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Abstract: This paper proposes a new method for bearing fault diagnosis using wavelet packet
transform (WPT)-based signal representation and informative factor linear discriminant analysis
(IF-LDA). Time–frequency domain approaches for analyzing bearing vibration signals have gained
wide acceptance due to their effectiveness in extracting information related to bearing health. WPT
is a prominent method in this category, offering a balanced approach between short-time Fourier
transform and empirical mode decomposition. However, the existing methods for bearing fault
diagnosis often overlook the limitations of WPT regarding its dependence on the mother wavelet
parameters for feature extraction. This work addresses this issue by introducing a novel signal
representation method that employs WPT with a new rule for selecting the mother wavelet based
on the power spectrum energy-to-entropy ratio of the reconstructed coefficients and a combination
of the nodes from different WPT trees. Furthermore, an IF-LDA feature preprocessing technique
is proposed, resulting in a highly sensitive set of features for bearing condition assessment. The k-
nearest neighbors algorithm is employed as the classifier, and the proposed method is evaluated using
datasets from Paderborn and Case Western Reserve universities. The performance of the proposed
method demonstrates its effectiveness in bearing fault diagnosis, surpassing existing techniques in
terms of fault identification and diagnosis performance.

Keywords: bearing fault diagnosis; time–frequency signal analysis; feature selection; wavelet packet
transform; mother wavelet

1. Introduction

Bearings are fundamental mechanical components that facilitate rotational motion
across a broad range of engineering applications. These components are integral to electric
motors found in power plants, manufacturing facilities, and various modes of transporta-
tion, such as land vehicles, airplanes, ships, and space equipment. Operating under harsh
conditions and susceptible to factors like improper installation, inadequate or incorrect
lubrication, and mechanical damage, bearings can develop faults over time, eventually
leading to system breakdowns. According to [1], bearing faults are responsible for up to
45% of all electric motor failures. Given their critical role in machine operations, the occur-
rence of significant bearing faults can result in severe consequences, including irreversible
machine damage, loss of production, and even human casualties. Consequently, the subject
of condition monitoring (CM) of roller element bearings as much as bearing fault diagnosis
(FD) has attracted the interest of researchers [2].

With the widespread availability of high-quality vibration sensors and the advance-
ments in machine learning (ML) and deep learning (DL) algorithms, data-driven ap-
proaches to various diagnosis applications [3–5], bearing fault diagnosis, and especially
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approaches based on vibration monitoring, have gained prominence [6–10]. A typical data-
based method for bearing fault diagnosis using ML generally involves signal processing,
feature extraction, feature selection, and ML classification. Conversely, FD methods based
on DL can utilize DL algorithms exclusively for classification or dimensionality reduction
purposes. Ultimately, DL can be employed to develop end-to-end methods that bypass
the manual feature processing [11–14] or even trained to perform frequency analysis of
time-series data [15,16]. While DL models generally outperform other learning algorithms
as data volumes increase, real-world scenarios often have insufficient data to achieve the
desired model performance levels. Moreover, the explainability of DL models in fault
diagnosis remains a challenge, although there is growing momentum in research on this
topic [17,18]. Consequently, traditional ML techniques for fault diagnosis still hold merit as
a viable alternative deserving research focus.

As previously discussed, signal processing serves as the initial step in machine-
learning-based FD algorithms. Traditionally, the fast Fourier transform (FFT) algorithm
has been widely employed in this field [19]. However, the FFT algorithm possesses several
shortcomings, including limited resolution, the inability to capture transient signals, the
absence of time–frequency relations, and the introduction of spectral leakage in the output
representation [20]. To address these challenges, a time–frequency analysis method called
short-time Fourier transform (STFT) has been introduced. STFT overcomes the issue of
connecting frequency components to the time axis by sliding a window along the time-
domain signal and applying an FFT on each windowed segment. The resulting FFTs are
then stacked sequentially, yielding a time–frequency representation of the signal. Typically,
these windows overlap to mitigate the adverse effects of boundaries. Among the recent
methods for bearing FD that utilize STFT in the signal analysis are the time–frequency
spectral amplitude modulation method (TFSAM), proposed by Jiang et al., and a method
by Zhang et al. that utilizes STFT to obtain input images for the CNN [21,22]. Neverthe-
less, STFT encounters limitations pertaining to the selection of window length. Larger
windows are required to analyze lower frequencies, but this compromises time resolution,
while smaller windows yield higher time resolution but lack frequency resolution, thus
necessitating a tradeoff that remains unresolved.

Empirical mode decomposition (EMD) is a time–frequency method that decomposes
time-domain signals into intrinsic mode functions (IMFs) [23–26]. Unlike STFT, EMD is
adaptive, does not rely on base functions, and accurately captures local features without
assuming periodicity. It enables high-resolution processing of non-stationary signals with-
out segmenting them into smaller parts. EMD famously suffers from the “mode mixing”
(MM) and “mode splitting” (MS) phenomena. These occur as side effects of signal con-
tamination with noise and imprecise definition of the local extrema on which the IMFs
are based. While MM refers to the blending or mixing of different modes or components
of a signal into a single IMF, MS refers to occurrences when a single oscillatory mode in
the original signal is decomposed into two or more IMFs [27]. Consequently, the decom-
position may not accurately represent the underlying components of the signal, leading
to difficulties in signal analysis and interpretation. To mitigate these effects, techniques
like ensemble EMD (EEMD) and complete EMD (CEMD) have been developed [28,29].
The noise-eliminated EEMD (NEEEMD) method yielded improved noise reduction by
decomposing the ensemble of white noise signals using EMD and subtracting it from the
outputs of EEMD [30]. Another method that restrains the mode mixing and solves the
over- and undershooting problem caused by the cubic spline curve is an improved EMD
(I-EMD) method, which replaces cubic spline interpolation with weighted rational quartic
spline interpolation (WRQSI) and introduces a novel parameter selection criterion called
envelope characteristic frequency ratio (ECFR) [31]. All these improvements generally
involve applying EMD to multiple realizations of the signal, achieved by adding different
types of white Gaussian noise in each trial. This helps refine the decomposition and reduce
mode mixing. However, these techniques may face difficulties in deployment in industrial
settings due to their computationally intensive nature. The repetitive algorithms and the
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trade-off between the number of decomposition attempts and quality contribute to the
substantial computing time required. Moreover, in the recent discussion published by
Randall R. B. and Antoni J., it is argued that EMD is generally of little benefit for the diag-
nosis of rolling element bearings, because while EMD and similar decompositions require
continuous phase signal to perform meaningful successful analysis, roller element bearing
signals have a discontinuous phase. This means that the decomposition wastes excessive
computation time to ensure a continuous phase in mono-components of the bearing signal,
when in reality bearing signals are stochastic in nature and cannot be decomposed into
unique mono-components; thus, such methods as wavelet analysis and fast kurtogram are
considered more appropriate [32].

