comparison of the rise times in Table 5 shows that the proposed and modified
ADRC methods have similar small rise times (Tr), in contrast to the high rise time
for the ESPO method. This indicates that the proposed method shows acceptable
behaviour by not making the system slower or unstable, unlike the ESPO design.

5. Hence, it can be noted from Figures 8 and 9 that the proposed predictive method for
the Type 1 system showed more robustness by better compensating both system input
and output disturbances with noise under existing time delay, as compared to the
considered delay-based ADRC and ESPO methods.

4.3. Experiment 3: Second-Order Type 2 System

The Type 2 system studied in this paper is given by its transfer function and state-space
model presented in Equations (27) and (28).

GType2(s) =
1
s2 e−τs ; τ = 0.1s (27)


.
x = Ax + Bu
y = Cx(t− τ)

where A =

[
0 1
0 0

]
, B =

[
0
1

]
, C = [1 0 ]

(28)

Figures 10 and 11 illustrate the responses for the Type 2 system, firstly for the case of
only input disturbance (C1, C2, C3, C4, C5) applied and secondly for the case of both input
disturbance and step output disturbance applied with time delay present. Results for the
different evaluation indicators are reported in Tables 6 and 7.

The following observations are noted for the Type 2 system, using the performance
index values seen in Tables 6 and 7:

1. The overshoot (OS) at the start of the response due to time delay is decreased by 9.1%
for the proposed structure when compared to that of the modified ADRC (refer to
Figures 10b and 11b). In addition, there is a decrease in the time width of the startup
overshoot by 67.607% in the proposed design.

2. As shown in Table 7, the maximum drop from reference due to output disturbance
(dm,o) is less for the proposed design when compared with that of the modified
ADRC. Thus, dm,o is greatly reduced by around 59% to 61% in the proposed design,
as compared to that of the modified ADRC structure (refer to Figure 11a–e). However,
the adjustment time needed to return to reference (Ta) is similar for both the former
and latter methods, whereas the response of the ESPO design becomes unstable when
step output disturbance is applied at 40 s (refer to Table 7).
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3. Table 6 shows that the ITAE values for the proposed design are comparatively smaller
value than those of the modified ADRC. For example, for C2 input and step output
disturbances present, the proposed system has ITAE values of 11.6360 (from 0 s to 40 s),
76.9720 (from 40 s to 80 s), and 88.5950 (from 0 s to 80 s), whereas the corresponding
ITAE values for ADRC are relatively higher, and the ESPO shows unstable behaviour
due to the step output disturbance applied.

4. A comparison of the rise time (Tr) values in Table 7 shows that the modified ADRC and
proposed methods have approximately similar readings, unlike the slightly higher
rise times such as 2.110 s seen for the ESPO design.

5. Therefore, Figures 10 and 11 show that the novel proposed design for the Type 2
system proved more robust when dealing with external disturbances and noise under
time delay, compared to the modified delay-based ADRC and ESPO methods.
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Figure 10. Responses for the case of only input disturbances are presented for the Type 2 sys-
tem: (a) only C1 input disturbance present; (b) only C2 input disturbance present; (c) only C3 input
disturbance present; (d) only C4 input disturbance present; (e) only C5 input disturbance present.



Machines 2023, 11, 144 22 of 33
Machines 2023, 11, x FOR PEER REVIEW 22 of 34 
 

 

 

 

Figure 11. Responses for the different input disturbances and step output disturbance with noise 

for the Type 2 system: (a) 𝐶1 of 𝛿1(𝑥(𝑡), 𝑡)), 𝛿2(𝑥(𝑡), 𝑡)), and noise present; (b) 𝐶2 of 𝛿1(𝑥(𝑡), 𝑡)), 

𝛿2(𝑥(𝑡), 𝑡)) , and noise present; (c) 𝐶3  of 𝛿1(𝑥(𝑡), 𝑡)) , 𝛿2(𝑥(𝑡), 𝑡)) , and noise present; (d) 𝐶4  of 

𝛿1(𝑥(𝑡), 𝑡)), 𝛿2(𝑥(𝑡), 𝑡)), and noise present; (e) 𝐶5 of 𝛿1(𝑥(𝑡), 𝑡)), 𝛿2(𝑥(𝑡), 𝑡)), and noise present. 

