
Citation: Almutairi, K.M.; Sinha, J.K.

Experimental Vibration Data in Fault

Diagnosis: A Machine Learning

Approach to Robust Classification of

Rotor and Bearing Defects in Rotating

Machines. Machines 2023, 11, 943.

https://doi.org/10.3390/machines

11100943

Academic Editors: Xiang Li, Jie Liu

and Hui Ma

Received: 22 August 2023

Revised: 13 September 2023

Accepted: 3 October 2023

Published: 5 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Experimental Vibration Data in Fault Diagnosis: A Machine
Learning Approach to Robust Classification of Rotor and
Bearing Defects in Rotating Machines
Khalid M. Almutairi and Jyoti K. Sinha *

Dynamics Laboratory, School of Engineering, The University of Manchester, Manchester M13 9PL, UK;
khalid.almutairi@manchester.ac.uk
* Correspondence: jyoti.sinha@manchester.ac.uk

Abstract: This study builds upon previous research that utilised a vibration-based machine learning
(VML) approach for diagnosing rotor-related faults in rotating machinery. The original method
used artificial neural networks (ANN) to classify rotor-related faults based on optimised vibration
parameters from the time and frequency domains. This study expands the application of this
vibration-based machine learning approach to include the anti-friction bearing faults in addition
to the rotor faults. The earlier suggested vibration-based parameters, both in time and frequency
domains, are further revised to accommodate bearing-related defects. The study utilises the measured
vibration data from a laboratory-scale rotating test rig with different experimentally simulated faults
in the rotor and bearings. The proposed VML model is developed for both rotor and bearing defects
at a rotor speed that is above the first critical speed. To gauge the robustness of the proposed VML
model, it is further tested at two different rotating speeds, one below the first critical speed and the
other above the second critical speed. The paper presents the methodology, the rig and measured
vibration data, the optimised parameters, and the findings.

Keywords: rotating machines; vibration analysis; machine learning; rotor faults; bearing faults

1. Introduction

The operations of most industries and power plants rely significantly on rotating ma-
chinery, which makes the accurate detection of faults associated with this class of machines
at early stages a vital objective. Typical rotating machines comprise several integrated
components, including rotors, bearings, supporting structures, couplings, electric motors,
etc. The dynamic conditions under which they operate and the manufacturing/installation
imperfections make them vulnerable to various abnormalities, of which rotor and bearing-
related faults are prevalent. The most common rotor faults that cause rotor vibration are
rotor unbalance, rotor/coupling misalignment, and rotor-to-stator rubbing [1].

The malfunctions in rotating machinery may cause damage to the critical components
of the machine, such as bearings, or even lead to machine failure, which has safety and
economic implications [2]. Therefore, the early detection and reliable diagnosis of rotor and
bearing faults in their preliminary stages have become essential in industries to enhance
machine reliability and maintenance cost-effectiveness. Recently, manufacturing companies
have made great efforts to implement effective machinery maintenance programs that can
detect and diagnose rotor and bearing faults at their initial stages [3,4].

The vibration response of rotating machines is sensitive to any change in the structural
parameters. Moreover, vibration behaviour due to rotor defects varies depending on the na-
ture of the fault. Hence, analysing the vibration signals can reveal any faults in the rotating
machines. Therefore, vibration-based condition monitoring (VCM) has been beneficial in
detecting rotor and bearing-related faults. Generally, the VCM is done by installing several
vibration sensors at individual bearing locations on the monitored machine. Over the years,

Machines 2023, 11, 943. https://doi.org/10.3390/machines11100943 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11100943
https://doi.org/10.3390/machines11100943
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5527-5122
https://orcid.org/0000-0001-9202-1789
https://doi.org/10.3390/machines11100943
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11100943?type=check_update&version=2


Machines 2023, 11, 943 2 of 18

VCM techniques have been successfully used to detect and diagnose rotor and bearing
faults [5–7]. A summary of the recent research in machine diagnosis and prognosis, as well
as possible future trends, has been provided by Jardine et al. [8]. Tama et al. [9] and Kumar
et al. [10] have recently provided an overview of the VCM and presented a literature review
on recent research in this field. Furthermore, they have built an experimental rig to simulate
some rotor faults, namely rotor unbalance and shaft misalignment. A recent thorough
review of vibration-based condition monitoring of rotating machinery is presented by
Tiboni et al. [11]. Yunusa-Kaltungo [12] has provided a comprehensive literature review of
the VCM in rotating machines.