The wavelet packet transform (WPT) is another time–frequency analysis method that
surpasses STFT in terms of both time–frequency resolution and sensitivity to transient
components. This decomposition is closely related to the discrete wavelet transform (DWT)
in the way that decomposition is based on the discrete levels of mother wavelets scaled in
powers of two. However, with each level DWT splits the decomposition only towards the
lower frequencies, creating a branch of consequent low-pass filters, which with every level
cut off the higher half of the signal spectrum. Unlike DWT, WPT splits in all directions and
decomposes a signal into various sub-bands with different frequencies, which comprise a
full 2n decomposition tree, allowing for a more detailed analysis of the signal. WPT, like
all methods in this family, uses wavelet functions with non-zero values only at a specific
limited duration of time, which act as decomposition bases [33]. Unlike the sine waves
used by FFT and STFT, which can only capture global frequency information, wavelets
are localized in time and are well-suited for representing local features and transient
components in signals. Compared to EMD, WPT is less adaptive and less flexible due
to the utilization of one pre-determined scalable wavelet function and a finite number of
decomposition levels. However, the same reasons allow WPT to be a less computationally
expensive [32,34]. Thus, there is no consensus regarding which method is generally better;
rather, the selection of either of the methods should be performed based on the particular
type of signal and application. Even though the development of mother wavelet base
functions is still an ongoing process, a conservative estimation of their existing number
would be from several dozens of the most popular to several hundred including the less-
known wavelet families. Up to the present day, an abundance of mother wavelet selection
methods with comparable performance can be found in the literature. This shows that
mother wavelet selection, as one of the most vulnerable parts of WPT, still lacks a general
state-of-the-art solution method; thus, further research and new solutions are needed.

Feature preprocessing is a crucial aspect of the fault diagnosis framework. In feature
preprocessing, the fault indicators extracted from the signal are evaluated, and discriminant
features are then selected from them [35]. Discriminancy of the features directly affects
the generalization and classification capabilities of the classifier. Techniques such as the
probabilistic principal component analysis (PCA) [36], trace ratio LDA [37], and sensitive
discriminant analysis [35] were proposed in the past. These methods resulted in discrimi-
nant feature spaces; however, there exist several shortcomings. The feature preprocessing
methods based on PCA suffer from class separation problems and information loss. The
between-class separation problem addressed by LDA can be affected by the penalty graph
representation of the features from different classes.

To address the above-mentioned issues, this paper proposes a solution to the problem
of mother wavelet selection for WPT analysis by constructing a signal representation that
combines the nodes from several WPT trees obtained using different mother wavelets.
Corresponding nodes of every tree are analyzed on the matter of their power spectrum
content. The best nodes are selected based on the comparison using the proposed criterion.
Additionally, the paper introduces the IF-LDA feature engineering method as a solution for
dimensionality reduction. This method evaluates the feature pool using an informative
factor (IF) and eliminates low-quality features, ensuring optimal performance of linear
discriminant analysis (LDA). The novelty of this work is as follows:
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(1) A new WPT-based signal representation is introduced for the extraction of bearing
fault-related components.

(2) A variant of LDA, IF-LDA, is introduced to increase the discriminancy of the feature
space based on the informative factor.

The contributions of this paper can be summarized as follows:

(1) WPT is used with a novel R-value criterion for mother wavelet selection in analyzing
bearing signals. The R-value criterion considers the energy-to-entropy ratio of the
signal power spectrum to select the mother wavelet that provides the most uneven
energy distribution in a specific WPT node while preserving high signal energy.

(2) The proposed method constructs the final signal representation node by node, based
on the R-value of each node’s reconstruction. As nodes are selected from WPT trees
decomposed using different mother wavelets, the method is referred to as a novel
WPT-based signal representation.

(3) The introduction of a novel feature engineering approach that greatly benefits linear
discriminant analysis. This approach ensures minimal scatteredness among features
within the same class and maximizes between-class separation, leading to improved
accuracy in model predictions and easier generalization.

The subsequent sections of this manuscript are organized as follows: In Section 2, we
outline the datasets utilized to assess the effectiveness of the proposed method. Section 3
offers technical background information on WPT, methods for selecting the mother wavelet,
and LDA. In Section 4, we present the detailed methodology proposed in this study. The
obtained results and performance comparisons are discussed in Section 5. Finally, in
Section 6, we draw conclusions based on our findings.

2. Testbeds, Experiments, and Collected Data

The proposed method’s validity and reliability were assessed by evaluating it with
three distinct public datasets on bearing faults. The initial two were acquired from the
KAt-DataCenter, which belongs to the Chair of Design and Drive Technology situated at
Paderborn University in Germany [38], henceforth denoted as the PU set with artificial
faults (PUA) and the PU dataset with real faults (PUR). The third dataset was obtained
from the Case Western Reserve University (CWRU) [39].