Table 6. ITAE performance index values for Type 2 system. 

Input Dis-

turbance 

Number 

Method 

With Input Disturbance (𝑪𝒊) * 
With Input Disturbance (𝑪𝒊) *, Output Dis-

turbance, and Noise 

ITAE 

(0–40 s) 

ITAE 

(40–80 s) 

ITAE 

(0–80 s) 

ITAE 

(0–40 s) 

ITAE  

(40–80 s) 

ITAE  

(0–80 s) 

𝑖 = 1 

ADRC 5.6431 1.3318 × 10-6 5.6431 8.3739 167.5400 175.9000 

Proposed 5.6431 1.3318 × 10-6 5.6431 7.4086 68.3370 75.7330 

ESPO 0.8550 5.0639 × 10-12 0.8550 Unstable Unstable Unstable 

𝑖 = 2 ADRC 29.9070 77.8620 107.7700 32.2100 229.5100 261.7100 

Figure 11. Responses for the different input disturbances and step output disturbance with noise
for the Type 2 system: (a) C1 of δ1(x(t), t)), δ2(x(t), t)), and noise present; (b) C2 of δ1(x(t), t)),
δ2(x(t), t)), and noise present; (c) C3 of δ1(x(t), t)), δ2(x(t), t)), and noise present; (d) C4 of δ1(x(t), t)),
δ2(x(t), t)), and noise present; (e) C5 of δ1(x(t), t)), δ2(x(t), t)), and noise present.
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Table 6. ITAE performance index values for Type 2 system.

Input
Disturbance

Number
Method

With Input Disturbance (Ci) * With Input Disturbance (Ci) *, Output
Disturbance, and Noise

ITAE
(0–40 s)

ITAE
(40–80 s)

ITAE
(0–80 s)

ITAE
(0–40 s)

ITAE
(40–80 s)

ITAE
(0–80 s)

i = 1
ADRC 5.6431 1.3318 × 10−6 5.6431 8.3739 167.5400 175.9000

Proposed 5.6431 1.3318 × 10−6 5.6431 7.4086 68.3370 75.7330
ESPO 0.8550 5.0639 × 10−12 0.8550 Unstable Unstable Unstable

i = 2
ADRC 29.9070 77.8620 107.7700 32.2100 229.5100 261.7100

Proposed 11.3450 21.2620 32.6060 11.6360 76.9720 88.5950
ESPO 16.5060 51.3300 67.8250 Unstable Unstable Unstable

i = 3
ADRC 27.8760 78.8290 106.7000 30.1880 230.4000 260.5800

Proposed 12.4240 23.7290 36.1520 12.6680 79.5770 92.2330
ESPO 13.9060 48.5680 62.4720 Unstable Unstable Unstable

i = 4
ADRC 14.5970 5.9430 × 10−6 14.5970 19.7420 168.6300 188.3600

Proposed 5.6431 1.3318 × 10−6 5.6431 8.0527 65.4530 73.4940
ESPO 5.6828 29.7870 35.4680 Unstable Unstable Unstable

i = 5
ADRC 11.3930 0.0021 11.3950 13.9520 167.5400 181.4800

Proposed 7.2863 0.0007 7.2871 8.6107 68.3360 76.9340
ESPO 3.4259 5.3366 8.7624 Unstable Unstable Unstable

* Ci is input disturbance that corresponds to input disturbance number i (C1, C2, C3, C4, C5 of δ1(x(t), t)).

Table 7. Other performance index values for Type 2 system.

