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Abstract: This paper addresses the issue of a road-type-adaptive control strategy aimed at enhancing
suspension performance. H2 synthesis is employed for modeling road irregularities as impulses
or white noise, minimizing the root mean square (RMS) of performance outputs for these specific
road types. It should be noted, however, that this approach may lead to suboptimal performance
when applied to other road profiles. In contrast, the H∞ controller is employed to minimize the
RMS of performance outputs under worst-case road irregularities, taking a conservative stance
that ensures robustness across all road profiles. To leverage the advantages of both controllers and
achieve overall improved suspension performance, automatic switching between these controllers is
recommended based on the identified road type. To implement this adaptive switching mechanism,
manual switching is performed, gathering input–output data from the controllers. These data are
subsequently employed for training an Adaptive Neuro-Fuzzy Inference System (ANFIS) network.
This elegant approach contributes significantly to the optimization of suspension performance. The
simulation results employing this novel ANFIS-based controller demonstrate substantial performance
enhancements compared to both the H2 and H∞ controllers. Notably, the ANFIS-based controller
exhibits a remarkable 62% improvement in vehicle body comfort and a significant 57% enhancement
in ride safety compared to passive suspension, highlighting its potential for superior suspension
performance across diverse road conditions.

Keywords: active suspension; H2 synthesis; H∞ synthesis; ride comfort; ride safety; ANFIS; LMI

1. Introduction

In the automotive industry, ensuring vehicle safety and passenger comfort are two
primary design challenges. The vehicle suspension system plays a crucial role in achieving
these objectives. It is responsible for isolating the vehicle body from vibrations and shocks
caused by road surface irregularities to provide a smooth ride. Additionally, it should
prevent the wheels from bouncing to maintain stable contact with the road for ride safety.
However, these goals can conflict with one another. Improving ride comfort requires a
larger suspension stroke, which means a soft suspension, while ride safety requires stiff
damping. As a result, achieving the best possible passenger comfort without compromising
road-holding requires adjusting these suspension parameters to suit different road profiles.

In passive suspension systems, the damper coefficient and spring stiffness are typically
set during the design phase and cannot be adjusted to respond to different road profiles.
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As a result, the development of more intelligent suspension systems, such as semi-active
and active suspension systems, has become increasingly popular within the automotive
industry and academic communities. These advanced suspension systems provide the
capability to adjust the suspension parameters in real time to adapt to changing road
conditions, resulting in improved ride comfort and safety.

The active suspension system employs a singular linear electromagnetic or hydraulic
actuator, paired with its respective amplifier, at each corner of the vehicle. This configu-
ration has the capability to either replace or function concurrently with the conventional
damper–spring setup. In the last decade, several control methodologies have emerged for
the enhancement of active suspension systems, including robust control [1–6], preview-
based active suspension [7–9], optimal control [9–12], and adaptive control [4,13–16]. Since
neural networks and fuzzy controls are the key branches of intelligent control, numerous
studies have been conducted on using adaptive control methods, neural networks, and
fuzzy control theory to control active suspension systems [17–21]. These approaches have
been shown to improve ride comfort and handling performance by adapting to changing
road conditions and providing real-time control of suspension dynamics, either indepen-
dently or in conjunction with complementary methodologies [16,22–25]. Two additional
prominent methodologies that have been extensively studied in the existing literature
include Model Predictive Control (MPC) and Sliding Mode Control (SMC). MPC excels in
dynamic adaptation through predictive modeling, resulting in improved ride comfort and
vehicle handling, while SMC showcases robustness to uncertainties and disturbances, en-
hancing stability and control precision in suspension applications. In both cases, substantial
performance improvements have been consistently observed when compared to passive
suspension systems, affirming the effectiveness of these control methodologies [26–30].

In the domain of vibration analysis, researchers often model road surface irregularities
as a stochastic process. This involves characterizing them either as white noise ground
speed or as deterministic disturbances, such as road bumps or puddles acting as impulse
inputs [31]. The H2 norm, serving as a quantitative measure of the root mean square
(RMS) amplitude of the system’s output in reaction to white noise or impulse inputs, is a
prevalent metric employed for the evaluation of ride comfort within the context of vehicular
dynamics analysis [10]. Consequently, the H2 norm is frequently regarded as the preferred
option, as it is typically less conservative than the H∞ norm when quantifying ride comfort
in scenarios where the system is subjected to white noise or impulse inputs. As a result,
many researchers have explored the use of Linear Quadratic Gaussian (LQG) and H2 norm
minimization in the design of active vehicle suspension systems [2,31–33].