2.1. Paderborn University Bearing Data with Artificial Damage (PUA Dataset)

The PU dataset’s vibration data were collected using the modular experimental setup
depicted in Figure 1. This experimental setup configuration includes the drive and load
motor, the module for bearing installation, a flywheel, and a measuring shaft.

The drive motor used in this experimental setup is a synchronous type 425 W with
a permanent magnet rotor. It is produced by Hanning Elektro-Werke GmbH & Co. KG,
based in Oerlinghausen, Germany, with model code Type SD4CDu8S009. Motor control is
performed using the 16 kHz switching frequency industrial inverter from KEB-automation
(model name: KEB Combivert 07F5E 1D-2B0A). The module for bearing installation enables
quick substitution of ball bearings with the new type of faults for each experiment without
the need for time-consuming disassembly and assembly. For each bearing, a number of
tests were carried out under four distinct conditions with different RPMs, load torques,
and radial forces. Table 1 provides a comprehensive overview of the operating conditions
for the study.
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Table 1. Conditions of the Paderborn University test rig operation.

No. Rot. Speed (rpm) Load Torque (Nm) Radial Force (N)

0 1500 0.7 1000

1 900 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400

The vibration signal data were obtained using a piezoelectric accelerometer (Model
336C04) supplied by PCB Piezotronics Inc., a company located in Depew, NY, USA. This
accelerometer was securely affixed to the upper part of the bearing module during the
testing process for acceleration measurement. The dataset authors used a Type 5015A
instrument for charge amplification produced by Kistler Group Winterthur, Switzerland,
along with a low-pass filter with a 30 kHz cutoff frequency. The recorded signal was then
digitized at a 64 kHz sampling rate, following analog-to-digital conversion. For this work,
the data were cut in such a way that one dataset sample is equivalent to one second of
the vibration signal. Additionally, considering that the first 10 harmonics of all estimated
bearing fault characteristic frequencies in this dataset lay within the 0–1500 Hz spectrum,
the data were down-sampled to the rate of 8 kHz.

The PU dataset contains signals from six healthy bearings with a run-in period varying
from 1 to 50 h. For the PUA data, the dataset authors used 12 bearings with faults inflicted
using the electric discharge machine (EDM), by manual electric engraving and drilling.
The EDM trenches run 0.25 mm in length along the rolling direction and have a depth of
1–2 mm. On the other hand, damages made by the manual electric engraver vary in length,
ranging from 1 to 4 mm. The bearing rings have drilled holes with diameters of 0.9 mm,
2 mm, and 3 mm. The bearings are categorized into three classes based on the location
of the fault: healthy, outer ring fault, and inner ring fault. Table 2 presents information
about the PUA dataset arrangement. The EDM trenches are 0.25 mm in length and 1–2 mm
deep. The length of the damages executed using the electric engraving tool is 1–4 mm. The
holes inflicted by drilling on the inner and outer race have diameters of 0.9 mm, 2 mm, and
3 mm. All the bearings are attributed to one of three classes depending on the inflicted fault
location. The arrangement of the PUA dataset with bearing codes is provided in Table 2.
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Time- and frequency-domain plots illustrative of all types of faults in the PUA dataset are
shown in Figure 2.

Table 2. Bearing class assignments in the PUA dataset.

Bearing Type Bearing Code

Healthy K: 001, 002, 003, 004, 005, 006

Outer ring damage KA: 01, 03, 05, 06, 07, 08, 09

Inner ring damage KI: 0, 03, 05, 07, 08
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2.2. Paderborn University Bearing Data with Real Damage (PUR Dataset)

For the PUR dataset, the dataset authors selected 14 bearings damaged by accelerated
lifetime faults. The incurred defects were a consequence of experiments conducted on
a specially engineered apparatus equipped with a spring-screw system, enabling the
application of substantial radial force and emulating a natural mechanism of defect creation.
Additionally, to create a more aggressive environment, the bearings were improperly
lubricated using low-viscosity oil. The PUR dataset consists of 14 bearings deliberately
damaged through accelerated life testing. The dataset authors achieved this by subjecting
the bearings to specific tests using a specially designed machine with a spring-screw
mechanism, which simulated natural fault development. To intensify the testing conditions,
the bearings were improperly lubricated using low-viscosity oil, creating a more severe
environment for damage induction. Damages obtained from the accelerated lifetime
experiments are characterized as fatigue that appears as pitting in more than 2/3 of the
cases. Damages outside of this category appear as permanent deformations manifested as
indentations caused by debris. The assessment of the damage severity was performed by
measuring the span of the impacted region on the ring surface along the pathway of the
roller elements.

The damages were categorized into three levels depending on the ratio of the damage
span to the circumference of the pitch: first level (0–2%), second level (2–5%), and third level
(5–15%). Based on the location of the single damages, bearings are distinguished as having
either an outer ring fault, an inner ring fault, or in the case of having both, outer + inner
ring faults. The rolling elements of the bearings remained intact. The arrangement of the
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PUR dataset with bearing codes is provided in Table 3. Time- and frequency-domain plots
illustrative of all types of faults in the PUR dataset are shown in Figure 3.

Table 3. Bearing class assignments in the PUR dataset.

Bearing Type Bearing Code

Healthy K: 001, 002, 003, 004, 005, 006

Outer ring damage KA: 04, 15, 16, 22, 30

Inner ring damage KI: 04, 14, 16, 17, 18, 21

Outer + inner ring fault KB: 23, 24, 27
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2.3. Case Western Reserve University Bearing Data (CWRU Dataset)

In this dataset’s testbed configuration, a 2 hp motor was utilized, and accelerometers
were affixed to both the motor base and the motor itself. SKF6205 bearings were installed at
the drive end and fan end of the motor, while a torque transducer was employed to collect
the RPM and power data. The testbed used in the CWRU setup is depicted in Figure 4 [39].
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Electric discharge machining technology was used to intentionally create faults on
the bearing’s inner ring, outer ring, and rolling element. These faults have diameters
between 0.007 inches and 0.040 inches. Stationary faults were induced on the outer ring.
The vibration response of the setup varies depending on the fault location with respect to
the load area of the bearing. To mitigate the role of this effect, experiments were performed
with faults positioned at 3 o’clock, 6 o’clock, and 12 o’clock both for the bearings at the
fan end and at the drive end. For each experimental run, only a single faulty bearing
was installed.

