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Abstract: The processing of aerial images taken by drones is a challenging task due to their high
resolution and the presence of small objects. The scale of the objects varies diversely depending on
the position of the drone, which can result in loss of information or increased difficulty in detecting
small objects. To address this issue, images are either randomly cropped or divided into small patches
before training and inference. This paper proposes a defect detection framework that harnesses
the advantages of slice-aided inference for small and medium-size damage on the surface of wind
turbine blades. This framework enables the comparison of different slicing strategies, including
a conventional patch division strategy and a more recent slice-aided hyper-inference, on several
state-of-the-art deep neural network baselines for the detection of surface defects in wind turbine
blade images. Our experiments provide extensive empirical results, highlighting the benefits of
using the slice-aided strategy and the significant improvements made by these networks on an ultra
high-resolution drone image dataset.

Keywords: surface defect detection; wind turbine blades; ultra high-resolution images; drone images;
small object detection; deep neural networks

1. Introduction

Renewable energy sources are widely recognized for their versatile benefits, making them
a top priority for countries aiming to protect the environment and combat climate change [1].
Unlike fossil fuels, they curb CO2 emissions, crucial for reducing global warming [2].
By adopting these resources, energy security is enhanced while reducing dependence on
external fossil fuels. Domestic availability of renewable energy minimizes vulnerability
to supply disruptions and price fluctuations, promoting energy autonomy. As a result,
countries are likely to invest in renewables such as wind turbines and solar panels [3].

Wind turbines convert wind energy into electricity, reducing climate-altering gases
while enhancing energy mix, security, and sustainability [4]. They use wind motion to
generate electricity without combustion, aiding the clean energy transition. Wind turbine
blades optimize energy harvesting, affecting efficiency and production. Research has
shown that blades contribute up to 25% of the energy production of wind turbines [5].
Maintaining blade health is crucial for optimal generation while reducing downtime and
costs [6]. Traditionally, wind turbine inspections have been manual and demanding, espe-
cially offshore, leading to increased maintenance costs and operational interruptions [7].
Advancements in sensor technologies, such as acoustic, vibration, ultrasonic, and strain
sensors, have improved wind turbine maintenance and condition monitoring [8–11]. Ad-
ditionally, the incorporation of visual sensors for surface inspection is expected to yield
positive outcomes.
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There is a demand for improved safer blade inspection approaches with the aim
of enhancing efficiency and cost effectiveness. The optimal solution will balance sensor
reliability, accuracy, and affordability. Implementing an efficient and cost effective approach
empowers wind farm operators to optimize energy generation while reducing maintenance
costs. Technological innovation, particularly Unmanned Aerial Vehicles (UAVs), represents
a forefront embraced by developed nations for diverse purposes. UAVs excel in aerial
inspection, showing potential for wind turbine blade inspection. UAV-based methods offer
efficiency advantages, allowing for inspection of 10–12 turbines daily, with potential for
15–20 with full automation, surpassing conventional techniques [12]. This transition could
enhance inspection efficiency, reduce costs, and increase energy production with minimal
operational disruption.

Automated inspection of energy assets such as wind turbine blades benefits from
drone technology and remote image monitoring, yielding cost savings, climate change
mitigation, and enhanced safety. Despite advancements in deep learning, object detec-
tion remains challenging due to low image resolution, occlusion, background complexity,
and small object scale. Deep learning involves training and inference stages. In training,
models learn to detect anomalies through optimization techniques on a dataset containing
defect instances. Successful training enables models to detect defects in new images by
applying acquired patterns. Generalization allows models to apply knowledge to new data,
underscoring the need for careful dataset curation, architecture selection, and optimization
for accurate results.

Aerial images have ultra high-resolution; however, the scale of objects within them can
vary depending on the drone’s position. When the drone is far from the target, recognizing
small objects within the image can become difficult. Processing ultra high-resolution images
can be challenging due to the increase in irrelevant background information. In the context
of deep learning detection methods such as convolutional neural networks (CNN), this
can result in suboptimal training of the classifier, leading to low detection accuracy [13].
Ultra high-resolution data sources, including high-definition (HD) 4K and 8K cameras,
require new techniques for analysis. Common practices to deal with small objects in ultra
high-resolution images include randomly cropping images or re-scaling before passing
them to the model for training and inference [14–16]. However, this does not solve the
problem, and certain objects can be poorly represented during model training. Alternatives
include dividing the images into smaller patches and then using them directly for training
and inference [17]. Figure 1 shows an overview of wind turbine blade (WTB) surface defect
inspection using drones and the associated challenges of ultra high-resolution images,
making them quite detailed and large.