It is crucial to emphasize that the efficacy of H2 synthesis can diminish when the
suspension system encounters road profiles different from those it was initially designed
for, especially in cases where the road inputs are deterministic, such as bumps or potholes.
On the other hand, H∞ control is designed to minimize the RMS value of the system output
for worst-case road irregularities, ensuring a conservative approach that is effective for
all road profiles, including deterministic inputs. As a result, numerous studies on H∞
or µ synthesis have been conducted in the field of suspension design, including [1,7,8]
and [34–36].

To enhance the performance of the suspension system in response to a wide range
of road irregularities, our novel approach recommends automatic controller switching
contingent upon the road type. This is achieved through meticulous manual controller
transitions and the systematic accumulation of input–output datasets from diverse road
profiles. The resulting dataset serves as the foundation for training an innovative Adaptive
Neuro-Fuzzy Inference System (ANFIS) controller. The main novelties of this work can be
summarized as follows:

• Dynamic Controller Transition and Data Collection: The proposed methodology intro-
duces dynamic switching between controllers based on road characteristics, a novel
approach for improving suspension system performance. An emphasis on meticu-
lous manual controller transitions and comprehensive data collection across various
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road profiles distinguishes this approach, paving the way for data-driven suspension
optimization. The combination of fuzzy logic and neural network techniques allows
the ANFIS controller to provide continuous and smooth control actions as the input
conditions change. This smooth transition helps avoid sudden changes in control
output, which can contribute to system stability and improved performance.

• Pioneering Utilization of ANFIS Controller as a Hybrid Controller Training Approach:
One of the key innovations in this research is the training of the ANFIS controller
using input–output data from both the H2 and H∞ controllers. This hybrid training
approach leverages the knowledge and performance characteristics of both controller
types to enhance the capabilities of the ANFIS controller, resulting in a unique and
powerful control system for suspension optimization.

The structure of this study is outlined as follows: In Section 2, a detailed description
of the quarter-car model used for the suspension system in this paper is presented. Addi-
tionally, this section elaborates on the active control problem, providing specific details
regarding the control objectives aimed at enhancing ride safety and comfort. Section 3
introduces the linear matrix inequality (LMI)-based H2 and H∞ control methods as the
foundation for designing the ANFIS-based controller structure. This section also outlines
the ANFIS neuro-fuzzy architecture. Section 4 contains simulation studies, which serve to
illustrate the effectiveness and advantages of the proposed method in achieving the control
objectives when compared to the two previously employed control approaches. Lastly, in
Section 5, concluding remarks are provided.

2. Problem Formulation and Design Method
2.1. Quarter-Car Model

In this study, a 2-degree-of-freedom (2-DOF) quarter-car model is employed to de-
pict the suspension system, as illustrated in Figure 1. This model comprises two main
components: the chassis, denoted as the sprung mass (ms), and the axle, referred to as
the unsprung mass (mu). A suspension system is mounted between these components to
facilitate the analysis. This model is widely used in active vehicle suspension studies due
to its ability to effectively capture the essential characteristics of a real suspension system.
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Figure 1. Quarter-car model of the active suspension system.

The equations of motion that elucidate the behavior of the sprung and unsprung
masses in the active suspension system are expressed as follows:

ms
..
zs = ks(zu − zs) + bs

( .
zu −

.
zs
)
+ u (1)

mu
..
zu = ks(zs − zu) + bs

( .
zs −

.
zu
)
+ ku(zr − zu)− u (2)

where zs and zu represent the displacement of the sprung and unsprung masses, while
ks and ku signify the spring constant of the suspension system and the tire stiffness, re-
spectively; bs is indeed the damping coefficient of the suspension system; zr is the road
disturbance input; and u signifies the control input.
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The state variables are chosen as follows:

x1(t) = zs − zu

x2(t) = zu − zr

x3(t) =
.
zs

x4(t) =
.
zu

The state-space representation of the quarter-car model is provided below:

.
x(t) = Ax(t) + B1w(t) + B2u(t)

with

A =


0 0 1 −1
0 0 0 1
− ks

ms
0 − cs

ms
cs
ms

ks
mu

− ku
mu

cs
mu

− cs
mu

 , B1 =


0 0 0
−1 0 0

0 0 0
0 0 0

 , B2 =


0
0
1

ms

− 1
mu


The road roughness-induced disturbance input is denoted as w =

.
zr. The parameter

values employed in this study are presented in Table 1 [37].