Currently, many researchers have proposed VCM that employs artificial intelligence
(AI) techniques in the rotor faults identification process, such as fuzzy logic methods and
artificial neural networks (ANN) [13,14]. ANNs have shown, in many research studies in
recent days, their effectiveness for accurately identifying the different rotating machine
faults. Moreover, artificial intelligence methods can help accelerate decision-making with
reduced human involvement.

Mubaraali et al. [15] have introduced an intelligent diagnostic system method that
employs a fuzzy neural network using the special bearing diagnostic symptom parameters
(SSPs) in time and frequency domains to precisely and automatically determine the fault
type of low-speed bearings. Khoualdia et al. [16] have been able to diagnose faults in an
induction motor under different operating conditions using a multi-layer perceptron (MLP)
artificial neural network (ANN) with the Levenberg–Marquardt learning algorithm. The
faults included in their study are broken rotor bars, bearing faults, and misalignment.

Sepulveda and Sinha [17] have developed a machine fault diagnosis model that can
be applied blindly to similar machines with high accuracy in the predictions. They have
identified the healthy and faulty conditions of an experimental rig operating at various
speeds using a smart vibration-based machine learning (SVML) model. Mei et al. [18]
achieved deep analysis and processing of large-scale data while selecting several feature
combinations that effectively characterise state information. Their research proposes a
machinery and equipment CM method combining the relative degree of contribution
(RDoC)-based feature selection and deep residual network (DRN). They proposed an
optimal feature combination selection strategy with high characterisation information
density to meet the challenge of large numbers of sensors with mismatched sampling rates.

Espinoza-Sepulveda and Sinha [19] have presented a vibration-based ML model (VML)
with a multi-layered perceptron (MLP) network, four hidden layers, and each of them with
a variable quantity of non-linear neurons. Their proposed method used vibration mea-
surements from a laboratory-scaled rig and employed an artificial intelligence (AI)-based
machine learning (ML) model. The research mainly focused on optimising vibration-
based parameters for identifying rotor faults without including other rotating machinery
components and used the artificial neural network (ANN) model for classification. How-
ever, there is a need to investigate these parameters’ effectiveness in identifying rotor and
bearing faults.

The current study is further extended from the earlier study [19]. The ANN model
and the vibration parameters used in the earlier VML model [19] for rotor fault detection
are used again in the current study to standardise the earlier proposed method. However,
the vibration parameters [19] in both time and frequency domains are further revised by
extending the frequency band so the revised parameters can cover the anti-frication bearing
defects. The measured vibration data from a laboratory-scale rotating test rig with different
experimentally simulated faults in the rotor and bearings are used in this study. The bearing
supports for the rig are designed such that the rig can operate below and above the critical
speeds. The proposed VML model is developed for both rotor and bearing defects at a
rotor speed that is above the first critical speed. The proposed VML model is further tested
at two different rotating speeds, one below the first critical speed and the other above the
second critical speed. The dynamics of the machine are different at these speeds, but the
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proposed VML model provides encouraging results. The paper presents the methodology,
the rig and measured vibration data, the optimised parameters, and the findings.

2. Measured Vibration Data Analysis

Both time- and frequency-domain analyses are performed on the measured vibration
data to extract the features for the ANN-based ML model. The computational approaches
are discussed briefly.

2.1. Time Domain Analysis

Time domain analysis involves directly evaluating the vibration signal in its original
time-based form, where we could utilise the peaks and fluctuations as rotating machine
conditions. However, it is not easy to distinguish between different conditions where the
vibration response of the machine generates complex waveforms. Alternatively, two statical
parameters are computed and extracted from the time-domain signal to employ them in
the machine learning tools. The extracted parameters are based on a previous study [19],
which are the root mean square (RMS) of acceleration and kurtosis (K). The frequency range
is extended up to 5000 Hz for measured vibration to include the bearing responses.

2.1.1. Root Mean Square (RMS)

Root mean square measures the signal’s overall energy and is commonly used as a
primary measure of vibration severity [20]. The RMS of acceleration in the time-domain
signal is computed as:

RMS =

√√√√ 1
N

N

∑
j=1

∣∣aj
∣∣2 (1)

where N represents the number of data point, and aj represents each data point of vibration
acceleration at the time tj, where tj = (j − 1)dt and the variable j = 1, 2, . . . , N.