Input
Disturbance

Number
Method

With Input Disturbance (Ci) * With Input Disturbance (Ci) *, Output Disturbance,
and Noise

OS (%) Tr (s) Dm,i OS (%) Tr (s) dm,o Ta (s)

i = 1
ADRC 16.6700 1.4293 ≈0 15.8700 1.4109 0.7458 13.5400

Proposed 16.6700 1.4293 ≈0 16.9300 1.4319 0.3056 13.3700
ESPO ≈0 1.6790 ≈0 Unstable Unstable Unstable Unstable

i = 2
ADRC 26.3700 1.2905 0.0510 25.3900 1.2759 0.8127 9.3700

Proposed 16.5000 1.3158 0.0310 16.2900 1.3255 0.3199 10.4100
ESPO 6.1900 1.2815 0.0140 Unstable Unstable Unstable Unstable

i = 3
ADRC 12.7700 1.5407 0.0560 12.0000 1.5804 0.7948 9.4900

Proposed 17.2700 1.4737 0.0360 17.6000 1.5254 0.3090 8.5700
ESPO 0.0400 2.1103 0.0820 Unstable Unstable Unstable Unstable

i = 4
ADRC 16.5000 1.4045 0.1670 16.5900 1.4482 0.7361 15.9500

Proposed 16.6700 1.4293 0.1670 16.7600 1.4963 0.2961 15.9500
ESPO 7.6300 1.5489 0.0760 Unstable Unstable Unstable Unstable

i = 5
ADRC 16.6700 1.4293 0.0490 15.8700 1.4109 0.7459 13.5500

Proposed 16.6700 1.4293 0.0300 16.9300 1.4319 0.3057 13.3700
ESPO 6.7600 1.6559 0.0680 Unstable Unstable Unstable Unstable

* Ci is input disturbance that corresponds to input disturbance number i (C1, C2, C3, C4, C5 of δ1(x(t), t)).

4.4. Effect of Control Signal u and ESO States (z2 and z3)

Figure 12a,b show that the control variable u is plotted for an ESPO design for a
Type 0 system, containing both step input and step output disturbances with and without
noise, respectively. It is visible from this figure that the control signal does contain a non-
zero steady state, which means the control cost or energy needed to maintain the control



Machines 2023, 11, 144 24 of 33

performance is high. The control signals for Type 1 and 2 systems have not been indicated
here because they are unstable when controlled by the ESPO-based controller, with step
output disturbance and white noise present in the system.
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Figure 12. Control signal u for Type 0 system with step input disturbance and step output disturbance
using ESPO method: (a) with measurement noise; (b) without measurement noise.

The plots of the control variable u for the considered ADRC and proposed methods
are presented in Figure 13. It is known that measurement noise adversely affects the output
time response by introducing significant oscillations in the output response curve. Thus,
from Figure 13d–f, it can be interpreted that the proposed method has a negligible effect of
noise on the control variable u.
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Figure 13. Control signal u with step input disturbance, step output disturbance, and measurement
noise for all types of systems: (a–c) modified time-delay-based ADRC method; (d–f) proposed method.

Furthermore, Figures 14 and 15 indicate the estimated states z2 and z3, respectively,
of the time-delay-based ADRC and the proposed controller. These states are generated
from the ESO component of the ADRC. Figures 14a–c and 15a–c show that the estimated
states of the modified delay-based ADRC structure are affected by the white noise signal
present at the system output. This is contrary to the case of the proposed controller, as
seen in Figures 14d–f and 15d–f, wherein the measurement noise had a negligible effect



Machines 2023, 11, 144 25 of 33

on the estimated states z2 and z3. Furthermore, in the case of the step output disturbance
being applied at 40 s, the zoomed plots of Figure 14 indicate a speedy disturbance recovery
in the proposed design, illustrating its advantage over the associated ADRC model.
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Figure 14. Estimated state z2 with step input disturbance, step output disturbance, and measurement
noise for all types of systems: (a–c) modified time-delay-based ADRC method; (d–f) proposed method.
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Figure 15. Estimated state z3 with step input disturbance, step output disturbance, and measurement noise
present for all types of systems: (a–c) modified time-delay-based ADRC method; (d–f) proposed method.
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4.5. Effect of Change in Time Delay