Table 1. Parameters of “Renault Mégane Coupe” car.

Symbol Description Value

ms Sprung mass 315 kg
mu Unsprung mass 37.5 kg
ks Suspension stiffness 29,500 N/m
ku Tire stiffness 210,000 N/m
bs Suspension damping coefficient 1500 N·s/m[

zde f , zde f

]
Suspension deflection limits [−8, 6] cm

2.2. Design Objectives

The assessment of body acceleration serves as a prevalent metric in evaluating passen-
ger comfort within vehicular contexts. In the pursuit of enhancing passenger comfort, it
becomes imperative to minimize both the vertical displacement and the rate of change in
velocity (acceleration) experienced by the vehicle’s body. This objective can be effectively
pursued through the optimization of damper displacement. The role of dampers, also
known as shock absorbers, in this endeavor, is pivotal. Dampers, as integral components
of a vehicle’s suspension system, significantly contribute to mitigating the effects of road
irregularities on passenger comfort. Notably, the damper force exerted depends on the
vehicle’s speed, increasing in magnitude as the vehicle’s speed rises. This modulation of
damper force with speed is essential to effectively control and dampen body movements,
maintaining both ride comfort and road-holding capabilities.

However, it is paramount to underscore that safety represents an equally essential
consideration alongside comfort. Ensuring safe driving conditions necessitates the mainte-
nance of optimal tire-to-road contact. Consequently, the design of the suspension system
must be executed with meticulous attention to balance the dual imperatives of comfort and
safety under various driving scenarios, all while considering the dynamic fluctuations in
system parameters.

In designing a controller for a suspension system, the following specifications must be
taken into account:

• Ride comfort: Ride comfort is commonly assessed by quantifying the RMS value
of acceleration experienced by passengers [7]. To attain optimal ride comfort, it is
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imperative to minimize this value to the greatest extent possible within the frequency
range of passenger body sensitivity, typically falling between 1 Hz and 8 Hz [31].
When road roughness is predominantly modeled as white noise or impulse input
(as is frequently the case), enhancing ride comfort involves the minimization of the
H2 norm of the transfer function from road displacement to chassis acceleration (

..
zs),

with appropriate weighting applied to the relevant frequencies. However, if the road
disturbances include more complex waveforms than white noise (such as deterministic
patterns), achieving optimal ride comfort may require the use of H∞ performance.

• Road-holding: To achieve good road-holding, it is necessary to maintain continuous
contact between the tires and the road surface. In the context of a given road profile,
this objective can be accomplished by minimizing the H2 or H∞ norms of the transfer
function from the road disturbance to tire displacement (zur = zu − zr). It is essential
to emphasize that maintaining rigid contact between the tires and the road necessitates
that the dynamic tire load does not surpass the static load [14], i.e.,

ku(zu − zr) < (ms + mu)g, ∀ t ≥ 0

This fact can be utilized to normalize the dynamic tire load.
• Suspension stroke limits: Suspension deflection (zde f ) plays a crucial role in achieving

the required road-holding specifications, and it is imperative to maintain the deflection
limits to ensure optimal ride comfort and prevent any structural damage to the system.
As a result, it becomes imperative to confine the transfer function zde f /zr within the
established upper and lower bounds to achieve the desired outcomes. Deviating from
these limits can result in compromised ride comfort and have an adverse impact on
the overall performance of the vehicle. To avoid excessive suspension bottoming, it
has to consider the limitations of suspension deflection and incorporate appropriate
measures to maintain optimal performance, as follows:

|zde f | = |zs − zu| ≤ zde f max

• Control signal: The control signal is produced by a hydraulic actuator and is con-
strained due to its saturation. It is hypothesized that the normalized control signal is
bounded, as expressed by the inequality:

|u| < umax

In order to optimize ride comfort, it is essential to minimize the RMS value of body
acceleration, all the while allowing suspension deflection, tire deflection, and the control
signal to fluctuate within their pre-defined limits.

Due to the predominant modeling of road roughness as white noise [31], the H2 norm
appears to be less cautious than the H∞ norm when quantifying any of the aforementioned
outputs. Moreover, in the suggested approach, the H∞ controller is employed to achieve
robust performance goals and ride stability by minimizing the associated transfer functions
for road disturbances that are more inclusive than just white noise and impulse. In light of
these factors, it is evident that there is a requirement for a controller that encompasses all
of the aforementioned features of both controllers.

2.3. Review of H2 and H∞ Design Frameworks
2.3.1. H2 Synthesis

The control objectives outlined in the preceding section necessitate the incorpora-
tion of normalizing weights into both control outputs

[
zde f zur

..
zs

]
and exogenous inputs

[w n1 n2]. Figure 2 depicts a general block diagram of the system. As mentioned earlier,
it is crucial to identify specific frequency conditions concerning suspension deflection
(aiming to reduce gain at lower frequencies), dynamic tire load, and the control signal.
Input weights denote the frequency characteristics of the inputs, while output weights
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signify the desired frequency components of the controlled outputs [32]. Additionally, it is
crucial to acknowledge the presence of measurement noise, denoted as n1 and n2, which
can affect the accuracy of the measured outputs y = [y1 y2]. The practical importance of
these measured outputs, specifically suspension deflection and body acceleration, cannot
be overstated. They can be readily acquired through the utilization of suitable sensors.
Therefore, the inclusion of normalizing weights accounts for the frequency characteristics
of both inputs and measurements, contributing to the effective control of the system while
considering these exogenous noise inputs in the design procedure.
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The following is a description of the augmented plant model for the design:

.
x(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t) (3)

y(t) = C2x(t) + D21w(t) + D22u(t)

The core aim is to develop an H2 controller that guarantees the stability of the closed-
loop system while meeting specific control objectives. These objectives encompass reducing
the H2 norm between the disturbance input ω and two key variables: body acceleration (

..
zs)

and tire deflection (zur). This optimization aims to enhance ride comfort and ride safety,
respectively. Simultaneously, the control signal (u) and suspension deflection (zde f ) must
be maintained within their allowable boundaries. The choice of weights is made to align
with the design framework within the specified frequency range.

For the H2 design, let us describe the controller as follows:

K :=
( .

xc

u

)
=

(
Ac Bc
Cc Dc

)(
xc

y

)
(4)

The state-space representation of the closed-loop system is obtained as follows:

Acl :=
(

A + B2DcC2 B2Cc
BcC2 Ac

)

Bcl :=
(

B1 + B2DcD21
BcD21

)
(5)

Ccl :=
(
C1 + D12DcC2 D12Cc

)
Dcl := D11 + D12DcD21
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Theorem 1. The closed-loop system will be stable, and the H2 norm from exogenous inputs to
controlled outputs will be less than γ if, and only if, there exist symmetric positive definite matrices,
X and Z , that satisfy the following inequalities [33]:(

AclX +XAT
cl Bcl

∗ −I

)
≺ 0

(
Z CclX
∗ X

)
� 0 (6)

Trace(Z) < γ2, Dcl = 0

2.3.2. H∞ Synthesis

The primary objective of H∞ controller design is to minimize the H∞ norm of a system
while preserving internal stability [38]. It is worth noting that the H∞ norm possesses di-
verse interpretations, particularly concerning its application in both the time and frequency
domains. In the frequency domain, the objective is to diminish the peak singular value of
the transfer function concerning frequency. This goal equates to minimizing the system’s
maximum gain across the entire frequency spectrum:

‖G(s)‖∞ , sup
ω

σ(G(jω)) (7)

In the single-input, single-output (SISO) scenario, the H∞ norm is synonymous with
the maximum magnitude of the transfer function. The H∞ norm’s interpretation in the
time domain is expressed as the induced 2-norm, as detailed below [39]:

‖G(s)‖∞ = sup
w(t) 6=0

‖z(t)‖2
‖w(t)‖2

(8)

where the induced 2-norm, indicated as ‖z(t)‖2 =
√∫ ∞

0 ∑i|zi(t)|2dt, signifies the energy
content of the signal vector. In the context of the time domain interpretation of the H∞
norm, the primary objective is to mitigate the energy of the output signal when subjected
to the most adverse input signal conditions.

In accordance with the principles of linear dissipative systems, the controller can be
derived by satisfying the bounded realness condition, commonly referred to as the bilinear
matrix inequality (BMI) [40]:

Minimize γ∞ subject to

X � 0 (9)A
T
clK + KAcl KBcl CT

cl

∗ −γ2
∞ I DT

cl

∗ ∗ −I

 � 0

By employing a change in variables similar to the H2 design and an appropriate
congruence transformation, the corresponding LMI (linear matrix inequality) conditions
for H∞ can be obtained. The Appendix A is devoted to this transformation. Also, readers
are encouraged to refer to [41,42] for a more detailed understanding of this process.

3. Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

For simplicity, a fuzzy system architecture, commonly known as the Type-3 ANFIS
structure, is considered with a two-input, two-rule fuzzy system that accommodates five
layers inside it [43]. Suppose that two if–then rules of a Sugeno-type fuzzy system are as
given below:
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If x is A1 and y is B1, then f1 = p1x + q1y + r1

If x is A2 and y is B2, then f2 = p2x + q2y + r2

The equivalent ANFIS structure corresponding to this controller design is illustrated
in Figure 3. The node functions within a given layer are members of the same function
family, and this family is described as follows:

• Layer 1: Every node in this layer is depicted as a square shape, each associated with a
specific membership function:

O1
i = µAi (x)

where the superscripts above and below denote the layer number and the node index
within the layer, respectively. The input to the i-th node in this layer is denoted by x
(or y), while Ai represents the corresponding linguistic term associated with this node
(e.g., “small”, “large”, etc.). In this specific case, the membership function, denoted
as µAi (x), is selected to have a bell-shaped form with a maximum value of 1 and a
minimum value of 0, as illustrated below:

O1
i = µAi (x) =

1

1 +
[(

x−ci
ai

)2
]bi

(10)

The parameter set {ai, bi, ci} corresponds to the specific parameters of the bell-shaped
membership function. Any variation in the values of these parameters will result in
changes to the shape of the bell-shaped function accordingly. As a result, a wide range
of membership functions can be induced for the linguistic value Ai by adjusting the
values of these parameters.

• Layer 2: Each node in this layer is represented by a circular shape denoted by the
symbol Π, indicating that the incoming signals are multiplied. The output of the
node is calculated as the T-norm (logical AND) multiplication of the input signals,
as follows:

O2
i = wi = µAi (x)× µBi (y) , i = 1, 2

where µAi (x) and µBi (y) are the membership functions for the input variables x and y,
respectively, associated with the i-th node, and × represents the logical AND operator.
The resulting value wi represents the firing strength or degree of membership for the
i-th rule. Each output node corresponds to the firing strength of a specific rule.

• Layer 3: Every node within this layer is a fixed node, symbolized by a circular shape
marked as N. This layer executes a normalization procedure involving summation
and arithmetic division. Specifically, the i-th node computes the ratio of the i-th rule’s
firing strength to the total sum of all rules’ firing strengths, as follows:

O3
i = wi =

wi
w1 + w2

, i = 1, 2

The computed values, denoted as wi, are termed normalized firing strengths. These
values signify the extent of the contribution of each rule towards the ultimate output
of the ANFIS model.

• Layer 4: Each node in this layer is represented by a square shape and performs the
multiplication of the normalized output of layer 3, wi, with the “then” part of the
fuzzy rule, denoted as fi, as follows:

O4
i = wi fi = wi(pix + qiy + ri)

The set of parameters {pi, qi, ri} are referred to as the consequent parameters, and they
determine the shape and position of the output surface of the ANFIS model.
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• Layer 5: The presented neural network architecture comprises a single node charac-
terized by a circular shape and identified as Σ. The output of this layer is calculated
through the algebraic summation of the input signals, represented as follows:

O5
1 = ∑2

i=1 wi fi =
∑2

i=1 wi fi

∑2
i=1 wi

(11)

Here, wi and fi denote the weight and input signal of the i-th input node, respectively.
The output O5

1 represents the weighted sum of the input signals normalized by the
sum of the weights.

In this way, a Type-3 ANFIS structure is established, demonstrating functional equiva-
lence to a Type-3 fuzzy reasoning system.
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ANFIS Design

The ANFIS algorithm utilizes input–output datasets obtained from the design proce-
dure of the H2 and H∞ controllers to construct a fuzzy inference system (FIS). To generate a
training dataset for the ANFIS controller in an active suspension system, data were collected
for both the H2 and H∞ controllers by simulating the vehicle over various road conditions
while recording the input parameters (e.g., road roughness) and the corresponding output
control actions from each controller. We labeled the data to indicate which controller was
active during data collection. Specifically, the training data used as input to the ANFIS
system comprised the deflection and acceleration of the suspension system, while the
output data were generated from two distinct sources: The first component of the output
data is related to the command force data generated by the H∞ controller in response to the
bump, which is designed to enhance the robustness of the system. The second component
of the output data is linked to the force command of the H2 controller in response to the
white noise road profile. The data were collected over a period of 10 s for each controller,
resulting in a total of 60,000 data points. To train the ANFIS system, the first 70% of the data
were used as the training dataset, while the remaining 30% were reserved for validating
the system. ANFIS automatically determines when to switch smoothly between controllers
during inference by evaluating the input conditions and the learned knowledge from the
dataset. This allows it to make dynamic controller transitions for optimal suspension
performance, as it continuously adjusts its output based on the current road conditions
and the knowledge it has acquired from the training data. In this study, we analyze the
response of closed-loop systems to an asphalt road profile comprising white noise and
bump disturbance. For the purpose of this study, we define bump disturbance as follows:

zr(t) =
{ h

2
(
1− cos

( 2πvt
l
))