In this study, vibration data were gathered using acceleration measurements of the
motor during its operation, spanning a speed range of 1720 to 1797 RPM under different
load conditions ranging from 0 to 3 hp. The data were recorded using a 16-channel DAT
recorder with a sampling rate of 12 kHz. Subsequently, the data were divided into one-
second samples, culminating in a total set of 1920 samples. The assignment of the data to
different classes was performed using bearing codes as displayed in Table 4. Time- and
frequency-domain plots illustrative of all types of faults in the CWRU dataset are shown in
Figure 5.

Table 4. Bearing class assignments in the CWRU dataset.

Bearing Type Bearing Code

Healthy 97–100

Outer ring damage 130–133, 144–147, 156–160, 197–200,
234–237, 246–249, 258–261

Inner ring damage 056–059, 105–108, 169–172, 209–212

Ball damage 048–051, 118–121, 185–188, 222–225
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3. Technical Background
3.1. Wavelet Packet Transform

Wavelet packet transform is a more generalized method as compared to basic wavelet
transform since its decomposition tree splits towards both lower and higher frequency
spectra. This feature gives it the ability to characterize the non-stationary bearing fault
signals. When performing signal analysis using WPT, the input signal is broken down into
a collection of wavelet packet nodes arranged in a complete binary tree structure. These
nodes are assigned an index in the format (j, n) and their respective coefficient of wavelet
packet tree is represented as dn

j , in which the level of decomposition is indicated by j, while
n denotes the number of nodes in that level. In the WPT structure presented in Figure 6,
the input signal is located at the node indexed W(0,0), which is called the root of the WPT
tree. Index W(1,0) is located at the low-pass filtered branch and W(1,1) is located at the
high-pass filtered branch. These nodes result in a vector with approximation coefficients d0

1
and a vector with detail coefficients d1

1. Likewise, all further WPT nodes are split at every
decomposition level j.
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To begin WPT decomposition, it is necessary to establish the scaling function ϕ(t) and
the base wavelet function ψ(t). The relationships between these functions can be described
by a system of equations, which can be expressed as follows:

ϕ(t) =
√

2∑
k

hkϕ(2t − k)

ψ(t) =
√

2∑
k

gk(2t − k)
(1)

where the low-pass filter is denoted as hk, the high-pass filter is denoted as gk, and k
represents a transformation parameter.

Once the basis function is established, it is possible to implement a recursive algorithm
for signal decomposition with the following definition:

d2n
j+1[k] =

√
2∑

l
hl−2kdn

j [k]

d2n+1
j+1 [k] =

√
2∑

l
gl−2kdn

j [k]
(2)

where the coefficients are denoted as dn
j [k] for the wavelet packet coefficients, d2n

j+1[k] for the

approximation coefficients, and d2n+1
j+1 [k] for the detail coefficients. The symbol hl−2k stands

for the low-pass filter coefficients and gl−2k stands for the high-pass filter coefficients.
The input signal, once decomposed through WPT, can be reconstructed using the

deduced algorithm as follows:

dn
j [k] = ∑

l
hk−2ld2n

j+1[k] + ∑
l

gk−2ld2n+1
j+1 [k] (3)

Using a notation of Sj,n to represent a reconstructed signal of wavelet packet coeffi-
cients dn

j , the original signal can be represented as a sum of the reconstructed signals at the
decomposition level j. With the assumption that the decomposition level j = 2, the original
signal can be represented as follows:

S0,0 = d0
0 = S2,0 + S2,1 + S2,2 + S2,3 (4)

3.2. Approaches for Mother Wavelet Selection

The results of WPT decomposition heavily depend on the selection of the basis func-
tion, called the mother wavelet. Various methods for selecting the mother wavelet have
been proposed, and they can be classified as qualitative or quantitative. Qualitative meth-
ods involve investigating wavelet properties, such as symmetry, orthogonality, regularity,
compact support, vanishing moment, and explicit expression, to choose the one that best
suits the specific task. However, relying solely on wavelet properties can be limiting
because multiple wavelets may possess identical properties and parameters, making it
challenging to determine the most suitable one. To address this challenge, researchers have
explored an alternative qualitative approach called shape matching, which involves ana-
lyzing the geometric shape of wavelets. This approach aims to identify a mother wavelet
that is similar in shape to the target signal feature component, thereby facilitating the
effective extraction of signal components. Despite its potential benefits, the manual process
of matching the shape of a signal with the mother wavelet can often be extremely tedious
and time-consuming, as it requires manual visual comparison and lacks automation.

Extensive research has been conducted on quantitative methods with the aim of over-
coming the limitations of qualitative methods. These methods employ various quantitative
measures such as signal energy, Shannon entropy, cross-correlation, Emlen’s modified
entropy measure, cross-correlation, and distribution error criterion to identify the most
suitable mother wavelet. In recent years, among the most popular quantitative methods for
mother wavelet selection, the maximum energy to Shannon entropy ratio criterion appears
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to be the most prevalent. It joins the popular maximum energy metric and Shannon entropy
metric forming a robust and convenient method for mother wavelet selection.

The maximum energy method implies that the best-fitting mother wavelet will allow
the extraction of the largest amount of energy from the signal under analysis. Its energy,
with x standing for discrete-time signal, can be expressed as follows:

Ex =
N

∑
n=1

|xn|2 (5)

However, it is noteworthy that signals with equal energy may exhibit varying fre-
quency distributions. Specifically, one signal may display higher energy levels of frequency
components significant for feature selection, while another may have a broad spectrum
with a flat energy level across the whole spectrum, lacking practicality for fault diagno-
sis. To quantitatively express the signal energy distribution among WPT nodes at the
decomposition layer, Shannon entropy is used and calculated as follows:

H = −
N

∑
i=1

pi · log2 pi (6)

where pi is the energy probability distribution of the wavelet coefficients. Considering wt(s,
i) is the ith coefficient at the s level, then pi is defined in the following manner:

pi =
|wt(s, i)|2

Ex(s)
(7)

Thus, the energy-to-Shannon entropy ratio can be defined as follows:

R(s) =
Ex(s)
H(s)

(8)

Using Equation (8), the R(s) ratio is calculated at the necessary WPT decomposition
level for every candidate mother wavelet. The candidate wavelet with the highest value of
energy to Shannon entropy is selected as the base for the WPT decomposition of the given
signal or set of signals.

3.3. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a powerful supervised dimensionality reduction
tool. It works by projecting high-dimensional data onto a lower-dimensional space while
maintaining the original class information. To obtain the ideal class discrimination matrix,
the algorithm seeks to minimize the scatteredness within a class while maximizing the
distance between classes. In multiclass LDA, the within-class variance SW matrix can be
represented in the following way:

SW =
c

∑
j=1

nj

∑
i=1

(
xij − µj

)(
xij − µj

)T (9)

where SW is the within-class variance, µj is the mean of jth class, xij is the ith sample of the
jth class, c is the total number of classes, and nj is the number of samples in the class.

SB =
c

∑
j=1

ni(µi − µ)(µi − µ)T (10)

where SB is the between-class variance, µi is the mean of ith class, and µ is the total mean.
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After SW and SB are calculated, the transformation matrix W of the LDA technique that
maximizes Fisher’s criterion formula in Equation (11) can be expressed as Equation (12).

argmax
W

WTSBW
WTSWW

, (SWW = λSBW) (11)

W = SW
−1SB (12)

For the transformation matrix W, the generalized eigenvalue problem is solved to
obtain the axes of the LDA space in the form of eigenvectors V and their eigenvalues λ.
The eigenvectors represent the directions of the new space, and the eigenvalues represent
their robustness or their ability to discriminate between classes. Thus, only k eigenvectors
with the highest eigenvalues are selected to construct the final lower dimensional space.
After that, the original data are projected onto the LDA space. Assuming that M is the
number of dimensions in the original data, then (M − k) dimensions are removed from
each sample. Now each point of the original data will be represented in the k-dimensional
space, and the projection can be defined as follows:

Y = XVk (13)

where X is a data matrix, Vk is the lower dimensional space, and Y is the data matrix
after projection.

4. Proposed Method
4.1. Vibration Signal Processing

Faulty bearings produce high-frequency components in the vibration signal due
to various mechanisms, such as impact, rubbing, or resonance. These high-frequency
components are often masked by low-frequency components in the signal, such as those
caused by machine operation, background noise, or measurement noise. For this reason, a
signal processing technique known as envelope analysis is applied for signal preprocessing
in order to extract the high-frequency components of a signal by use of demodulation.
Thus, as can be seen from the workflow of the proposed method in Figure 7, the raw signal
is initially preprocessed using Hilbert transform envelope extraction.

This is completed by taking the module of the analytical signal obtained from the
Hilbert transform. The whole process can be described mathematically starting with
Equation (14), which reveals the expression of the vibration signal x(t), where the amplitude
modulation envelope is given by A(t) and the function of phase modulation is represented
by φ(t).

x(t) = A(t) cos(2π f t + φ(t)) (14)

The transformation of x(t) via the Hilbert transform is demonstrated in Equation (15)
as its 90-degree phase shift.

x̂(t) = A(t) sin(2π f t + φ(t)) (15)

The ensuing analytical signal is obtained as a complex number:

Z(t) = x(t) + jx̂ = A(t)ejφ(t); (16)

By computing the modulus of Z(t), the envelope of the signal can be determined
as follows:

|Z(t)| = A(t) (17)
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4.2. Vibration Signal Processing

The choice of a mother wavelet when decomposing a signal using the wavelet packet
transform (WPT) can have a significant impact on the spectral characteristics of the resulting
coefficients. Different mother wavelets may be better suited for capturing specific types
of spectral content or signal features, while others may not be as effective. In the regular
WPT procedure explained in Section 3.2, a list of various mother wavelets is available for
selection. To evaluate the effectiveness of the mother wavelets, a representative subspace
of the signal data is chosen. This subspace is decomposed using each mother wavelet from
the list, creating a unique WPT tree for each one. Then, the reconstructed coefficients at the
desired decomposition level are assessed for each tree. The mother wavelet that exhibits the
best evaluation score in comparison to the other wavelets is selected for the decomposition
of the entire dataset.

The proposed WPT-based signal representation, on the other hand, provides a dif-
ferent approach. This method aims to represent a signal using WPT decomposition as a
foundation, but it is not limited to using a single mother wavelet. Firstly, the given signal
data are decomposed to the level j (which in this work equals to j =3) using the set of W
mother wavelets resulting in W WPT trees. Following that, at the desired decomposition
level, the nodes with the same indexes from d0

j to dn
j are taken for comparison across the

W WPT trees forming a list of candidates with a dimension of 1 × W, which in this work
is 1 × 36 since W = 36 wavelet functions were tried. For each of the candidate lists, the
assessment is performed based on the spectral content evaluation of each reconstructed
WPT coefficient, which is calculated using the ratio of the total power of the spectrum and



Machines 2023, 11, 1080 14 of 23

the Shannon entropy of the signal power spectrum. The workflow of the novel WPT-based
signal representation is shown in Figure 8.
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Considering the definition of Shannon entropy of signal power spectrum:

Hps = −
N

∑
i=1

pi log2(pi) (18)

where N is the total number of frequency bins in the power spectrum, and pi is the proba-
bility of the signal power being in the frequency bin, which is defined as follows:

pi =
Pi

∑N
j=1 Pj

(19)

where Pi is the power in the i-th frequency bin.
The total power of the signal spectrum is calculated as follows:

Pss =
N

∑
i=1

Pi (20)

The ratio is defined as follows:

R =
Pss

Hps
=

∑N
i=1 Pi

−
N
∑

i=1

Pi
∑N

j=1 Pj
log2

(
Pi

∑N
j=1 Pj

) (21)

Evaluation of the reconstructed coefficients of the WPT node using the R-value makes
it possible to compare the spectral content captured by each mother wavelet and choose
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the one that provides the best representation of the signal within the frequency range of a
particular WPT node. Specifically, the criterion measures the amount of information in the
signal power spectrum that is being concentrated in specific frequency bands, as opposed
to being distributed uniformly over the entire spectrum. A mother wavelet that produces a
reconstructed coefficient with a higher ratio of total power to Shannon entropy is preferred,
as it indicates a signal with a more predictable and more structured spectral composition.

The proposed method assembles the final decomposition of the signal node by node,
depending on the R-value of its reconstruction. Different parts of the signal may have
distinct spectral characteristics, and by selecting a specific mother wavelet for the decom-
position of each node, the novel WPT-based signal representation can capture the relevant
spectral features of the signal more accurately. It can better acquire the spectral content of
the signal and identify important discriminant features, resulting in improved performance
as compared to WPT which relies on the traditional mother wavelet selection methods and
uses a single mother wavelet for the entire signal.

It is worth mentioning that the proposed signal representation method is based on
the same principles as WPT. It does not satisfy some of the basic properties of wavelet
decomposition, such as the superposition property or conservation of energy. Therefore, it
cannot be considered an advanced version of WPT. However, the proposed signal represen-
tation method can still be used effectively as a feature extraction tool. The manipulations
performed on the signal using the proposed signal representation method have a solid
basis and are based on sound mathematical principles. As a result, the extracted features
can provide useful information about the signal, which can be used for a wide range of
applications, such as signal processing, classification, and pattern recognition.

4.3. Feature Extraction and Feature Pool Configuration

Collecting real-world data necessary for the diagnosis of bearing faults, including
vibration data, acoustic emission data, or electric current data, involves extended periods
of high-rate sampling. This process generates complex datasets with numerous variables,
placing a significant demand on memory and computational resources. As a result, apply-
ing ML techniques to unprocessed data is restricted in practicality. Feature extraction is a
technique that addresses this challenge by reducing the dimensionality of data. It involves
the conversion of a raw dataset to a smaller one by means of extraction of high-quality fea-
tures representative of the whole dataset, which contributes to superior generalization and
prevents overfitting. A set of features obtained after extraction is conventionally referred to
as the feature vector.

Existing literature on bearing fault diagnosis encompasses a substantial number of
features that are utilized in varying permutations to establish a condensed depiction of
the vibration data. In the current work, a total set of 19 features was extracted from the
WPT-reconstructed node signals. Out of them, 16 are time-domain and three are frequency-
domain features. These statistical features are ubiquitous in the field of bearing fault
diagnosis, and anticipating the significance of specific features for fault diagnosis before
feature selection is tedious. Consequently, the collection of features aggregated for this
study aims to incorporate as many statistical features as feasible from the literature. The
feature names along with the equations are displayed in Table 5. These 19 features extracted
from 8 reconstructed WPT coefficients form a row of 152 features for each sample and
together constitute a primary feature pool.
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Table 5. Statistical features definitions.

Feature Name Equation Feature Name Equation

Peak value Xp = max
i

|xi| Entropy H(x) = −
N
∑

i=1
P(xi) · log2 P(xi)

RMS XRMS =

√
1
N

N
∑

i=1
x2

i
Mean µ = 1

N

N
∑

i−1
xi

Kurtosis Xkurtosis =
1
N

 N
∑

i=1
(xi−µ)4

σ4

 Skewness Xkurtosis =
1
N

 N
∑

i=1
(xi−µ)3

σ3


Crest factor C f =

Xp
XRMS

Shape factor RMS SFRMS = XRMS
µ

Clearance factor L =
Xp(

(1/N)
N
∑

i=1

√
|xi |
)2 Peak-to-peak value

xptp = max|x| − min|x|

Impulse factor L = max{|xi |}(
(1/N)

N
∑

i=1
|xi |
) Energy of signal e =

N
∑

i=1
x2

i

Root variance frequency RVF =

√√√√√
∞∫
0
( fi−FC)2s( fi)d f

∞∫
0

s( fi)d f
RMS frequency RMSF =

√√√√√
∞∫
0

f 2
i s( fi)d f

∞∫
0

s( fi)d f

Square mean root XSMR =

 N
∑

i=1

√
xi

N

2

Frequency center FC =

∞∫
0

f s( f )d f

∞∫
0

s( f )d f

5th normalized moment HOMn5 =

1
n

N
∑

i=1
(xi−µ)5

(√
1

N−1

N
∑

i=1
(xi−µ)2

)5 6th normalized moment HOMn6 =

1
n

N
∑

i=1
(xi−µ)6

(√
1

N−1

N
∑

i=1
(xi−µ)2

)6

Shape factor SMR SFSMR = XSMR
µ

4.4. Feature Extraction and Feature Pool Configuration

LDA is a dimensionality reduction algorithm without inherent feature selection ca-
pabilities. This means that input data of low quality provided to an LDA can degrade
its performance for a number of reasons. Firstly, the presence of the low-quality features
introduces noise and causes distortions in inter-class and between-class mean values, ergo,
causes distortions in transformation matrix eigenvalues and eigenvectors resulting in sub-
optimal LDA space, which leads to poor classification results. Secondly, with a higher
number of features, LDA will have to perform more computations due to the possibility
of a larger data matrix having more linear discriminants, making the model more time-
consuming. In order to avoid these issues and prevent the presence of low-quality features,
LDA requires selective feature preprocessing.