2.1.2. Kurtosis (K)

Kurtosis is a statistical measure used to characterise a distribution’s data structure.
In vibration analysis, it is frequently employed to detect anomalies in the vibration signal
that may indicate the beginning of a defect. Remarkably, it is effective in identifying
bearing faults, as these faults often cause impacts or other non-normal events that result
in distribution with heavy tails, thus increasing the kurtosis value [21]. To calculate the
kurtosis in this study, the acceleration vibration data is filtered between 2000 and 5000 Hz to
focus on bearing-related defects, at which bearing resonances are likely to occur [22]. This
way, the measured vibration acceleration signals are going to contain only bearing-related
responses, and the bearing defect frequencies are going to be modulated around the bearing
assembly and housing resonance frequencies. Subsequently, the kurtosis of acceleration in
the time domain is computed using Equation (2).

K =
1
N ∑N

j=1
(
aj − a

)4(
1
N ∑N

j=1
(
aj − a

)2
)2 (2)

where a is the mean value of the data set of vibration acceleration data.

2.2. Frequency-Domain Analysis

The transformation of time-domain waveform signals into frequency-domain signals
is crucial to understanding the various frequency components within a vibration signal.
This transformation is achieved through the Fourier transform (FT), one of the most widely
used signal transforms [23].

This study’s measured vibration signals from the experimental rig under varying
rotor and bearing conditions are converted from the time domain to the frequency domain
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using digital fast Fourier transform (FFT). The vibration signals are segmented into smaller
segments (n) of size N (number of data points) with a 50% overlap to transfer the time
domain into frequency. The FFT of each segment is computed using Equation (3), resulting
in a complex-valued function representing the frequency amplitudes and phases within
that segment.

The FFT is computed as

A( fk) =
N

∑
j=1

aje−2πi(j−1)k/N (3)

where A( fk) represents the FFT at the frequency, fk = kd f for k = 0, 1, 2, . . . , (N/2 − 1)
and d f is the frequency resolution. aj is the jth acceleration data point at the time tj.

After computing the FFT, the power spectral density Saa( fk) is calculated for the
acceleration data. This process is done for each segment and then averaged to produce a
smoother and more accurate estimate of Saa( fk), as shown in Equation (4).

Saa( fk) =
∑n

p=1 Ap( fk) A∗
p( fk)

n
(4)

where Ap( fk) and A*
i ( fk) are the FFT and its complex conjugate at the frequency fk, for the

pth segment of the time signal. n is the number of segments.
The acceleration amplitude spectrum AAk is then estimated using Saa( fk) as

AAk =
√

Saa( fk) (5)

The velocity spectrum is generally useful for rotor-related fault detection. Hence, the
velocity spectra are estimated from the measured vibration acceleration data. The rela-
tionship between velocity and acceleration at a given frequency is defined in Equation (6),
which is used to compute the velocity spectrum:

Vk =
AAk

(2 π fk)
(6)

This frequency-domain analysis provided crucial insight into the fault signatures
contained within the vibration signals. After the analysis, the 1x, 2x, and 3x spectral velocity
amplitudes and the spectrum energy of velocity (SE) are extracted from the frequency
domain of the measured vibration data.

2.2.1. The 1x, 2x, and 3x Spectral Velocity

Figure 1 illustrates the 1x, 2x, and 3x velocity spectra. These harmonics are extracted
from the frequency domain and used as ANN model inputs for fault detection.

2.2.2. Spectrum Energy (SE)

The measurement of the signal’s energy content in the amplitude spectrum is known
as spectrum energy (SE). High energy in specific frequency bands can suggest an abnormal
condition or an impending fault. Therefore, regarding Figure 2, the SE can be defined as

SE = ∑ fm
k=0 V( fk).d f (7)

where SE is the spectrum energy of the signal at the time tj and V( fk) is the FFT at fk,
where fk = kd f for k = 0, 1, 2, . . . , (N/2 − 1). d f is the frequency resolution of the FFT.
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In this study, spectrum energy SE includes the range from 0.3 times the operational
speed to 5000 Hz to focus on shaft rub and bearing-related faults.