, 0 ≤ t ≤ l
v

0 , t > l
v

(12)
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Bump disturbance is described using the following parameters: h = 0.1 m, l = 2 m, and
v = 10 m/s (equivalent to 36 km/h); these represent the height and length of the bump,
and the velocity of the vehicle, respectively. Figures 4 and 5 illustrate the training data
and validation results for the command force of both types of road inputs, along with their
respective errors. Specifically, Figures 4a and 5a depict the predicted command force and
its ability to track the target command force, while Figure 4b,c and Figure 5b,c present the
corresponding error and its RMS value, respectively. These results demonstrate that the
ANFIS system is capable of accurately predicting the command force, as evidenced by the
small magnitude of the error and its RMS value.
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4. Simulation Results

The design procedures for the H2 and H∞ controllers were performed separately,
following the steps outlined in [32]. The simulations were conducted in the 2020b MAT-
LAB/Simulink environment. In order to assess the effectiveness of the H2 and H∞ con-
trollers, a comparative analysis was conducted by examining the frequency response of
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the desired objectives in contrast to that of a passive suspension system across a broad
frequency spectrum, as depicted in Figure 6. The results indicate a significant improvement
in body acceleration and tire deflection for both controllers. As mentioned before, the
H2 controller is designed to minimize the mean squared value (L2 norm) of the system’s
output, which equates to reducing energy or power within specific frequency bands. This
design characteristic renders the H2 controller especially adept at mitigating vibrations. In
the realm of active suspension systems, where vibrations within the 1 to 20 Hz frequency
range significantly influence ride comfort and road handling, the H2 controller excels by
effectively managing vibrations within this critical frequency range, thereby underpinning
its superior performance in this context.
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In Figure 7, a comparison is presented illustrating the weighted body acceleration
responses for both H2 and H∞ controllers when subjected to bump and asphalt road inputs.
The findings reveal that the H2 controller excels in minimizing body acceleration and
tire deflection under asphalt road input, whereas the H∞ controller outperforms the H2
controller in response to bump input. This observation underscores the distinct strengths
and weaknesses inherent in each controller. Therefore, the selection of the appropriate
controller hinges on the specific road conditions and the defined design objectives.
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Figure 7. Comparison of body acceleration of H2 and H∞ controllers: (a) bump input, (b) real-world
asphalt road.

Based on the aforementioned details, the proposed ANFIS-based controller is antici-
pated to incorporate the desirable properties of both the H2 and H∞ controllers in response
to road inputs. To evaluate the effectiveness of the proposed ANFIS-based controller, a
comparison was conducted with the two aforementioned controllers in terms of body
acceleration and tire deflection. These parameters serve as key indicators in suspension
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design, significantly influencing both ride safety and comfort. These comparisons are pre-
sented in Figure 8, with the road profile consisting of a real-world asphalt road profile with
two tandem bumps. As demonstrated in Figure 8, the proposed ANFIS-based controller
outperforms both the H2 and H∞ approaches in terms of meeting the design objectives.
Specifically, the proposed method achieves the best performance in minimizing body accel-
eration and tire deflection, thereby improving ride safety and comfort. In other words, the
ANFIS-based controller behaves like the H∞ controller when confronted with the bump
input, while it behaves like the H2 controller in response to the asphalt road input. This
property of the ANFIS-based controller allows it to achieve optimal performance under
both types of road inputs. It thus represents a significant improvement over either the H2
or H∞ controller alone.
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Figure 8. Comparison of the proposed ANFIS controller with H2 and H∞ controllers: (a) weighted
body acceleration, (b) tire deflection, (c) input force.

The RMS values of the design objectives are listed in Table 2 to compare the three methods.
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Table 2. RMS values of design objectives.

System
..
zs (m/s2) zur (m) zdef (m) Force (kN)

Passive 0.203 8.1× 10−4 0.103 0
H2 controller 0.097 5.33× 10−4 0.091 1.51
H∞ controller 0.138 4× 10−4 0.073 1.20

ANFIS 0.077 3.5× 10−4 0.97 1.40

In this comparative study of active suspension systems, we evaluated performance
based on key design objectives (body acceleration (

..
zs), suspension deflection (zde f ), and

unsprung mass displacement (zur)) using RMS values. The ANFIS-based controller emerges
as the standout performer, achieving a remarkable 62.07% reduction in body acceleration
and a significant 56.8% decrease in unsprung mass displacement compared to the passive
suspension. The ANFIS-based controller exhibits a slight decrease of 5.83% in suspension
deflection compared to the passive system.

Comparatively, when assessed against the H2 controller, ANFIS demonstrates a 20.6%
improvement in body acceleration, a substantial 34.33% reduction in unsprung mass
displacement, a modest 6.6% increase in suspension deflection, and a slight 7% decrease in
command force.

Similarly, when compared to the H∞ controller, ANFIS excels with a 44.2% reduction
in body acceleration and a 42.9% increase in suspension deflection. Additionally, ANFIS
reduces unsprung mass displacement by 12.5% and increases command force by 16.7%.
Importantly, it is noteworthy that the ANFIS-based controller, while exhibiting slightly
increased suspension deflection compared to the H2 and H∞ controllers, still operates
well within the predefined structural limitations of the suspension system deflection. This
controlled increase in suspension deflection ensures that the system maintains stability and
structural integrity within acceptable structural constraints.

In summary, these outcomes affirm the effectiveness of the proposed ANFIS-based
controller in meeting the design goals of enhancing ride comfort and safety. Additionally,
it ensures that suspension stroke and command force remain within their predetermined
limits. Notably, the ANFIS-based controller exhibits distinct advantages over the H2 and
H∞ controllers, particularly in the reduction of body acceleration and unsprung mass
displacement. This makes ANFIS a compelling choice for improving active suspension
system effectiveness while ensuring structural integrity within defined constraints. These
improvement percentages are illustrated in Figure 9. It is important to acknowledge that in
this comparison, the passive suspension system serves as the baseline. Consequently, the
force section is omitted from the plotted data.

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

mass displacement, a modest 6.6% increase in suspension deflection, and a slight 7% de-
crease in command force.  

Similarly, when compared to the 𝐻ஶ controller, ANFIS excels with a 44.2% reduc-
tion in body acceleration and a 42.9% increase in suspension deflection. Additionally, AN-
FIS reduces unsprung mass displacement by 12.5% and increases command force by 
16.7%. Importantly, it is noteworthy that the ANFIS-based controller, while exhibiting 
slightly increased suspension deflection compared to the 𝐻ଶ and 𝐻ஶ controllers, still op-
erates well within the predefined structural limitations of the suspension system deflec-
tion. This controlled increase in suspension deflection ensures that the system maintains 
stability and structural integrity within acceptable structural constraints.  

In summary, these outcomes affirm the effectiveness of the proposed ANFIS-based 
controller in meeting the design goals of enhancing ride comfort and safety. Additionally, 
it ensures that suspension stroke and command force remain within their predetermined 
limits. Notably, the ANFIS-based controller exhibits distinct advantages over the 𝐻ଶ and 𝐻ஶ controllers, particularly in the reduction of body acceleration and unsprung mass dis-
placement. This makes ANFIS a compelling choice for improving active suspension sys-
tem effectiveness while ensuring structural integrity within defined constraints. These im-
provement percentages are illustrated in Figure 9. It is important to acknowledge that in 
this comparison, the passive suspension system serves as the baseline. Consequently, the 
force section is omitted from the plotted data. 

 
Figure 9. Comparison of ANFIS-based control performance with other controllers over passive sus-
pension. 

5. Conclusions 
In this research endeavor, we introduced an Adaptive Neuro-Fuzzy Inference System 

(ANFIS)-based controller as a novel approach to the design of active vehicle suspension 
systems. This ANFIS controller was formulated to encompass the comprehensive attrib-
utes associated with both 𝐻ଶ  and 𝐻ஶ  controllers, specifically emphasizing optimizing 
ride comfort and ensuring safety. 

The ANFIS methodology was carefully employed to construct a fuzzy inference sys-
tem, utilizing input–output datasets derived from the distinct design methodologies em-
ployed in 𝐻ଶ and 𝐻ஶ controllers. The ensuing simulation results, employing a quarter-
car model, were meticulously compared with those obtained using the 𝐻ଶ and 𝐻ஶ con-
trollers. Our investigation has unequivocally demonstrated that the ANFIS-based control-
ler offers substantial performance advantages, achieving optimal ride comfort while ef-
fectively constraining suspension deflection and control force within their prescribed lim-
its, thus concurrently upholding ride safety standards. Ultimately, our findings under-
score the potential efficacy and efficiency of the ANFIS-based controller as a compelling 
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5. Conclusions

In this research endeavor, we introduced an Adaptive Neuro-Fuzzy Inference System
(ANFIS)-based controller as a novel approach to the design of active vehicle suspension
systems. This ANFIS controller was formulated to encompass the comprehensive attributes
associated with both H2 and H∞ controllers, specifically emphasizing optimizing ride
comfort and ensuring safety.

The ANFIS methodology was carefully employed to construct a fuzzy inference
system, utilizing input–output datasets derived from the distinct design methodologies em-
ployed in H2 and H∞ controllers. The ensuing simulation results, employing a quarter-car
model, were meticulously compared with those obtained using the H2 and H∞ controllers.
Our investigation has unequivocally demonstrated that the ANFIS-based controller of-
fers substantial performance advantages, achieving optimal ride comfort while effectively
constraining suspension deflection and control force within their prescribed limits, thus
concurrently upholding ride safety standards. Ultimately, our findings underscore the
potential efficacy and efficiency of the ANFIS-based controller as a compelling solution
in the domain of active vehicle suspension system design. This research presents a sig-
nificant stride toward enhancing vehicular ride quality and safety through advanced
control methodologies.

In future work, optimizing the ANFIS-based controller, evaluating its robustness
under uncertainties, and validating its performance through practical experiments are
essential steps for assessing its application and real-time performance.
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Appendix A

According to linear dissipative systems theory, a closed-loop H∞ controller is obtained
by solving the following Bounded Real Lemma (BRL):ATK + KA KB CT

BTK −γ2
∞ I DT

C D −I

 < 0

A :=
(

A + B2DcC2 B2Cc
BcC2 Ac

)

B :=
(

B1 + B2DcD21
BcD21

)
C :=

(
C1 + D12DcC2 D12Cc

)
D := D11 + D12DcD21

The above inequality is a BMI that needs to be transformed into an LMI for resolution.
For the problem to be solvable, it is imperative that, via the application of a filter in
the signal path, the acceleration measurement signal D22 is constrained to be equal to
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zero. Furthermore, the system must exhibit strict stability. By applying an appropriate
congruence transformation, the previously mentioned BMI is converted into an LMI:

(
K ,

(
Ac Bc
Cc Dc

))
→ v =

(
X, Y,

(∼
A

∼
B

∼
C

∼
D

))

The matrix K is chosen in such a way that:

K =

(
X M

MT ∗

)
, K−1 =

(
Y N

NT ∗

)
The X and Y are nonsingular symmetric matrices with the same dimension as matrix

A. These two matrices must be selected in a manner that satisfies the following conditions:

MNT = I −XY

in which M and N are nonsingular.

Y =

(
Y I

NT 0

)

YTKY =

(
Y I
I X

)

YT(KA)Y :=

(
AY + B2

∼
C A + B2

∼
DC2

∼
A XA +

∼
BC2

)

YT(KB) :=

(
B1 + B2

∼
DD21

XB1 +
∼
BD21

)

YTC :=
(

C1Y + D12
∼
C C1 + D12

∼
DC2

)
Using the aforementioned transformations, the LMI associated with H∞ will be as follows:
AX + XAT + B2

∼
C +

∼
C

T
BT

2 ∗ ∗ ∗
∼
A + AT + CT

2

∼
D

T
BT

2 YA + ATY +
∼
BC2 + CT

2

∼
B

T
∗ ∗

BT
1 + DT

21

∼
D

T
BT

2 BT
1 Y + DT

21

∼
B

T
−γ∞ Inu

∗

C1X + D12
∼
C C1 + D12

∼
DC2 D11 + D12

∼
DD21 −γ∞ Iny

 < 0

(
X In
In Y

)
> 0

The unknown parameters in this LMI are
∼
D,
∼
C,
∼
B,
∼
A, Y, X. Ultimately, the control

variables will be computed based on the following equations:

∼
D = Dc

∼
C = DcC2X + Cc MT
∼
B = YB2Dc + NBc

∼
A = YAX + YB2DcC2X + NBcC2X + YB2Cc MT + NAc MT
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