Figure 1. Drones can be used to monitor the surface condition of wind turbine blades. When transmitting
image data to servers via 4G/5G technology, defect detection models often have to deal with ultra
high-resolution images. Our framework performs training on image patches. Patches devoid of any
relevant content are discarded during dataset preprocessing. During inference, a robust strategy is
necessary to allow small defects to be detected.
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2. Related Work

Wind turbine blade (WTB) analysis encompasses a spectrum of techniques for defect
detection. Traditional approaches involve image processing techniques and hand-crafted
features. Wang and Zhang used Haar-like features with cascaded classifiers to detect WTB
surface cracks, focusing on differentiating cracks from non-cracks [18]. Similarly, Huang
and Wang extended Haar-like features and employed the parallel Jaya K-means algorithm
for more precise surface crack detection [19]. Deng and Guo combined an improved Lévy
flight strategy with the log-Gabor filter for defect identification [20]. To detect large-scale
WTB cracks efficiently, Peng et al. proposed an analytic method utilizing UAV-captured
images [21]. Alternatively, Ruiz and Magda converted wind turbine operation signals into
grayscale images, utilizing multichannel texture features for pattern recognition [22].

Deep learning methods have revolutionized defect detection in WTBs. Shihavud-
din et al. introduced a feature pyramid network coupled with offline data augmentation
for processing higher resolution images, training various Faster-RCNN detectors on dif-
ferent private datasets [23]. Subsequent studies explored models such as Yolov3 and
EfficientDet, demonstrating promising results [24]. CNNs have displayed superior per-
formance over traditional descriptors, especially with the added advantage of ensemble
classifiers [25,26]. Foster et al. categorized WTB defects by utilizing image patches for
training and inference [17]. Sarkar et al. mitigated the challenges around blurry images
using a super-resolution CNN model with Laplacian variance preprocessing [27]. Other
deep learning networks that have been used to improve detection performance for wind
turbine blade defects include [28–31].

Ultra high-resolution drone-captured images present challenges in processing due to
varying object scales and computational demands. A common practice involves dividing
these images into smaller patches for more efficient analysis [13,19,26,32,33]. This strategy
reduces computational load, enhances object clarity, and augments dataset size, thereby
enhancing model performance. Data challenges are evident in the proprietary nature of
WTB data. While datasets such as Blade30 and DTU-Drone provide publicly available
resources, annotations for defect detection tasks are often lacking [34,35]. The ownership of
industrial datasets restricts public access and data sharing.

Generally, there is a reasonable collection of works in the literature focusing on detect-
ing WTB defects (sometimes referred to as damage) from drone-captured images. However,
there is a glaring inconsistency in the training methodology and categories used in these
works. We note that benchmarking the performance of WTB surface defect detectors is
currently challenging due to the confidentiality of data [25,26] as well as to annotations
that are not publicly available even when the data are available [17,23].

Based on the findings in previous studies, it is evident that utilizing drones for detecting
WTB surface defects is both cost-effective and efficient. However, this inspection method
presents numerous difficulties, such as processing ultra high-resolution images, detecting
small objects, and accounting for changes in object scale as the drone changes position. In
light of these current challenges, in this paper we make the following contributions:

1. We propose a defect detection framework that is capable of incorporating a realistic
slice-aided inference strategy for object detection in ultra high-resolution images.

2. We present a benchmark comparison of our framework on several state-of-the-art
deep learning detection baselines and slicing strategies for WTB inspection.

3. We provide an extensive evaluation on an ultra high-resolution drone image dataset,
demonstrating significant improvements in the detection of small- and medium-size
WTB defects.

3. Proposed Framework

The proposed framework is illustrated in Figure 2. This section discusses the dataset,
types of wind turbine blade surface defects, and dataset annotation, followed by prepro-
cessing and details of the proposed detection framework.
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Figure 2. Proposed framework for wind turbine blade surface defect detection. On the left side are
various types of surface defects present in the DTU dataset. The right side of the figure illustrates
the workflow, starting with dataset preprocessing and training (indicated by black arrows). Two
inference scenarios are presented: Scenario I (indicated by red arrows) involves inference using image
patches, while Scenario II (indicated by blue arrows) involves inference using an original test image’s
resolution. In the preprocessing step, ultra high-resolution images are divided into patches, which
are subsequently fed into the training process.

3.1. Dataset

In this paper, we use the DTU-Drones inspection images of wind turbine blades [35]
from the Technical University of Denmark (DTU), which is a publicly available (https:
//data.mendeley.com/datasets/hd96prn3nc/2, accessed on 2 April 2022) dataset con-
taining 589 ultra high-resolution images captured between 2017 to 2018 under varying
environmental conditions. High-resolution typically refers to images with dimensions
of 1920× 1080 pixels, whereas ultra high-resolution starts at 3840× 2160 pixels. The im-
ages we use here have a resolution of 5280× 2890 pixels, firmly placing them in the ultra
high-resolution category [36]. Because DTU does not provide surface defect bounding
boxes, we initiated an annotation process after conducting a study of the different types of
wind turbine blade surface defects noticeable in the database. A number of recent works
have used this dataset for the same purpose [17,23,37]; however, they did not disclose their
annotations publicly for wider use, and reached different interpretations of the surface
defect types. For better reproducibility and benchmarking, our annotations are made
available at: https://github.com/imadgohar/DTU-annotations (accessed on 3 May 2023).

3.2. Wind Turbine Blade Surface Defects

The defect identification process involved a comprehensive evaluation of existing
research pertaining to the detection of surface defects in wind turbine blades. By utilizing
publicly available datasets (Section 3.1) and conducting a literature search, we identified
and categorized various types of surface defects for our study. A total of 324 images were
selected based on five types of surface defects discussed in this study, encompassing a
diverse range of surface damage or defects amounting to a total of 889 instances with more
than one defect per image. In particular, we defined five distinct types of surface defects,
as illustrated in Figure 2 (left side).

These include the following:

• Missing Teeth (MT): this surface defect refers to the absence of teeth in the vertex
generating panel, which is a crucial component of the wind turbine blade. Identifying
the presence or absence of teeth is essential for ensuring optimal performance.

https://data.mendeley.com/datasets/hd96prn3nc/2
https://data.mendeley.com/datasets/hd96prn3nc/2
https://github.com/imadgohar/DTU-annotations
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• Erosion (ER): erosion represents a type of surface defect in which the surface of the
wind turbine blade undergoes gradual deterioration due to environmental factors or
prolonged exposure to natural elements. Although erosion does not pose immediate
problems, it necessitates regular maintenance.

• Damage Lightning Receptor (DA): the lightning receptor plays a vital role in safe-
guarding the wind turbine blade against lightning strikes. Identifying any surface
damage to the lightning receptor is crucial for assessing its functionality and ensuring
effective protection.

• Crack (CR): surface cracks in wind turbine blades are considered critical defects, as
they can lead to structural instability and potentially result in catastrophic failure.
Detecting and localizing surface cracks is essential for prompt maintenance and
preventing further damage.

• Paint-Off (PO): paint-off refers to the loss or peeling of the protective paint layer on
the wind turbine blade’s surface. While not directly problematic, it signifies the need
for maintenance to preserve the blade’s integrity.

3.3. Dataset Annotation

The dataset was annotated with precise attention to detail, focusing specifically on
the defective part(s) of the wind turbine blade. To facilitate this process, we employed an
open-source manual image labeling tool [38]. The annotation procedure involved localizing
the regions of interest corresponding to each defect type. When annotating the dataset,
particular emphasis was placed on accurately identifying the specific areas within the wind
turbine blades that exhibited missing teeth in the vertex generating panel, erosion, damage
to the lightning receptor, cracks, and surface paint-off. These surface defects were localized
within their respective regions, providing a detailed annotation of the defective parts.

3.4. Pre-Processing

Prior to the learning phase, a series of preprocessing steps were performed to ensure
that the processing and model training of ultra high-resolution images remained manage-
able under limited resources while maintaining the details present in the image. Motivated
by the work of [17], we conducted an empirical analysis to systematically evaluate the im-
plications of different patch sizes on our research. Notably, the specific patch sizes not only
proved compatible with our object detection models, they exhibited a notable performance
advantage when compared to other patch sizes. We used an automatic method to pick out
image patches having at least one defect. Patches showing only background or no defects
were taken out of the dataset. After patching, we divided the dataset into different parts
for training, testing, and validation to facilitate the subsequent experimental investigations.
No online (or on-the-fly) or offline augmentation was applied prior to the utilization of
data samples during the model training and inference operations.

3.5. Detection Framework
In this section, we describe in detail the detection framework for handling ultra

high-resolution images. Figure 2 shows the complete proposed training and inference
pipeline for detection of WTB surface defects from ultra high-resolution images. The
proposed detection framework is outlined in two phases, namely, training and inference.
Let I ∈ Dr represent an ultra high-resolution image in the training partition of the database
D = {Dr,Dt}, where preprocessing produces a set of non-overlapping image patches,

p = {(p, b) | p ⊆ I, p ∈ RK×K×3, b 6= ∅}, (1)

where b is the set of bounding boxes associated with each image patch p and K = 1024, as
set in Section 4.1. A modelM is trained with a set of image patches that constitutes the
overall training set

P =
⋃

i∈|Dr |
pi, (2)
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such thatM← train(P).
For the purpose of evaluation and benchmarking, we trained three baseline neural

network architectures YOLOv5 [39] that leverage a compact yet effective architecture
with a deep CNN backbone consisting of 21 convolutional layers (CSPDarknet21). We
incorporated a feature pyramid network (PANet) and multiple detection heads for efficient
object detection. Anchor boxes and a composite loss function are essential elements of
our training process, and non-maximum suppression is applied during inference to refine
results. In comparison, RetinaNet [40] adopts a one-stage design, emphasizing efficiency,
and employs anchor boxes for region proposals. It utilizes a backbone CNN (ResNet50) in
conjunction with a Feature Pyramid Network (FPN) to capture multi-scale features, which
is crucial for detecting objects of various sizes, along with Faster-RCNN [41], a two-stage
model consisting of a Region Proposal Network (RPN), for generating proposals, and RoI
Align layers for feature extraction from these proposals; it utilizes ResNet50 as backbone.
While this architecture excels in terms of accuracy, it may require additional computational
resources. These neural network architectures are used for training the models on surface
defect detection. The images were preprocessed as discussed in Section 3.4 before training.
All models were trained using the standard multi-class cross-entropy loss

LCE = −
C

∑
i

t log(si), (3)

where ti and si are the ground truth label and the softmax probabilities for the i-th class of
C total classes, respectively.

3.6. Inference Strategies

In the second phase, the inference process is carried out using two different strategies,
denoted as Scenario I and Scenario II, each designed to evaluate the performance of the
proposed method under distinct conditions. Figure 3 graphically illustrates both scenarios;
the evaluation of the method’s performance under these conditions can provide insights
into the practical applicability of the proposed framework.

3.6.1. Scenario I: Patch-Based Inference

Scenario I involves constructing the test set through the utilization of image patches,
as elaborated in Section 3.4. In this framework, individual patches are presented to the
trained model for inference. In essence, Scenario I entails a structure wherein the model
is trained using image patches and subsequently evaluated on similar image patches
(not identical, but sharing the same patch size) during testing. This configuration aligns
with the traditional paradigm of machine learning model training. Nonetheless, it is
pertinent to recognize that Scenario I may partition extended defects, resulting in the
generation of separate bounding boxes within distinct image patches, which might not
correspond to practical feasibility. While the patch-based inference process offers prompt
processing, it necessitates additional postprocessing steps for consolidating and recognizing
corresponding image patches.

3.6.2. Scenario II: Slice-Aided Inference

In contrast, Scenario II introduces an enhanced level of realism by employing un-
processed ultra high-resolution images for the test set. This avoids the need for manual
preprocessing. An internal preprocessing mechanism intrinsic to the testing process is
employed instead, as demonstrated in Equation (4). This setup has its merits, notably,
allowing direct use of ultra high-resolution images for prediction and aggregating multiple
detected defects in the original image rather than treating them separately, which better
reflects the challenges in real-world scenarios.

To implicitly handle the processing of an ultra high-resolution image during the
inference time (particularly for Scenario II), standard resizing or fixed cropping methods
are poor choices for two reasons: (1) small objects can become almost unnoticeable after
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such transformations, and might go undetected; and (2) the precision between overlapping
objects may be severely impacted after the original image is resized.

Figure 3. Visual example demonstrating the difference between Scenario I, where the model is trained
and tested on preprocessed image patches, and Scenario II, where the model is tested directly on raw
ultra high-resolution images, representing two distinct evaluation scenarios for the proposed method.

To this end, we adopted the slice-aided hyper-inference technique [42] in a manner
that benefits both small and medium size objects in ultra high-resolution raw images.
Specifically, at inference time, an ultra high-resolution image I′ ∈ Dt in the test partition is
first divided into M× N patches, i.e., p′mn.

To minimize the likelihood of disjointed surface defects, boundaries are relaxed by
sampling patches in an overlapping manner, specifically, a sliding window concept that
samples repeatedly while keeping the overlap percentage between two adjacent windows
(υ). The patches are then resized to square patches of size W ×W pixels before performing
patch-level model inference. Succinctly, the inference is carried out as follows:

b̂mn ← inf(M(z(p′mn, W))) ∀m ∈ [1, M], n ∈ [1, N], (4)

where b̂mn is the set of output bounding boxes and z(.) denotes the resize module which
resizes patch p′ to width W. Finally, the detected defect boxes from all patches that surpass
the detection threshold Tdet are merged by non-maximum suppression (NMS) based on
the box confidence scores. NMS is applied when overlapping boxes have an IoU > Tnms,
a predefined matching threshold.

4. Experiments

Experiments were conducted using the DTU images [35] dataset. The following
sections describe the results based on the two scenarios described in Section 3.6. The
class-wise mean average precision and comparison of small, medium, and large objects are
shown for both scenarios.

4.1. Evaluation Details

Settings. To evaluate the performance of the two methods, the dataset was partitioned into
three segments, i.e., training, validation, and testing, with a distribution ratio of 70:15:15,
respectively. In training and during inference in Scenario I, we opted to partition the origi-
nal ultra high-resolution images into discrete patches with dimensions of 1024, as shown
in Table 1(a). This patch size makes it easy to manage the training process under limited
resources while retaining the details present in the image, as discussed in Section 3.4. In Sce-
nario II, after careful experimentation, it was determined that setting the patch width W to
800 yields the best performance, as shown in Table 1(b). Additionally, the variables V, Tnms,
and Tdet were introduced to represent the overlap, threshold non-maximum suppression,
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and threshold detection, respectively. An empirical evaluation was conducted to assess
the accuracy of the YOLOv5 base model with the aim of identifying the optimal parameter
settings that maximize the accuracy for subsequent experiments. The evaluation process
involved systematic variations of V, Tnms, and Tdet, and their impact on model accuracy
was measured. After extensive empirical evaluation, the parameters υ = 0.1, Tnms = 0.5,
and Tdet = 0.001 resulted in a maximum average precision (mAP) at a confidence threshold
of 0.50, and as such were subsequently selected for further experiments.

Table 1. Comparison of patch sizes for training and inference using YOLOv5 as the base model. The
table presents a comparison of patch sizes used for training and inference experiments. (a) Scenario I:
the table displays results obtained from the validation set; K is the patch resolution and the number
of samples corresponds to the training set used in the experiments. (b) Scenario II: W represents
window size; the results were obtained from the validation set with parameters V = 0.1, Tnms = 0.5,
and Tdet = 0.001.

(a) (b)
K Images Labels mAP@.5 mAP@.5-.95 W Patches/Image mAP@.5 mAP@.5-.95

640 888 1055 79.7 45.2 512 84 82.4 45.4
800 766 953 80.4 43.5 800 40 83.1 45.7

1024 598 796 85.5 46.9 1024 24 82.9 45.6
2048 362 666 85.4 48.3 2048 6 81.6 44.8

4.2. Performance Metric

To evaluate our model, the performance of the evaluated models was measured on
the test partition using the mean average precision (mAP). We observed this metric at the
standard 0.5 IoU threshold (denoted as mAP@.50) used in most object detection reporting
and at a more comprehensive average over a range of 0.5–0.95 IoU thresholds at intervals of
0.05 (denoted as mAP@.5-.95). In the context of the COCO challenge [43] for small, medium,
and large objects, we considered mAP.5-.95s (area < 322) for small objects, mAP.5-.95m
(322 < area < 962) for medium objects, and mAP.5-.95l (area > 962) for large objects.

4.3. Training Configurations

For all experiments, training used a batch size of 8 and the Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 2× 10−3 for Faster-RCNN and RetinaNet and 10−2

for YOLOv5, in keeping with common practice. Baseline models were sourced from the
Detectron2 [44] and Ultralytics [39] libraries. All the experiments were performed on an
Intel i5 machine with a single NVIDIA RTX 3060 GPU.

4.4. Results and Discussion
4.4.1. Overall Results

In Table 2, the YOLOv5 model seems to be stable in terms of performance, with the
largest difference recorded as 1.7 points for the “large” object size. While the difference in
performance for Faster-RCNN is more noticeable, a significant increase in performance
for “small” and “medium” objects is recorded, with improvements of 13.2 and 6.2 points,
respectively. However, the “large” objects encounter a significant performance decline of
−13.3 points, showing that the model is sensitive to changes in scenarios and has substantial
discrepancies across various objects sizes. For RetinaNet, the performance of the model
is more noticeable for “small” and “medium” objects, with respective gains of 4.8 and
6.8 points. However, in the case of “large” objects the performance drops by −15.5 points,
a similar performance to Faster-RCNN. In conclusion, when comparing the detection
performance of small, medium, and large objects based on Scenarios I and II, it is evident
that for small and medium objects the proposed framework (Scenario II) is able to improve
the performance of the Faster-RCNN and RetinaNet baselines by a significant margin.
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Interestingly, YOLOv5 performs slightly better for medium and large objects and slightly
worse for small objects.

Table 2. mAP@.5-.95 for Scenario I and Scenario II for small, medium, and large objects using the
DTU test set.

Models Scenario-I Scenario-II Difference

small medium large small medium large ∆(S) ∆(M) ∆(L)
YOLOv5 27.3 47.5 51.4 25.2 48.1 53.1 −2.1 0.6 1.7
Faster-
RCNN 16 42.3 63.8 29.2 48.5 50.5 13.2 6.2 −13.3

RetinaNet 13.3 36.7 65.6 18.1 43.5 50.1 4.8 6.8 −15.5

Table 3 compares the overall performance of the baseline models for Scenarios I and
II on two widely used metrics. In terms of mAP@.50, YOLOv5 demonstrates a higher
value of 81.3 in Scenario I, which increases to 85.1 for Scenario II. Similarly, Faster-RCNN
shows improvements from 73.2 to 83.4 when shifting from Scenario I to Scenario II, while
RetinaNet displays an mAP@.50 value of 70.6, which slightly decreases to 70.4 in Scenario
II. Considering the mAP@.5-.95 metric, YOLOv5, Faster-RCNN, and RetinaNet manifest
improvements from Scenario I to Scenario II, with values rising from 41.7 to 44.2, from 37.8
to 43.1, and from 32.9 to 37.9, respectively. The results show that RetinaNet performs
well, with higher mean average precision across diverse IoU thresholds, indicating that the
proposed framework (Scenario II) outperforms the standard setup used in existing works
(Scenario I) on all baselines, possibly due to its ability to improve the detection of small
and medium objects in ultra high-resolution drone-captured images.

Table 3. Overall mAP@.5 and mAP@.5-.95 for Scenario I and Scenario II on the DTU test set.

Models mAP@.50 mAP@.5-.95

Scenario-I Scenario-II Scenario-I Scenario-II

YOLOv5 81.3 85.1 41.7 44.2
Faster-RCNN 73.2 83.4 37.8 43.1

RetinaNet 70.6 70.4 32.9 37.9

4.4.2. Class-Wise Results

Table 4 reveals further insights. For YOLOv5, the performance of the CR class improves
by 2× with our proposed framework (Scenario II), while there are decreases in the MT
and DA classes. For Faster-RCNN, marked improvements in the ER, DA, and CR classes
are observed on our proposed framework, while for RetinaNet all classes improve except
for the DA class. Samples in the DA class are typically small defects on the WTB surface,
which see good performance under the slice-aided setup.

Table 4. Class-wise mAP@.5-.95 for Scenario I and Scenario II on DTU test set.

Classes YOLOv5 Faster-RCNN RetinaNet

Scenario-I Scenario-
II Scenario-I Scenario-

II Scenario-I Scenario-
II

MT 41.4 37.1 37.7 36.3 31 34.1
ER 43.7 44 38.9 47.2 36.6 46.9
DA 38.7 30.5 25.7 30.2 20.7 20.4
CR 27 53.9 30.7 48.8 23.7 30.2
PO 57.8 56.4 55.6 53.2 52.3 58

Figure 4 serves as a visual representation illustrating the disparities on a class-wise
basis between Scenario I and Scenario II concerning the proposed methodologies. A per-
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ceptible observation is that YOLOv5 demonstrates greater consistency, as evident from its
marked improvement solely in the CR class within Scenario II. Conversely, Faster-RCNN
exhibits enhanced reliability under Scenario II, as manifested by its performance enhance-
ments across three distinct classes. Notably, the RetinaNet model demonstrates superior
performance, as all of its classes exhibit commendable results when exposed to Scenario II
conditions. This exceptional performance can be attributed to the utilization of the focal loss
function, which effectively addresses class imbalance within the dataset. To enhance model
performance across all classes using alternative models, it is advisable to systematically
tackle the issue of class imbalance within the dataset, as this helps to reduce the impact of
having an unequal number of instances in different classes.

Figure 4. Comparison of IOU@0.5-.95 for YOLOv5, Faster-RCNN, and RetinaNet on different classes
in the wind turbine blade dataset; the overlapping area is shown in purple.

4.4.3. Visual Comparisons

In Figure 5, we present a visual comparison of selected outcomes extracted from
Scenarios I and II utilizing a single trained baseline model. In this case, our attention is
directed toward small objects obtained from the dataset. Through meticulous observation,
our proposed framework demonstrates a heightened capacity for pinpointing defects in
scenarios where the detection capability in Scenario I might be insufficient or lead to poten-
tial oversights. This is particularly evident in Figure 5, specifically, the second row, second
column, where the model in Scenario I fails to detect a DA defect entirely. In contrast,
the very same defect is successfully detected in Figure 5, second row, third column; within a
1024-pixel context, it remains undetected, yet within a 800-pixel framework (as exemplified
by the dimensions in Scenario II), the defect becomes noticeable. These challenges can be
effectively addressed by strategically employing a multi-scale image processing approach.
It is imperative to acknowledge that failure instances persist within both scenarios, particu-
larly when confronted with certain defect classes that pose inherent difficulties in terms
of localization. This is demonstrated in Figure 5, where the PO defect in the second row,
third column is positioned at the extremity of the image. In this case, the model in Scenario
II encounters difficulty in accurately identifying the defect positioned at the image’s far
corner. This situation highlights the intricate difficulties faced in drone-captured images.

4.4.4. Efficiency

Due to the propensities of slice-aided inference, we expect longer inference times for a
full-size image. For Scenario II, we recorded an average of 0.418 s/patch on the YOLOv5
(or 27.6 s per full-size image), though we note that this can be further optimized through
the selective processing of patches.

In terms of inference speed, a comparison between the two scenarios highlights the
superiority of Scenario I. This divergence arises from the inherent efficiency of patch-based
processing in Scenario I, in contrast to the relatively slower performance of Scenario II,
which is attributed to its comprehensive consideration of predictions based on the original
ultra high-resolution images.
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The complexity of object detection models is evident in the number of parameters that
they use. YOLOv5 is the most straightforward, with 7.2 million parameters, RetinaNet
has around 32 million parameters, and Faster-RCNN has roughly 38 million parameters.

Figure 5. Visual comparison of inference strategies, illustrating prediction results for different scenarios.

5. Discussion

In this study, we have compared two different ways of analyzing our proposed defect
detection method. First, we investigated Scenario I, where we used patches of images for
both training and testing. We found that while this method is fast, it can miss defects that
span multiple patches, leading to separate detections for one defect, which is not ideal.
In addition, while aerial images have ultra high-resolution, the scale of objects within
them can vary depending on the drone’s position. When the drone is far from the target,
recognizing small objects within the image can become very difficult. Common practices to
deal with small objects in ultra high-resolution images include randomly cropping images
or rescaling before passing them to the model for training and inference.

However, this does not solve the problem, as objects may continue to be poorly repre-
sented during model training. Alternatives include dividing the images into smaller patches
and then using them directly for training and inference. To address this, we introduced
Scenario II , where we tested our proposed method on the original ultra high-resolution
images without any preprocessing. We found that in Scenario II the model was able to find
defects that were missed in Scenario I, especially in cases where the defects were small
or spanned multiple patches. In terms of the models we used, YOLOv5 showed stable
performance across both scenarios, with slight improvements in Scenario II for medium
and large objects. Faster-RCNN had more noticeable changes, performing much better
on small and medium objects in Scenario II, although its performance dropped for larger
objects. RetinaNet showed similar behavior to Faster-RCNN, improving on small and
medium objects in Scenario II while struggling with larger ones. The detailed compar-
isons in Table 3 reveals that the proposed approach in Scenario II results in consistently
improved performance for YOLOv5, Faster-RCNN, and RetinaNet across different metrics.
These results suggest that our proposed method has the potential to enhance the detection
of defects in real-world scenarios, especially for smaller objects. Our method is designed
to work with ultra high-resolution images, no matter how large or small the wind turbine
appears in the images. The image is taken as input and the learned features are used to
detect and locate wind turbine blade surface defects within it. This approach involves
making use of the features learned from the images to effectively detect surface defects
of wind turbine blades regardless of their size, and can be applied in both on-shore and
off-shore operations, requiring only an image of the blade.

Figure 6 shows the precision–recall curve on the DTU test set. This graph illustrates
how effectively our method performs in detecting wind turbine blades surface defects. It
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measures two important aspects: precision, which reflects the accuracy of our detections,
and recall, which indicates how well the method finds all of the relevant wind turbine blade
surface defects in the images. The curve provides insights into our method’s performance
under different conditions, as it considers various IoU (Intersection over Union) thresholds.
These thresholds, denoted as C75 (IoU threshold of 0.75), C65 (IoU threshold of 0.65), C50
(IoU threshold of 0.5), and C30 (IoU threshold of 0.3), allow the method’s robustness and
trade-offs to be assessed at different levels of precision and recall. These findings underline
the importance of considering different test scenarios in order to optimize defect detection
accuracy and efficiency.

Figure 6. Precision recall curve under different IOU values.

6. Conclusions

In conclusion, in this paper we have introduced a comprehensive framework cus-
tomized to address the complex task of detecting defects on the surface of WTBs through
analysis of ultra-high resolution images. Through empirical and qualitative comparisons
of two distinct scenarios, this study highlights the importance of small object detection
and the need for a specialized setup involving slice-aided inference. The results of our
experiments demonstrate the effectiveness of slice-aided inference, especially when com-
plemented by efficient resizing and merging modules, in enhancing the detection of small
objects in ultra high-resolution images. Looking ahead, possible directions for further
investigation encompass the creation of context-driven approaches capable of adjusting the
proposed slice-aided inference strategy to accommodate a range of complex and varied
scenarios. Such enhancements could lead to even more refined defect detection capabili-
ties, thereby advancing the applicability of the proposed framework to a wider array of
real-world situations.
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