2.2.3. Envelope Analysis

Envelope analysis, also known as amplitude demodulation, is an effective technique
for detecting bearing faults in rotating machinery. This method involves extracting the
high-frequency components related to the fault by filtering the raw vibration signal. To
detect bearing-related faults, the signal is filtered using band-pass filtering from 2000 Hz
to 5000 Hz. Then, the envelope of the filtered signal is computed using the Hilbert trans-
form [24]. The envelope signal is then calculated as the magnitude of the complex signal
formed by the original filtered signal and its Hilbert transform [24]. The envelope signal
is transformed into the frequency domain using FFT as per Equation (3). The resulting
spectrum is analysed for characteristic fault frequencies associated with bearing defects
related to the bearing geometry and the rotational speed of the machine [25]. These are
often referred to as bearing characteristic frequencies and can include the frequency related
to a ball defect ( fb), the frequency related to a defect in the inner race ( fi), the frequency
related to a defect in the outer race ( fo), and the frequency related to a defect in the cage
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( fcage). In the case of a defect, the acceleration amplitude of these frequencies or their
harmonics and sidebands will have peaks in the envelope spectrum, allowing the type of
bearing fault to be identified. Figure 3 shows a schematic diagram of a ball bearing and its
components. Figure 4 illustrates the characteristic frequencies of bearing components in
the envelope analysis.
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3. Machine Learning Model [19]

The earlier study by Sepulveda and Sinha [19] used the ANN-based VML model for
rotor fault identification. The VML model framework is kept exactly the same for further
extension to bearing fault detection to standardise the model for any industrial application.
This model is summarised here to aid understanding. The ANNs are knowledge-based
systems developed through a training process that builds a connection between symptoms
and the underlying causes of those symptoms [26]. The study implements a multi-layered
perceptron (MLP) network structure formed by four hidden layers of weight between the
inputs and the outputs [27]. The MLP is mainly employed for pattern recognition and
extracting feature classifications as inputs. The network parameters, such as the number of
layers, neurons, and types of functions utilised at the various stages, are established and
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modified through iterations. The output of these iterations is a feed-forward network with
four hidden layers. Figure 5 shows the four layers with a variable quantity of non-linear
neurons, namely, 1000, 1000, 100, and 10, respectively. The ANN model used in this work
is nearly the same as the one used by Espinoza-Sepulveda and Sinha [19], with a slight
modification in the output layer to include the effect of bearing faults.
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The first function implemented in the ANN is the hidden neurons’ activation function,
called the hyperbolic tangent sigmoid [28]. The second selected function is the transfer
function at the output neurons, namely, the normalised exponential function (SoftMax) [29].
The third and fourth functions are the training function (i.e., scaled conjugate gradient back-
propagation) and the performance function (i.e., cross-entropy). The functions mentioned
above are presented in Table 1.

Table 1. Specification of the supervised four-hidden-layer feed-forward ANN.

Architecture Four-Hidden-Layer Feed-Forward Neural Network

ANN Parameter

Hidden layer number No. of neurons

1 1000

2 1000

3 100

4 10

The activation function of hidden neurons Hyperbolic tangent sigmoid

Transfer function output neurons Normalised exponential function (Softmax)

Training function Scaled conjugate gradient back-propagation

Performance function Cross-entropy

The measured vibration data on machine conditions for each tested speed has been
divided into three distinct groups (Table 2). The first set, consisting of 70% of the samples,
is used to train the ML model. Setting the parameters of the model or weights according to
a learning rule to reduce the classification error on the training data constitutes the training
process [30]. The second group of data sets contains 15% of the collected samples. This
data is used for the validation process, which includes testing the trained model on data
not used during training. The validation process allows for a more unbiased assessment of
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the model’s performance than only looking at the training error. The validation process
continues until the classification error on the validation data reaches an allowable limit,
at which point the training process can be stopped. This method prevents overfitting,
a common issue in machine learning in which the model becomes overly complex and
performs well on training data but inadequately on new data [31]. The third data set also
comprised 15% of the samples. After the model has been trained and validated, these data
are used to test the model’s generalisation ability. Testing on a distinct data set ensures that
the model’s performance is robust and can classify new data reliably.

Table 2. The datasets used for training, validation, and testing of the ML model.

Data Set Number % of the Samples for Each
Machine Condition Purpose

1 70% Training the ML model and modifying
the weights per the learning rule.

2 15%

The validation process is accomplished
by verifying the trained model with these

samples until their classification error
reaches an allowable limit, permitting the

order to stop the training process.
Reaching this stage means that the

weights are optimal for the network.

3 15% This set is examined, leading to the
generalisation of the model.

The model performance is calculated using Equation (8).

Per f ormance (%) =

(
no. correct classi f ication

total o f input

)
× 100% (8)

4. Experimental Rig and Measured Vibration Data

The laboratory-scaled rig is depicted in Figure 6. The data being analysed in the
current study have been measured previously by Luwei [32]. A schematic diagram of the
experimental rig is illustrated in Figure 7. The laboratory rig includes two steel shafts
with two different lengths and an identical diameter of 20 mm. The first shaft (SH1) has a
length of 1 m, and the second shaft (SH2) has a length of 0.5 m. A rigid coupling connects
both shafts. Two grease-lubricated ball bearings support each of the two shafts. Each
bearing is secured flexibly with four springs to the rectangular bearing pedestal. The
bearing pedestals are secured to a steel base bolted to the base structure. A flexible coupling
connects the rotor-bearing-foundation system with a three-phase motor to drive the rotor at
different speeds. The motor has a power of 0.75 kW, and the maximum speed is 3000 RPM.
Two balancing discs are attached to shaft SH1, and a single balancing disc is attached to
shaft SH2. The balancing discs have a diameter of 125 mm and a thickness of 14 mm.
Single accelerometers with a sensitivity of 100 mV/g are installed on each of the four
bearing housings.

The vibrational data have been measured at three different rotor speeds: 450 RPM
(7.5 Hz), 900 RPM (15 Hz), and 1350 RPM (22.5 Hz). The machine conditions considered for
each speed include healthy (only residual unbalance and misalignment), misalignment, a
crack in the shaft, rotor rub, and a faulty bearing, B2. The acquired data comprise vibration
acceleration responses from bearing housings (B1 to B4) at an angle of 45 degrees from the
horizontal direction [32]. The acceleration data are measured with a sampling frequency of
10,000 Hz. The number of machine runs at each rotor speed for the different conditions is
presented in Table 3.
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Table 3. Samples of different rotating machine conditions at different speeds.

Machine Condition
Number of Runs (Samples)

450 RPM 900 RPM 1350 RPM

Healthy (residual unbalance and
residual misalignment) 40 40 40

Misalignment 40 40 40

Shaft crack 80 80 80

Rotor rub 40 40 40

Faulty bearing 40 40 40
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Modal tests were performed by Luwei and Sinha [32] to dynamically characterise the
test rig. The first five bending natural frequencies identified by the modal tests are 11.52 Hz,
18.62 Hz, 30.75 Hz, 49.13 Hz, and 85.83 Hz [32]. Taking natural frequencies into account,
the three operational speeds are chosen in this study: one below the first critical speed and
two above the critical speeds. These speeds are set at 450 RPM (7.5 Hz), which is lower
than the first critical speed; 900 RPM (15 Hz), which is higher than the first critical speed;
and 1350 RPM (22.5 Hz), which is higher than the second critical speed. The rotating rig
dynamics are significantly different at these three speeds.

The ball bearing specifications that are used in the experimental rig are represented in
Table 4. The calculated frequencies related to the ball, inner race, outer race, and cage of the
bearings that support the experimental rig of the rotating machine for different rotation
speeds are concluded in Table 5.

Table 4. Ball bearing specification.

Bearing Parts Specification

Inner (bore) diameter (di ) 20 mm

Pitch circle diameter
(
dp ) 33.50 mm

Diameter of the roller (db ) 7.938 mm

The contact angle of the roller (β ) 0

Number of rollers (nr ) 10

Table 5. Characteristic frequencies of ball bearings used in the experimental rig.

Condition
Rotor Speed (RPM)

450 900 1350

The relative speed between the inner race and the
outer race (Hz) 7.5 15 22.5

Frequency related to the ball defect (Hz) 29.87 59.75 89.62

Frequency related to a defect in the inner race (Hz) 37.11 74.22 111.33

Frequency related to a defect in the outer race (Hz) 22.89 45.78 68.67

Frequency related to a defect in the cage (Hz) 2.86 5.72 8.58

5. Data Analysis at 900 RPM Rotating Speed

This section analyses vibration data obtained from the experimental rotating machine
operating at 900 RPM (15 Hz) under four conditions: misalignment, shaft crack, rubbing,
and a fault in bearing 2. The analysis examines the acceleration time domain, velocity
frequency, and envelope spectrum.

Figure 8 shows various factors like fault type and severity influencing measured
vibrations. However, it is not easy to distinguish between different conditions where the
vibration response of the machine generates complex waveforms. Thus, further analysis,
like frequency spectrum analysis, is required for fault diagnosis.

The velocity spectra in Figure 9a–d correspond to rotor faults and exhibit peaks at 1x,
2x, and 3x the rotating frequency. These harmonics indicate rotor defects, requiring expert
analysis for diagnosis.
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Figure 9. Typical velocity vibration spectra at bearing 2 (B2) for the different machine faulty conditions
at a rotating speed of 900 RPM. (a) Misalignment, (b) crack near B1, (c) crack near B2, (d) rub near D1,
(e) faulty B2.

In contrast, Figure 9e lacks harmonic indicators of a bearing defect, typically occur-
ring at higher frequencies. Thus, envelope analysis is applied to detect better-bearing
faults. The vibrations are band-pass filtered from 2000–5000 Hz so that the filtered data
contains the bearing-related vibration response. The Hilbert transform and the FFT analy-
sis are performed on the envelope time-domain data to compute the envelope spectrum
(Figure 10).



Machines 2023, 11, 943 13 of 18

Machines 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

 

 

Figure 10. Typical envelope spectra at bearing 2 (B2) for faulty machine conditions at a rotating 

speed of 900 RPM. (a) Misalignment, (b) crack near B1, (c) crack near B2, (d) rub near D1, (e) faulty 

B2. 

Figure 10. Typical envelope spectra at bearing 2 (B2) for faulty machine conditions at a rotating speed
of 900 RPM. (a) Misalignment, (b) crack near B1, (c) crack near B2, (d) rub near D1, (e) faulty B2.
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Figure 10a–d show no peaks, indicating no bearing faults present with the rotor faults.
However, Figure 10e shows peaks at the 1x and 2x harmonics of the bearing cage frequency
from Table 2, indicating a fault in bearing B2’s cage.

6. The VML Model

Sepulveda and Sinha [19] have used both time- and frequency-domain features to
develop an ANN-based VML model to diagnose rotor-related faults. The study suggested
six parameters (Table 6)—two in the time domain (acceleration RMS and kurtosis) and four
in the frequency-domain parameters (1x, 2x, and 3x amplitudes of the velocity spectra and
spectrum energy). These parameters were found to be robust parameters to detect rotor
faults in the earlier study.

Table 6. Parameters of vibration data in both the time and frequency domains [19].

Parameters Domain Amplitude

Root mean square (RMS) Time Acceleration

Kurtosis (K) Time Acceleration

The first harmonic of rotating speed (1x) Frequency Velocity

The second harmonic of rotating speed (2x) Frequency Velocity

The third harmonic of rotating speed (3x) Frequency Velocity

Spectrum energy (SE) Frequency Velocity

This study is also attempting to keep exactly the same ANN-based VML and the
parameters to make this model as the standard VML model for both the rotor and anti-
friction bearing fault detection. However, the following three essential modifications are
implemented to include bearing-related vibration responses.

i. The RMS values are calculated from the measured vibration data, which
contain a frequency range up to 5000 Hz. Hence, the RMS values have rotor and
bearing responses.

ii. The bearing assembly and housing resonance frequency is likely to be in the band
of 2000–5000 Hz for this bearing used in the rig. It is also known that the bearing
defect frequencies (in the case of the bearing fault) are generally modulated around
the bearing resonance frequency. Hence the kurtosis (FK) calculated on the band-pass
filtered acceleration signals in the 2000 Hz to 5000 Hz frequency range so that kurtosis
can reflect the bearing condition.

iii. Similarly, like RMS, the frequency range for the spectrum energy (SE) calculation is
expanded from 0.3 times the rotational speed to 5000 Hz. This adjustment accom-
modates the effects of subharmonics related to the rotor faults and the high band
frequency range for the anti-friction bearing faults.

These time- and frequency-domain parameters are extracted from all measured vi-
bration signals of the collected samples and all tested experimental conditions. Table 7
provides the list of total data and the arrangement of their use within the ANN-based
VML model.

Table 7. