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Abstract: Ensuring the operational safety and reliability of rotary machinery systems, especially in
oil plants, has become a focal point in both academic and industry arenas. Specifically, in terms of
key rotary machinery components such as shafts, the diagnosis of these systems is paramount for
achieving enhanced generalization capabilities in fault diagnosis, encompassing multiple sensor-
derived variables with their respective fault patterns. This study introduces a multi-stage approach to
generalize capabilities for fault diagnosis that considers multiple sensor-derived variables and their
fault patterns. This method combines the Convolutional Triplet Network for feature extraction with
an ensemble model for fault classification. Initially, vibration signals are processed to yield the most
representative temporal and spatial features. Then, an ensemble approach is used to maximize both
diversity and accuracy by balancing the contributions of the individual classifiers. The approach can
detect three representative types of shaft faults more accurately than traditional single-stage machine
learning models. Comprehensive experiments, detailed within, showcase the method’s efficacy in
diagnosing rotary machine faults across diverse operational scenarios.

Keywords: oil plant rotary machines; fault diagnosis; rotor dynamics; Triplet Network; deep metric
learning

1. Introduction

Oil and gas plants play a pivotal role in the energy sector, producing fossil fuels like
petroleum and gas, as well as synthesizing high-molecular organic compounds used in
petroleum products [1]. These plants operate through a series of interconnected equipment
to facilitate their production processes [2]. Malfunctions of equipment in manufacturing
plants can halt subsequent and preceding operations [3]. This interruption can pose risks
to workers and lead to delays in product output and a decline in operational efficiency.
Fault diagnosis is an essential requirement to avoid these problems [4,5]. Fault diagnosis
is a process to swiftly identify the causes of malfunctions and take appropriate remedial
measures [6]. The use of fault diagnosis can promptly identify and solve problems, and
thereby ensuring worker safety, minimizing production downtime, and reducing economic
losses [7]. In oil and gas plants, the incorporation and continual update of a precise fault
diagnosis system is essential to ensure safe and efficient operation. Within these plants,
numerous processes and equipment are in operation. Among these, the Recycle Gas
Compressor (RGD) is used in the desulfurization process to recirculate H2 (hydrogen) and
other gases within the system [8].

The RGC is a rotary machine designed to elevate the pressure of hydrogen gas to send
it to the reactor under the necessary operational pressure. Critical fault-prone components
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of rotary machines include bearings, shafts, seals, and blades or impellers, among others [9].
Historically, research has primarily focused on diagnosing faults first in bearings, then
in other components. Among these, the failure of the shaft is common but has received
relatively little attention.

In the domain of gear analysis, [10] introduced an improved B-spline to effectively
depict the relationship between AR coefficients and the rotating phase. This was aimed at
detecting gear tooth cracks and assessing their severity, especially under random speed vari-
ations. Moreover, the modified VICAR (MVICAR) model for planetary gearbox vibration
detection presented an efficient method for utilizing the rotating speed [11].

Shaft failure can have various causes, including fatigue failure, wear, torsional failure,
corrosion failure, erosion, creep, and bending [12–14], but the causes are not easy to identify
and diagnose. Traditional methods use signal-processing techniques to collect vibration
data for fault diagnosis [9]; examples include Time Domain Analysis methods, such as Root
Mean Square, peak-to-peak, kurtosis, and crest factor, which have been widely used [15–17],
and Frequency Domain Analysis techniques like Fourier Transform and Wavelet Transform
that have also been extensively utilized [18–20]. However, Traditional time-domain and
frequency-domain analysis techniques play a pivotal role in detecting defects and abnormal
behaviors. However, it is important to understand these techniques were conceived mainly
for simpler scenarios. In contemporary real-world environments, characterized by complex
machinery and processes, vibration signals often manifest with pronounced variability. This
variability arises from numerous factors such as operational changes, external disturbances,
and the wear and tear of machinery. Due to such variability, there exists the potential
challenge of mischaracterizing genuine defect signals as ambient noise or associating them
with benign factors. Consequently, these traditional methods can encounter difficulties in
pinpointing early-stage faults amidst the intricate nuances of vibration signals. This point
is supported by multiple studies that have highlighted the limitations of these methods in
complex environments [20–22]. While traditional methods have shown efficacy, they often
encounter challenges with non-linear or anomalous signals, exhibit vulnerability to noise,
and may struggle to synthesize insights from both time and frequency domains [23]. Given
these constraints, researchers are now exploring methods that leverage machine learning
to overcome these limitations.

Machine learning approaches, particularly deep learning models, present a promising
alternative to traditional signal-processing techniques [24–27]. By using intricate architec-
tures to analyze vast amounts of data, these models can automatically extract salient fea-
tures without extensive domain-specific preprocessing. Machine learning-based methods
can adaptively recognize intricate patterns and anomalies in the vibration signals [28–30],
and thereby significantly increase the accuracy of fault diagnosis.

However, Machine learning models also have their drawbacks. First, when training
data are limited or biased toward one or a few outcomes, the model can become overfitted,
which means it can describe training data well but cannot describe data that were not
used in training [31,32]. Furthermore, deep learning models have an inherent “black box”
nature, so the reasons for their decisions may be obscure; this is a significant concern
in applications where understanding of the reasoning is important [33,34]. Lastly, deep
learning models need a large set of labeled training data, which can be difficult to obtain in
practical operation environments.

Deep metric learning has garnered significant interest as a potential solution to these
challenges. Deep metric learning can learn meaningful distance metrics between sam-
ples [35,36], and therefore may have application in fault diagnosis of RGDs. This ability
allows for generalized fault detection without the need for explicit labels for each fault type
and can thereby effectively mitigate the overfitting problem. As an example of using metric
learning, a semi-supervised method employing adversarial learning and metric learning
with limited annotated data was proposed for fault diagnosis of wind turbines. [37]. More-
over, DML can increase the robustness of models and increase the interpretability of their
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diagnostic decisions [38]. Therefore, the use of deep metric learning may increase the
efficiency, accuracy, and understandability of fault diagnoses in rotary machines.

The intent of this study was to propose and validate a multi-stage approach integrating
deep metric learning and ensemble learning to achieve effective and highly accurate
diagnosis of shaft faults in RGDs. Understanding the complexities of the shaft and its
susceptibility to faults is crucial in the field of rotary machines. We provide three main
contributions.

1. We propose a multi-stage methodology for shaft fault diagnosis, combining the
strengths of deep metric learning and ensemble learning. This synergistic approach
leverages the capabilities of machine learning to enhance pattern recognition and
anomaly detection. Furthermore, it effectively identifies intra-class similarities, using
them to differentiate between various pattern classes

2. To enhance diagnostic efficacy, we employ the triplet loss function, which is designed
to reduce intra-class variances and accentuate differences between fault types. This
approach ensures our diagnostic model is attuned to subtle shaft anomalies.

3. Our approach is more accurate than various established machine learning methods in
diagnosing diverse types of shaft faults.

This paper is divided into five sections. Section 2 summarizes existing knowledge
on this topic. Section 3 describes methods proposed in this study for fault diagnosis.
Section 4 presents Results. Section 5 concludes our work and suggests some future research
directions.

2. Related Work
2.1. Use of Using Vibration Signals to Diagnose Faults in Rotary Machines

Fault diagnosis plays a pivotal role in ensuring the smooth operation of industrial
and manufacturing systems [39]), especially in the context of rotary machine [40]. A
rotary machine encompasses systems wherein components revolve around an axis to
generate mechanical energy. These machines are fundamentally composed of essential
components such as bearings, stators, gears, rotors, and shafts [41,42], catering to a variety
of applications. These machines are integral to functions such as fluid pumping, energy
generation in turbines and generators, and operations of fans and compressors [43–45].
A comprehensive review of the existing literature indicates a discernible bias in research
emphasis [9]. Conventional studies primarily focus on bearing faults, with rotor and gear
faults also receiving significant attention. Despite the critical role of the shaft, research
pertaining to shaft faults remains sparse. Furthermore, many of these studies narrowly
focus on just one or two types of shaft faults, underscoring a potential research gap.

To diagnose these faults, researchers have turned to a variety of data sources, encom-
passing acoustic [46–48], thermal [49,50], current [51,52], pressure [53,54], and vibration
measurements. Among this spectrum of diagnostic data, vibration analysis has become
the main method for predictive maintenance of shaft faults. It can be used to troubleshoot
instantaneous malfunctions and guide periodic maintenance. Vibration measurements are
typically captured online. They offer real-time diagnostic insights into the machinery’s
health. Vibrational data, often merged with other parameters, increase the diagnostic
interpretation and overall understanding of machine performance.

The subsequent post-data acquisition step involves feature extraction. Methods for
this process range from statistical feature extraction techniques like Principal Component
Analysis (PCA) to time-frequency representation techniques [55] such as Fourier Transform,
Wavelet Transform, and Empirical Mode Decomposition [56]. However, these methods
have drawbacks.

A significant challenge is the manual selection of appropriate model parameters
for analyzing vibration signals. As data volumes grow and feature dimensions expand,
manually selecting model parameters becomes both time-consuming and error-prone.
Traditional diagnostic methods would classify machinery as healthy or unhealthy based on
whether specific values lie within predefined ranges. However, this basic approach of using
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static limit measurements raises questions about its reliability, particularly for intricate
machinery. Machine learning techniques use computational power and to identify patterns,
so machine learning-driven fault diagnosis methods have been considered a promising
tool for the diagnosis of rotating machinery.

2.2. Review of Interpretation Methods

Vibration data mostly appears in a time series format, and there are various methods
that can be used to analyze this data. The AR (Autoregressive) model and the Varying
Index Autoregression (VIA) model are among the commonly utilized methods in time
series analysis. However, since these models inherently possess linear characteristics, they
have limitations in fully capturing the complex dynamical features of vibration data with
nonlinear attributes.

The LSTM (Long Short-Term Memory) model is one of the notable methods for time
series data analysis. However, there are specific challenges when detecting anomalies in
vibration data. Insufficient data focused on normal vibration patterns increases the risk
of the model overfitting. Furthermore, the LSTM model can be highly sensitive to noise
and outliers, necessitating the consideration of additional approaches or preprocessing
techniques to address these issues.

Machine learning methods like Adversarial Discriminative Learning are primarily
used for learning data distributions and generating or transforming new data based on
those distributions. However, since the main objective of vibration data analysis is to detect
specific trends or states in the data, this method may have limited direct applicability. Con-
sidering the characteristics of such models, there is a need for a comprehensive evaluation
of the features and limitations of various methodologies to select the optimal machine
learning approach for vibration data analysis.

In this study, we aim to enhance the analysis efficiency of vibration data using modern
deep learning-based approaches. We extract features of the vibration data using the
Convolutional Triplet Network and then build an ensemble model to perform the final
prediction. Through a multi-stage approach, we aim to deeply understand the complex
characteristics of vibration data and derive more accurate analysis results.

2.3. Deep Metric Learning

Deep metric learning is a specialized branch of deep learning that has the goal of
detecting and learning similarity metrics from data [57]. The Triplet Network incorporates
the foundational principles of deep metric learning [58,59]. It exploits the concept of
‘triplets’, which are composed of three integral components (Figure 1): an anchor, a positive
sample from the same category as the anchor, and a negative sample from a different
category.

The formulation ensures the anchor and positive samples represent similar character-
istics, whereas the negative sample differs from them distinctly. The Triplet Network can
be represented as

TripletNet(x, xneg, xpos) =

[
||Net(x)− Net(xneg)||2
||Net(x)− Net(xpos)||2

]
, (1)

where x is the anchor sample, xneg is a negative sample distinct from the anchor, and xpos

is a positive sample * sharing the same class as the anchor. The term Net(∗) signifies the
embedding of input sample ‘*’ (ε{x, xneg, xpos}). ||Net(x)− Net(x∗) ||2 denotes the Euclidean
distance between the embeddings of ‘*’ and the anchor sample; i.e., the dissimilarity
between the anchor and the negative or positive sample in the embedded space. The anchor
and the positive sample both belong to the same category, so ||Net(x)− Net(xpos) ||2
ideally should be small. The objective of the Triplet Network is to ensure in the embedded
space, the anchor is closer to the positive sample than to the negative one, typically by
a certain margin. This distinction is honed during training by narrowing the difference
between these distances.
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Figure 1. Structure of the Triplet Network.

The triplet loss function, a cornerstone of this methodology, is designed with a precise
goal: to ensure the distance between the anchor and the positive remains less than the
distance between the anchor and the negative, by a stipulated margin. This criterion ensures
cohesiveness of embeddings from the same category, while setting those from different
categories distinctly apart. The overarching goal is to decrease intra-class variations and
heighten inter-class distinctions, thereby crystallizing class boundaries in the embedding
space.

Loss
(
dpos, dneg

)
=

∥∥dpos, dneg − 1
∥∥2

2 = const·d2
pos (2)

where

dpos =
e‖Net(x)−Net(xpos)‖2

e‖Net(x)−Net(xpos)‖2 + e‖Net(x)−Net(xneg)‖2
, (3)

and

dneg =
e‖Net(x)−Net(xneg)‖2

e‖Net(x)−Net(xpos)‖2 + e‖Net(x)−Net(xneg)‖2
, (4)

is designed to ensure that the dpos < dneg between the anchor and the negative, by a stipulated
margin. This criterion ensures embeddings from the same category are close to each other,
whereas those from different categories are far apart. The goal is to decrease intra-class
variations and heighten inter-class distinctions, and thereby crystallize class boundaries in
the embedding space.

The neural architecture of the Triplet Network ensures every triplet data point is
translated to a concise embedded representation, and is therefore ideal for sequential data
processing in fault diagnosis. During successive training iterations, the network uses
backpropagation to refine its internal weights, guided by the triplet loss. This iterative
refinement persists until the network’s loss metrics begin to stabilize; i.e., the model’s
parameters converge. This optimal stage signifies the network’s capability to embed data
in a space in which analogous items cluster closely, and disparate ones are far apart.

3. The Process of the Multi-Stage Approach

This section outlines the approach used in this study. By ensuring a systematic and
replicable approach, we aim to clarify the scientific rigor of our investigation. First, we
focus on the generation of relevant data, then describe the processing of generated raw
data, then describe advanced feature engineering techniques that use deep metric learning
to prepare the data for the final fault diagnosis modeling. Each subsection describes specific
methods, tools, and techniques employed in the stages of the research (Figure 2).
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3.1. Data Generation

This study developed a model to describe the operation of the compressor for the
desulfurization process. The model focused on identifying and then modeling the cru-
cial shaft components influenced by different fault locations. The design specifications
segregated the model into two primary components: the compressor and the turbine
(Figure 3).
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For a realistic scenario, the model was modified to represent the compressors found
in the oil plant of a global petroleum and refinery company. The external and internal
diameters, and the length of the shaft were specified. The material properties of the shaft
were configured as shown in Table 1, after considering various parameters like density,
Young’s modulus, shear modulus, and Poisson’s coefficient, ensuring they are consistent
with real-world material properties.

Table 1. Shaft Material.

Properties Value

Density 7850 kg/m3

Young’s Modulus 217 Gpa

Shear Modulus 81.2 Gpa

Poisson Coefficient 0.299

The positions of the sensors, which are critical for the study, were determined (Figure 4)
by considering the structure of the compressor and turbine. As referenced in Tables 2 and 3,
the rotor discs were described using actual values for mass, polar inertia, and diametral
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inertia. For the bearings, the stiffness and damping coefficients were determined according
to their actual sizes and positions within the machinery and incorporated into the model.

Machines 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

diameters, and the length of the shaft were specified. The material properties of the shaft 
were configured as shown in Table 1, after considering various parameters like density, 
Young’s modulus, shear modulus, and Poisson’s coefficient, ensuring they are consistent 
with real-world material properties. 

Table 1. Shaft Material. 

Properties Value 
Density 7850 kg/m  

Young’s Modulus 217 Gpa 
Shear Modulus 81.2 Gpa 

Poisson Coefficient 0.299 

The positions of the sensors, which are critical for the study, were determined (Figure 
4) by considering the structure of the compressor and turbine. As referenced in Tables 2 and 
3, the rotor discs were described using actual values for mass, polar inertia, and diametral 
inertia. For the bearings, the stiffness and damping coefficients were determined according 
to their actual sizes and positions within the machinery and incorporated into the model. 

 
Figure 4. Schematic illustration of target rotary machine highlighting the locations of the fault, sen-
sor, and disk within the machinery setup. Orange circles: fault locations; green circles: sensor posi-
tions; red cones: disc. 

Table 2. Disk Properties. 

Properties Value 
Mass 2.6375 kg 

Moment of Inertia 
polar: 0.0075 kg · m  

diametral: 0.003844 kg · m  

Table 3. Bearing Properties. 

Properties Value 

Stiffness x − dir ∶  950 kN/m y − dir ∶  109,000 kN/m 

Damping Coefficient 
50.4 N · s/m 

100.4553 N·s/m 

For the operational scenario, accuracy in the simulation was attained by utilizing the 
Nyquist theory with a time interval set at 0.0001 s. This was conducted during the rotor 
dynamics’ operational time, which ranged from 0 to 5 s, at a rotational speed of 8400 rpm. 
Itis noteworthy to mention this simulation did not account for the impact of temperature 

Figure 4. Schematic illustration of target rotary machine highlighting the locations of the fault, sensor,
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red cones: disc.

Table 2. Disk Properties.

Properties Value

Mass 2.6375 kg

Moment of Inertia
polar: 0.0075 kg·m2

diametral: 0.003844 kg·m2

Table 3. Bearing Properties.

Properties Value

Stiffness
x-dir: 950 kN/m

y-dir: 109,000 kN/m

Damping Coefficient
50.4 N·s/m

100.4553 N·s/m

For the operational scenario, accuracy in the simulation was attained by utilizing
the Nyquist theory with a time interval set at 0.0001 s. This was conducted during the
rotor dynamics’ operational time, which ranged from 0 to 5 s, at a rotational speed of
8400 rpm. Itis noteworthy to mention this simulation did not account for the impact
of temperature on friction and damping, nor did it consider the effects of inlet/outlet
conditions. Consequently, these factors introduce associated sources of uncertainty.

3.2. Data Preprocessing

Raw data must be preprocessed to ensure the subsequent analysis is both efficient and
provides meaningful results. To extract significant features from vibration data, we used
the sliding-window technique as shown in Figure 5. Our dataset was obtained using six
distinct sensors (Section 3.1). As a result, for each sensor, the dataset had three columns, one
for each axis. Given the intricacies in machinery vibrations and the potential overlapping
characteristics across different fault types, the chosen window length must be optimal. The
window must be long enough to include meaningful patterns but not so long to introduce
irrelevant noise or lose temporal resolution.
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Figure 6. Concept illustration of Triplet Network used for feature embedding.

A tailored method to sample triplets was devised to craft an optimal training set for the
Triplet Network. This systematic sampling ensures representative exposure to each fault
type and location within the training regimen. Our dataset was structured to encompass
readings from normal operations and from twelve fault scenarios that represented three
fault types each manifested at four locations (Section 3.2).

To exploit the power of the Triplet Network for this dataset, we generated ‘triplets’
from our data, with the anchor and positive samples being from the same condition, and
the negative sample from a different one. To construct these triplets, we selected an anchor
sample from a given fault type and location. The positive sample was another instance
from the same fault type and location, and thereby ensured intra-class consistency. The
negative sample was randomly chosen from any of the other fault types or locations, and
thereby guaranteed inter-class diversity.
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We fed these constructed triplets into our pre-defined Triplet Network architecture
(Section 2). This implementation phase focused on fine-tuning and training the model with
our specific dataset. The training was driven by the triplet loss function. Over several
epochs, we adjusted the model’s weights to minimize the distance between the anchor and
positive samples and to concurrently maximize the distance between the anchor and the
negative sample in the embedded space. This iterative process continued until the loss
values converged, indicating the network had learned optimal embeddings for our data.

The base network (Figure 7) used for the triplet architecture is specifically designed
to use 1D convolutional layers to process multiple sensor vibration data. Beginning with
the convolutional segment of the network, an initial convolutional layer with 64 filters and
a kernel size of 5 is applied, using the Rectified Linear Unit (ReLU) activation function.
This choice of activation function is crucial for introducing non-linearity into the model, to
enable capture of patterns in the data. The ‘same’ padding strategy is used to ensure spatial
dimensions of the input data are retained after this convolution. The max-pooling operation
with a pool size of 2 is applied, to reduce the spatial dimensions while retaining significant
features; this process increases computational efficiency. Building on this foundation, the
network then uses a second convolutional layer, this time comprising 128 filters, still with a
kernel size of 5 and retaining the ReLU activation. ‘Same’ padding is used again to preserve
spatial dimensions and make the architecture predictable. Then, another max-pooling
operation with a pool size of 2 is applied to further summarize the data while emphasizing
essential features. A third convolutional layer is then deployed; this one has 256 filters and
a kernel size of 5, and uses the ReLU activation.
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The increases in filter count from as convolutional layers deepen demonstrates a
hierarchical approach, in which each layer captures more intricate and composite features
than the previous one. A final max-pooling step with a pool size of 2 is executed, to further
encapsulate and simplify the feature map.

During the transition from convolutional layers, the data is subject to a flattening
operation that reshapes them to fit the subsequent dense layers. The first step is a dense
layer with 256 units that uses the ReLU activation function. The ReLU activation continues
to add non-linearity, ensuring the network can model complex relationships. A dropout
layer with a rate of 0.2 is interspersed. It randomly deactivates 20% of neurons during
training; this process reduces the risk of overfitting. Then another dense layer with 128 units
is used, coupled with the ReLU activation. Yet another dropout layer with a rate of
0.2 follows to further guarantee the model’s generalizability. Concluding the sequence, a
final dense layer transforms the data to the desired embedding space, which by default is
set to eight dimensions in the provided configuration.
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In essence, this architecture transmutes the vibration data to a compact representation,
which is suitable for the demands of the Triplet Network. The blend of convolutional and
dense layers ensures both spatial feature extraction and subsequent transformation to a
lower-dimensional, yet informative, embedding space. Periodic validation using unseen
data triplets from our dataset ensured the model was not overfitting and was generalizing
well to new data instances. Upon final training, the Triplet Network effectively mapped
the eighteen-dimensional vibration data to an eight-dimensional space, to facilitate clear
distinction between normal operational state and various fault conditions.

3.4. Fault Diagnosis

To assess the performance of our proposed model, we used accuracy rate RA as our
primary criterion. It measures the ratio of correct predictions to the total number of predic-
tions. The choice to use RA as an evaluation metric is motivated by its clear interpretability
and the critical importance of achieving a high proportion of correct predictions in fault
diagnosis.

To further increase the prediction capabilities, we exploit the power of ensemble
models, which are known for their ability to combine individual model predictions to boost
overall RA. The Random Forest algorithm is an ensemble of decision trees that aggregates
the predictions of individual trees to produce a final decision. The Gradient Boosting
ensemble model is a sequential boosting algorithm that fits new trees to the residual errors
of the preceding ones. The configuration of this model will be shaped by parameters such
as learning rate, number of boosting stages, and tree depth. The Voting Classifier acts
as a sophisticated ensemble technique that brings together the predictions from multiple
models to make a final prediction, typically obtained by majority voting for classification
tasks. Within this classifier, predictions can be consolidated by using “hard” or “soft”
voting. Hard voting accepts the decision of the majority class predicted by the individual
models, whereas soft voting averages the prediction probabilities, and selects the class that
has the highest probability. The models that constitute the Voting Classifier, along with any
tunable parameters specific to this setup, will also be of interest.

The analysis of these ensemble models used RA as the comparison criterion. The
ensemble model that achieves the highest RA will be judged to have the highest ability
to best capture the intricacies of our dataset and will be chosen as the best for the fault
diagnosis of rotary machines.

4. Experiment and Result
4.1. Data Generation

Using Rotor dynamics Open Source Software [60], we simulated x, y displacement
values (Figure 8) at 0.0001-s intervals for each sensor (Table 4). Sensors were placed
at six distributed locations, with faults being introduced at five varied locations. The
displacement in millimeter unit is collected. This modeling and simulation approach
provides detailed understanding of the fault dynamics and their effects, which is crucial
for refining operational efficiencies and fault predictions in real-world scenarios.

Table 4. Example of generated data of sensor data in rotary machine, the measured values are
displacement in millimeter unit.

Time SensorA_X SensorA_Y SensorB_X SensorB_Y SensorC_X SensorC_Y

0.1868 6.53 × 10−5 −3.46 × 10−6 5.58 × 10−5 −3.46 × 10−6 −2.70 × 10−5 −1.09 × 10−6

0.1869 6.51 × 10−5 −3.17 × 10−6 5.56 × 10−5 −3.24 × 10−6 −2.70 × 10−5 −1.15 × 10−6

0.1870 6.49 × 10−5 −2.78 × 10−6 5.55 × 10−5 −2.95 × 10−6 −2.70 × 10−5 −1.26 × 10−6

0.1871 6.48 × 10−5 −2.31 × 10−6 5.55 × 10−5 −2.19 × 10−6 −2.71 × 10−5 −1.40 × 10−6

0.1872 6.49 × 10−5 −1.76 × 10−6 5.55 × 10−5 −1.75 × 10−6 −2.71 × 10−5 −1.57 × 10−6

0.1873 6.49 × 10−5 −1.14 × 10−6 5.55 × 10−5 −1.28 × 10−6 −2.72 × 10−5 −1.77 × 10−6

0.1874 6.51 × 10−5 −4.90 × 10−6 5.56 × 10−5 −7.98 × 10−7 −2.74 × 10−5 −1.98 × 10−6

0.1875 6.54 × 10−5 −1.88 × 10−6 5.58 × 10−5 −3.13 × 10−7 −2.76 × 10−5 −2.21 × 10−6
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Our dataset consists of normal operational readings and twelve fault scenarios. These
consist of three fault types, each in four distinct locations. These twelve fault scenarios are
presented in Table 5.
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Figure 8. Illustration of x (a) and y (b) value of collected sensor data.

Table 5. 12 different fault scenarios.

Fault Type Related Parameters

Parallel misalignment 0.5 mm, 0.1mm, 0.15 mm, 0.2 mm

Angular misalignment 1.25◦, 2.5◦, 3.75◦, 5◦

Unbalance misalignment 0.000005 kg·m, 0.00001 kg·m, 0.000015 kg·m,
0.00002 kg·m

The first fault type is angular misalignment (Figure 9a). It occurs when the shaft’s
central axis forms a non-zero angle as a result of faulty bearing support. Vibrations due to
angular misalignment are primarily axial and have high amplitude. They consist of two
coupled components, which are 180◦ out of phase.
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Misalignment, (b) Unbalance, and (c) Parallel Misalignment.

The second fault type is unbalance (Figure 9b). It occurs when the center of mass
does not coincide with the rotation center. This misalignment results in a centrifugal
force, which causes high-amplitude vibrations that have a sinusoidal waveform, typically
at the same frequency as the rotation. The amplitude of vibrations due to unbalance
increases proportionally to the square of the rotation speed. In rigidly attached machines,
the vibration amplitude is greater in the horizontal direction than in the vertical direction.
A distinctive characteristic is the 90◦ phase difference between the horizontal and vertical
amplitudes.

The third fault type is parallel misalignment (Figure 9c). It arises when the central axis
of the rotating shaft does not align with the line connecting the components that secure
it, such as bearings. Such misalignment typically induces substantial vibrations in both
radial and axial directions. Vibrations that result from misalignment predominantly have
frequencies equivalent to the rotation.
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4.2. Data Preprocessing

For data preprocessing, a window width of 100 data points (0.01 s) was used to
capture short-duration fluctuations and transient characteristics inherent in the vibration
signals. To optimize data coverage and to extract overlapping features, a step size of 70 was
implemented for the sliding window technique, so consecutive windows overlapped
by 30 points. This overlap ensured adequate representation of transitional phases and
intermittent patterns that could occur between windows and thereby offered a nuanced
understanding of system dynamics.

4.3. Feature Embedding

For feature embedding, a comparative assessment was executed using three methods:
an Autoencoder [61], PCA, and the Triplet Network. The primary objective was to identify
the approach that provides the most meaningful and discernible representation of the
vibration data, particularly in distinguishing normal operational conditions from varying
fault types.

Once the feature embedded, the t-Distributed Stochastic Neighbor Embedding (t-SNE)
technique [62], a nonlinear dimensionality reduction tool, was employed to visualize the
embedded results in two dimensions. In the provided labels, the portion of the label
preceding the underscore indicates the type of fault. For instance, “angular” referred to an
angular misalignment fault, “parallel” denoted a parallel misalignment type of fault, and
“unbalance” signified an unbalance fault. On the other hand, the numerical value following
the underscore pointed to the location of the fault. As an example, in the label “angular_A”,
“angular” described the fault type and “A” specified the fault was located at position A.
Similarly, “parallel_C” indicated a parallel type fault at the C location, while “unbalance_B”
represented an unbalance fault at the B position

This visualization provided an insightful perspective on the clustering and separation
capabilities of each embedding method.

In the Autoencoder outcomes (Figure 10a), the embedded features that corresponded
to normal operations overlapped significantly with features that corresponded to fault
types. Therefore, operational states could not be readily distinguished from fault states.
The boundaries between classes were convoluted; this result indicated the Autoencoder’s
could not extract salient and differentiating features adequately in this dataset.

The Triplet Network outcomes (Figure 10b) aggregated data samples into a discernible
cluster for each class, thereby enabling intuitive identification. The boundary demarcation
between different fault types and normal operation was clear; this result indicated the
Triplet Network effectively identified the structures and disparities within the data.

PCA provided a representation that was intermediate (Figure 10c) between the Au-
toencoder and the Triplet Network results.

Overall, the Triplet Network was the most effective tool for embedding this specific
dataset. The method captured the variances and clustered the different operational states
distinctly. The visualization augmented by t-SNE accentuated these differences and em-
phasized the merits of its embedding strategy for fault detection and classification tasks by
analyzing vibration data.

4.4. Fault Diagnosis

To investigate the performance differences among various modeling methods, we
compared several combinations of embedding techniques and machine learning algorithms
(Table 6).

The initial assessment deployed no embedding techniques. In this case, the Support
Vector Machine (SVM) and neural network (NN) both obtained RA = 0.07. This significantly
low result accentuates the challenge posed by the complex and perhaps high-dimensional
feature space. Without any form of preprocessing or feature transformation, these models
failed to discern the subtle patterns in the raw data. The ensemble methods Random Forest
and Gradient Boosting both obtained RA = 0.37; this result suggests these methods may
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have embedded strategies that can identify patterns in raw data. However, AdaBoost and
the Voting Classifier both had RA = 0.22, so they seem to have unable the detection of
patterns in the original dataset.
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(b) Triplet Network, and (c) PCA. In the labels, the text before underscore indicates type of fault: i.e.,
“angular” = angular misalignment, “parallel” = parallel misalignment, and “unbalance” = unbalance;
the number after underscore identifies location of fault; e.g., “angular_A” = angular fault at position A.

After the Autoencoder was used for data embedding, both SVM and NN retained
their low RA = 0.07. This underwhelming consistency across two radically different (i.e.,
raw vs. autoencoded) data states indicates these methods are not appropriate for this type
of fault diagnosis. Gradient Boosting had the highest RA = 0.45, which suggests it is not
adaptable to diverse data representations. Random Forest and AdaBoost has moderate
RA = 0.31 and 0.28 respectively whereas the Voting Classifier and Gradient Boosting had
RA = 0.4 and RA = 0.45 which still struggles in diagnosing fault.
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Use of PCA-embedded data showed an interesting contrast. SVM improved to an
impressive RA = 0.6, whereas the NN remained at RA = 0.07. This drastic divergence
affirmed SVM’s robustness to transformations and indicated the NN may be vulnerable
to the dimensional reduction by PCA. The ensemble methods Random Forest, Gradient
Boosting, and the Voting Classifier all achieved RA = 0.61; this result indicated PCA was
effective in preparing data into a form appropriate for ensemble techniques. AdaBoost,
trailed slightly, with RA = 0.43.

Table 6. Comparison of accuracy across various embedding methods and ensemble/non-ensemble
models.

Embedding Method Ensemble Method Accuracy

None

Non-ensemble model
SVM 0.07
NN 0.07

Ensemble model

Random Forest 0.37
AdaBoost 0.22

Gradient Boosting 0.37
Voting Classifier 0.22

Autoencoder

Non-ensemble model
SVM 0.07
NN 0.07

Ensemble model

Random Forest 0.31
AdaBoost 0.28

Gradient Boosting 0.45
Voting Classifier 0.40

PCA

Non-ensemble model
SVM 0.60
NN 0.07

Ensemble model

Random Forest 0.61
AdaBoost 0.43

Gradient Boosting 0.61
Voting Classifier 0.61

Proposed (Triplet Network + Ensemble Model) 0.89

However, the proposed method achieved an outstanding RA = 0.89. Therefore, this
innovative approach set a new benchmark and emphasized the potential benefits of inte-
grating specialized embedding techniques with ensemble models.

To summarize, the traditional models offer varying degrees of success, the incorpora-
tion of the Triplet Network distinctly underscores the effectiveness of its feature extraction
capabilities. Furthermore, coupling this with ensemble strategies not only underscores a
significant advancement in fault diagnosis but also aids in enhancing the model’s general-
ization capabilities across diverse datasets.

5. Conclusions

Predictive models for diagnosis of faults in rotary machines must reliably distinguish
faulty operation from normal operation and from each other. This paper has reported
an evaluation of various combinations of machine learning algorithms and embedding
techniques to determine the most effective combination for fault diagnosis. Methods that
did not use embedding techniques had notably low accuracy rates RA = 0.07; ensemble
models Random Forest and Gradient Boosting had RA = 0.37, AdaBoost had RA = 0.22,
and the Voting Classifier, had RA = 0.4; all were unsatisfactory, probably as a result of the
complexity and perhaps the high dimensionality of the feature space.

Incorporating the Autoencoder for data embedding did not increase the accuracy of
SVM and NN; however, when the ensemble methods Gradient Boosting were applied to
the autoencoded data, their RA increased to 0.45.

The use of PCA as an embedding technique increased the RA of the SVM model to 0.6;
this increase demonstrated remarkable adaptability to linear transformations. In contrast,
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RA of the NN model remained at 0.07. Notably, with the PCA-embedded data, ensemble
models Random Forest, Gradient Boosting, and the Voting Classifier, all reached RA = 0.61.

The most significant achievement of our study is our proposed method that consists
of a Triplet Network for embedding, integrated with an ensemble model for diagnosis.
This combination yields a high RA = 0.89, which confirms the effectiveness of the approach
and that merging specialized embedding techniques with ensemble learning methods can
increase the accuracy of predictions in complex systems.

In summary, this research demonstrates the need for appropriate selection and integra-
tion of embedding and predictive techniques, particularly in complex domains like rotary
machine fault diagnosis. The presented multi-stage approach combining the advantages of
the Convolutional Triplet Network with ensemble neural networks, is a significant step
toward precise and reliable fault diagnosis.
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