This subsection presents the results of testing the effect of change in time delay (τ). In
this experiment, the periodic form of input disturbance (C2) and step output disturbance
were applied. In Figure 16 (Type 0 system), Figure 17 (Type 1 system), and Figure 18 (Type
2 system), the delay design (τd) for the ADRC and ESPO and the system delay (τs) are
the same. This is simulated to assess the case in which the system delay is known. In
this case, the design time-delay is tuned to the known system time-delay for time-delay
compensation. Due to the smaller value of time delay (0.1 s), in Figures 16a, 17a, and 18a,
the oscillations appear to be of smaller amplitude as compared to the responses shown in
Figures 16b, 17b, and 18b that correspond to cases of higher time-delays (1 s for Type 0
system, 0.3 s for both Type 1 and Type 2 systems). Therefore, it is visible that the proposed
design performed better than the other two methods for a higher time-delay (greater
than 0.1 s) since its response curves are less oscillatory with quick output disturbance
compensation. In Figures 17b and 18b, it is important to note that the plots of ESPO-
based controllers are not present due to their unstable nature under the impact of output
disturbance applied to the system. Moreover, the proposed design shows a positive spike
at the start of the step output disturbance applied at 40 s, indicating rapid behaviour.
However, this spike can be reduced by decreasing ωe. Furthermore, as seen from the
zoomed plots in Figures 16–18, the adjustment time Ta to return to reference when step
output disturbance is applied is smaller for the proposed design. Hence, the proposed
design improved the system response by using a predictive mechanism (ESPO) that can
compensate for these uncertainties as a disturbance.
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However, as seen in Figures 17b and 18b, second-order Type 1 and Type 2 systems
present a more significant problem when examining the impact of change in time delay due
to their frequently more aggressive dynamics than Type 0 systems. Hence, Type 1 and Type
2 systems were tested at a lower delay because, for values greater than 0.3 s, the observed
overshoot at the beginning of the response curve was high.

In addition, for testing the robustness of the proposed controller method for different
known values of system delay, the experiment for the robustness to both disturbances
and time-varying time-delay (TVTD) of the system (τs) was conducted for the different
second-order system types, as seen in Figure 19. The input disturbance (C2) and step output
disturbance were applied. In Figure 19, the delay designed for the ADRC and ESPO (τd)
and the system delay (τs) are different. This is simulated for the case of a system containing
unexpected delay values that are unknown to the operator or the designer. Three examples
of unexpected system delays are shown in Figure 19: a case where the time-varying time-
delay of the system varies between 0 s and 0.4 s when the design delay for the ADRC
and ESPO is 0.1 s, a case where the system delay is 0.2 s when the design delay for the
ADRC and ESPO is 0.1 s, and a case where the design delay of ESPO and ADRC is greater
than 0.1 s. For the last case, the Type 0 system is evaluated for a time-varying time-delay
of the system that varies from 0.9 to 1.3 s when the design delay of ADRC and ESPO is
1 s. However, for the evaluation of the design delay greater than 0.1 s, the Type 1 and
Type 2 systems are assessed for time-varying time-delay of the system that varies from
0.2 to 0.5 s when the design delay is just 0.3 s owing to the complex dynamics of the two
systems. It is observed that the compensation of the disturbances is achieved when the
system delay deviates from the design delay. The system’s stability is also maintained,
but the response is generally affected, especially during the transient periods. Extensive
research on time-delay compensation for the proposed controller method is necessary in
future studies.
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5. Discussion

This paper introduced a consolidated design incorporating the advantages of ADRC
with the ESPO controller design. This section discusses and highlights the proposed con-
troller design’s predictive characteristic that can enhance the disturbance and measurement
noise compensation under time-delay control. The benefit of the presented design is related
to satisfactory stability attained, improved transient response in the presence of time delay,
and reasonable control of output disturbance compensation and noise, as observed from
the responses presented in Section 4.

5.1. Disturbance Compensation with Noise and Time Delay

There are two properties when dealing with the time-delay problem. Firstly, time
delays cause signals to arrive later. Secondly, time delays cause systems to become more
oscillatory and unstable. However, as seen in Figures 6–11, the proposed controller had
conquered these vibrations to a certain extent as opposed to the time-delay-based ADRC
and ESPO methods.

Figures 6, 8, and 10 showed that the modified time-delay-based ADRC model did
compensate for the input disturbance using its mechanism without the need for the ESPO.
However, for the same cases, when step output disturbance was applied, it was noted
that the novel proposed controller performed much better by attaining both quick output
disturbance and noise compensation with time delay (refer to Figures 7, 9, and 11). This is
because the internal dynamics that were modelled during the time-delay with the noise
present were estimated, compensated, and removed significantly using the predictive idea.
This compensation was inferred from the removal of the estimated disturbance δ̂ (t) present
in the proposed control law uP(t) given by Equation (19).
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5.2. Rise Time and Bandwidth

The ESPO structure’s input signal r(t) =
[
1 0

]T is analogous to the tracking (reference
step signal) and differentiated signals generated by the TD in both the modified ADRC and
proposed predictive methods. In the Type 2 system, for the case of only input disturbance
present, the ESPO response is more steered than the proposed design due to the overly
gentle TD inside the proposed design. Hence, the rise in the signal seen in Figure 10 for
the proposed method is slow compared to that of the ESPO method. Due to the ESPO’s
dependence on specific K values, it has the advantage of having less overshoot than the
time-delay-based ADRC and proposed controller methods. However, the ESPO shows an
unsteady performance when step output disturbance is applied for both Type 1 and Type 2
systems (refer to Figures 9 and 11).

Furthermore, observer bandwidth ωe affects the ESPO in two ways: the shift in the
response curve and the oscillation amplitude. Thus, the proposed method containing the
ESPO-based controller is dependent on ωe as well. However, an improved response for the
proposed design can be obtained by further tuning the ESPO bandwidth.

5.3. Stability Analysis

One commonly used method to analyze the stability of control systems is the frequency
response method using an open-loop Bode diagram. The Bode diagram constitutes two
graphs, the magnitude plot indicating the gain margin (Gm) in decibels and the phase plot
indicating the phase margin (Pm) in degrees. This section presents the stability analysis
of the novel controller proposed in this paper conducted using open-loop Bode diagrams.
The Bode diagrams illustrating the frequency response of the linearized systems composed
of the controlled objects and the proposed controller are provided in Figure 20, where the
controlled object is a Type 0, Type 1, or Type 2 system.

In Figure 20a, for control of the Type 0 system (given in Equations (23) and (24)), the
gain margin is 33.6 dB and the phase margin is 143◦ (deg). The delay margin obtained
was at 1.41 s; for extra time-delays less than 1.41 s, the Type 0 system is stable. Given
that the Gm and Pm are positive, as seen in Figure 20a, the system is closed-loop stable.
The stability is further validated by seeing that the phase crossover frequency (7.61 Hz) is
greater than the gain crossover frequency (0.281 Hz).

Figure 20b displays the stability margins for the Type 1 system (from Equations (25) and (26))
controlled by the proposed design. As seen in the open-loop Bode plots, the gain margin
(Gm) is 29.6 dB at a phase crossover frequency of 5.42 Hz, whereas the phase margin is
94.7◦ at a gain crossover frequency of 0.338 Hz. Thus, the system analyzed is closed-loop
stable. Moreover, as shown in the phase plot in Figure 20b, the delay margin obtained is
0.779 s. Hence, the system will be on the verge of instability when the system incurs an
extra time-delay equal to the delay margin.

The open-loop Bode plots in Figure 20c provide the stability margins of the proposed
control system for the Type 2 system given in Equations (27) and (28). The gain margin
of the open-loop Bode plot is positive and decently large at 37.4 dB, with a phase gain
margin of 70.3◦. Thus, the system is closed-loop stable and will fall in instability outside
stability margins (Gm and Pm). Further, the gain margin and phase margin occur at 5.26 Hz
and 0.148 Hz crossover frequencies, respectively. In addition, from the phase plot, it was
observed that the second-order Type 2 system analyzed is closed-loop stable for delay
margins of less than 1.32 s.
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5.4. Performance Criteria Analysis

For certain cases, the overshoot (OS) at the beginning of the response curve was re-
duced (refer to Figures 6–11), except for one case for the Type 2 system where C3 input
disturbance is applied. From Table 3 and Figure 7b,c, for the case of the ESPO method
(Type 0 system), it was seen that the response curve has an adjustment time (Ta) of reaching
reference signal at 4.24 s and 3.23 s, respectively. However, the system response is oscil-
latory after the step output disturbance is applied, and it is seen that the response curve
gives a non-zero SSE, thus proving less robust behaviour in response to external (output)
disturbance application. Furthermore, in the case of ESPO-based control for both Type 1
and Type 2 systems, when step output disturbance is applied, the ESPO is not steady. Thus,
ESPO response curves were not plotted in Figures 9 and 11.

The proposed method showed a smaller adjustment time (Ta) for disturbance recovery
than the related ADRC and ESPO methods individually (in Figures 7, 9, and 11). This
observation is further substantiated by comparing the maximum deviation (Dm,i) and
drop (dm,o) in the response curve at instants when both input and output disturbances are
applied. For the proposed design, the absolute value of this drop and the deviation from
the reference signal are the least in most cases compared to the other methods. Thus, the
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proposed method showed more stable action and is faster in returning to the zero SSE (refer
to Figures 9 and 11). However, the proposed method experiences a jump due to a shorter
recovery time after applied output disturbance. This is visible in Figures 7, 9, and 11. This
jump can be further reduced by tuning the proposed controller parameters.

Experiments show that the time-delay-based ADRC and the proposed structures had
approximately similar rise times (Tr). However, the proposed method showed a smaller Tr
in most cases for all system types (refer to Tables 3, 5, and 7) compared to the ESPO method.
Thus, having a reasonable rise time adds to the proposed structure’s characteristics by not
making the entire system unstable or slowly approaching the steady state.

6. Conclusions and Future Recommendations

This paper proposed a novel controller design in which the hybridization of delay-
based ADRC and ESPO-based controller methods has combined their benefits. The former
relies on minimal model information containing the ESO to timely estimate and compensate
for the disturbance using NLSEF. The latter method uses an extended state for the conven-
tional PO due to its robust behaviour when estimating and cancelling total disturbances
with sensor delay. The experimental analysis and performance criteria noted from the sim-
ulation results presented in this study support the application of the proposed “predictive
ESO-based ADRC” controller design in time-delay control applications involving different
external disturbances.

When performing the disturbance compensation, the novel predictive controller pro-
posed in this paper conquered the internal dynamics generated during the existing time
delay by considering the internal dynamics as a disturbance. In addition, the oscillations
arising due to the time delay present in the total system were suppressed to an acceptable
degree by this novel predictive approach. Thus, when both internal and external distur-
bances are introduced, the proposed controller enjoys a stable tracking response and shows
decent reliability and robust behaviour. Additionally, the system shows a reasonable level
of noise reduction. Therefore, these findings channel future research by tapping into a new
dimension of controller design.

Future research should improve the proposed predictive ESO-based ADRC algorithm
by further reducing the initial overshoot seen in the transient response curve, along with the
spike obtained at the start of the external step output disturbance. This improvement will
involve further tuning the proposed controller parameters, such as the NLSEF parameters
and the observer bandwidth (ωe). Further, control of higher-order systems (n-dimensional
states) by the proposed controller, robustness analysis for the case of system parameter
perturbations, assessment of bigger time delay, and comprehensive research on time-delay
compensation will form part of future work. Application-wise, control of the developed
human–machine interface platform (seen in [49]) by the proposed algorithm of this paper,
along with its stability and transparency analysis, can serve in the future as a worthwhile
contribution to the field of control systems theory and bilateral teleoperation applications.
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