In this work, selective preprocessing is performed based on the feature informative
factor (IF). Initially, the cosine similarity for each pair of features in the primary vector is
calculated. If features in the pair are defined as Fi and Fj, then their cosine similarity can be
defined as follows:

Csim
(

Fi, Fj
)
=

Fi · Fj

∥Fi∥∥Fj∥
(22)

An informative factor metric for each feature Fi is calculated as a sum of the cosine
similarities of this feature with every other feature in the set as follows:

I =
n

∑
i=1

Csim (23)
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Based on the IF, the feature is included in the informative feature pool if its magnitude
is above zero or is left in the primary feature pool if its magnitude is below zero, according
to the following definition:

I =
{
∀FiifIvalue > 0, informativepool

else, primarypool
(24)

The resulting informative feature pool then undergoes the LDA transformation as was
described in Section 3.3. The application of informative factors offers significant benefits
for linear discriminant analysis in that it ensures a minimal level of scatteredness among
the features within the same class. Overall, the application of IF-LDA for dimensionality
reduction offers significant benefits for effective bearing fault diagnosis. It enables the
creation of a feature space that maximizes the separation between different classes while
simultaneously ensuring a dense configuration among the features within the same class.
This improvement in feature space facilitates enhanced accuracy in model predictions and
ensures easy generalization, leading to a more robust and reliable diagnosis. A visual
representation of the high-quality feature spaces with well-separated classes obtained from
using the proposed method on three different datasets is shown in Figure 9.
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4.5. Bearing Fault Classification

After the feature vector dimensionality is reduced using IF-LDA, the classification
of the bearing state is performed by the k-nearest neighbor (KNN) classifier. The KNN
classifier is a non-parametric machine learning classification method. It determines the
class membership of an input data point by finding the k closest labeled data points using
a distance metric. KNN does not construct a model based on training data and, thus, is
considered instance-based. Once KNN receives a new data sample x′ for classification, it
calculates the distances d from this sample to the known labeled samples xi. Then, based
on majority voting, the new sample is allotted to the class with the highest number of
instances among k-nearest samples in the training dataset. In this work, the number of
nearest neighbors was set to k = 5.

The effectiveness of the KNN classifier heavily relies on the quality of the features
used. By leveraging the distance-based approach, KNN measures the similarity between
instances based on their feature vectors. If the features effectively capture the relevant
patterns and characteristics of the data, KNN can successfully identify similar instances
and make accurate predictions. On the other hand, if the features are not informative or
do not capture the underlying structure of the data, KNN’s performance may be limited.
Therefore, the choice and quality of features play a crucial role in the success of KNN.
This allows for a comprehensive assessment of the impact of different feature engineering
techniques on classification accuracy. As a result, the KNN classifier serves as a robust
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benchmark for the evaluation of the effectiveness and generalizability of different feature
engineering methods.

5. Experimental Results and Discussion

In this section, the evaluation of the bearing fault diagnosis performance is con-
ducted on three datasets previously described in Section 2: The PUA is categorized into
three classes and 5760 samples in total, the PUR dataset is categorized into four classes
with 6400 samples in total, and the CWRU dataset with four class labels and 1920 total
samples. To ensure fairness in the evaluation, the datasets are split in a way that 80% of
data are reserved for training and 20% are reserved for testing. The validation is carried
out using the 10-fold cross-validation strategy. This strategy involves randomly reordering
and partitioning the data into 10 groups. During each iteration, one group is assigned as
the validation data, while the remaining nine groups are utilized for training. This process
is repeated 10 times, ensuring that each data sample is included in a single holdout set.

Macro-averaged (MA) recall, macro-averaged precision, F1-score, fault identification
accuracy, and one-class true positive rate were used as metrics for performance comparison
and their definitions are provided in Equations (25)–(29), where TP stands for true positive,
FN for false negative, FP for false positive, the lowercase k stands for the class number, the
capital K stands for the total number of classes, and N is the total number of samples.

Recm =
1
K

(
K

∑
k=1

TPk
TPk + FNk

)
× 100 (25)

Precm =
1
K

(
K

∑
k=1

TPk
TPk + FPk

)
× 100 (26)

F1m = 2 × (Precm × Recm)/(Precm + Recm) (27)

FIA =
∑K

k TPk

N
× 100, (28)

TPRk =

(
TPk

TPk + FNk

)
× 100 (29)

The methods selected for comparison have a similar nature to the proposed method
in terms of bearing vibration signal processing. This relatedness helps to correctly eval-
uate the increase in fault diagnosis performance introduced by the proposed method.
All the calculated metrics are represented as column charts in Figures 10 and 11 for
convenient comparison.
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Applying the proposed method to the PUR, PUA, and CWRU datasets resulted in
an FIA of 100% for each dataset. Accordingly, the error rate equals 0% for each dataset
and MA recall and MA precision are 100%. The results obtained from the proposed
method can be explained by the quality of the WPT-based signal representation, where each
node is chosen according to the R-value criterion, ensuring that the reconstructed signals
possess a well-defined spectrum with prominent high-energy frequency components and
minimal interference from noise. This allows for avoiding the effect of noisy or corrupted
reconstructed signals in certain nodes for the reason of the low sensitivity of a particular
mother wavelet to the shape of the components in the frequency range of the particular
WPT node. Another reason for the high performance of the proposed method lies in the
IF-LDA dimensionality reduction technique. The informative factor (IF) selective feature
preprocessing helps to eliminate low-quality features that have poor correlation with the
dependent variables. This step is crucial to prevent degradation of the performance of
the LDA. Moreover, the features accepted into the final pool using IF preprocessing are
compactly clustered within the same class and exhibit a high inter-class difference in mean
value. Therefore, after reducing the dimensionality with LDA, the feature space depicted
in Figure 9 is obtained. Given the resulting feature space that exhibits distinct boundaries
between classes, maximizing the distinction between healthy bearings and various fault
states, a simple KNN model is fully capable of achieving 100% fault diagnosis performance,
as assessed using several metrics presented in Figures 7 and 8.

The first comparison method uses the signal energy features extracted from wavelet
packet bases to train the random forest classifier [40]. Utilizing WPT for signal energy
feature extraction has become a widely used reliable strategy in the fault diagnosis field.
Together with a powerful random forest algorithm, this method showed high performance
on three datasets. Nevertheless, by solely relying on energy features in contrast to a diverse
vector of features derived from both the time domain and the frequency domain, the
method fails to capture the necessary level of distinctiveness and falls behind the proposed
method. Thereby, the FIA demonstrated by this method on the PUA set is 93.90%, 99.34%
for the PUR set, and 96.22% for the CWRU set. Accordingly, the error rates are 6.10%, 0.66%,
and 3.78%. The MA recall values are 93.54%, 99.28%, and 95.99%, respectively, and the
MA precision values are 93.62%, 99.12%, and 99.46%, respectively. In addition, while node
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energy features may indicate changes in overall energy levels, they do not offer insights
into the specific fault-related patterns that can be crucial for accurate diagnosis.

The second comparison method [41] employed a similar approach by utilizing the
WPT for bearing vibration signal decomposition. The extracted features described in
Section 4.2 were used to train a KNN classifier. This method demonstrated inadequate
performance when diagnosing compound bearing faults and exhibited mediocre abilities
in fault diagnosis. In particular, the FIA values for the three datasets achieved by this
method are 88.22%, 92.09%, and 83.79%, respectively, which correspond to the error rates
of 11.78%, 7.91%, and 16.21%. The MA recall values are 87.31%, 90.24%, and 84.45%,
respectively, and the MA precision values are 93.62%, 99.12%, and 96.46%, respectively. One
of the contributing factors to this subpar performance is the absence of feature selection.
Without it, random fluctuations in the data and noisy features which contain minimal
discriminant information or exhibit weak correlation with the response may cause the
model to overfit to these instances and eventually cause poor fault diagnosis performance
and misclassification.

The third comparison method, which utilizes a robust Gaussian kernel SVM classifier,
exhibited poor performance due to its heavy reliance on WPT energy features, analogously
to the first comparison method [42]. The FIA values for the three datasets are 92.43%,
98.67%, and 76.43%, respectively, which correspond to error rates of 7.57%, 1.33%, and
23.57%. The MA recall values are 92.25%, 98.60%, and 73.27%, respectively, and the MA
precision values are 92.11%, 98.49%, and 80.79%, respectively.

The performance levels of the last comparison method are very high and are the
closest to the proposed method [43]. The FIA values achieved by this method on the three
datasets are 99.48%, 98.70%, and 97.06%, respectively, while the error rates are 0.52%, 1.30%,
and 2.94%, respectively. The MA recall metrics are equal to 99.41%, 98.22%, and 96.75%,
respectively, while the MA precision values are 99.45%, 97.55%, and 96.04%, respectively.
This can be explained by the utilization of the Boruta feature selection algorithm, which
evaluates each feature in the set depending on its usability for the random forest (RF)
classifier. Boruta uses random permutations of the features called shadow attributes (SA)
and attaches them to the feature vector to create the extended information system (EIS).
RF is trained on EIS multiple times, each time with new SA permutations. After each
training iteration, the model is tested, and the calculation of the correct class votes is
calculated. Eventually, only the features that are significantly more useful than any of its
own permutations are selected for the final feature set. The rest of the features are neglected.
This allows for constructing a feature set with highly discriminant features that enables
reliable FD performance of the method using the KNN model.

Given the data parameters described in Section 2, the proposed method is capable of
diagnosing the type of fault in the bearing under analysis in 0.3 to 0.33 s when running on
a PC equipped with an Intel® Core™ i7-9700K CPU and 16 GB of RAM.

6. Conclusions

This paper proposed a method for bearing fault diagnosis using a novel WPT-based
signal representation and informative factor LDA. The shape of the mother wavelet that
poorly matches the shape of the signal components along the spectrum may cause incon-
sistent results of the decomposition with a low level of detail. Having decomposed the
signal using various mother wavelets, the proposed R-value criterion based on the energy-
to-entropy value of the node reconstruction allows the model to tailor a representation
consisting of the nodes decomposed using mother wavelets that allow the extraction of
the highest amount of detail and bearing fault-related information at the local frequency
spectrum contained in the WPT node.

The dimensions of the vector of features extracted from this representation are reduced
using the proposed informative factor LDA. The informative factor preprocesses the fea-
tures, retaining only those that exhibit dense clustering within each class and offer optimal
inter-class separation. The IF provides LDA with the advantage of early elimination of
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noisy and low-quality features, protecting LDA from outliers and enhancing interclass
separability. Moreover, it reduces the computational time by providing a smaller feature
vector matrix, which results in fewer possible LDA spaces. Overall, the introduction of an
informative factor results in excellent LDA performance and complete class separation in
the LDA space. For classification, the KNN algorithm was used, and the results surpassed
those obtained by all other comparison methods.

It is worth noting that the advantages of the WPT-based signal representation, while
promising, do come with a slight increase in computational time during training. This
arises from the need to assess the quality of signal decomposition using various mother
wavelets. To mitigate this, employing a smaller portion of the overall dataset as well as
refining and reducing the mother wavelet candidate list through benchmark comparisons
across diverse datasets can be beneficial. In light of these considerations, a future work
direction could involve a benchmark comparison method that permanently eliminates
the poorest-performing wavelets from the candidate list. Another potential avenue for
future work is adapting the proposed algorithm to handle bearing fault data with transient
rotational speeds.
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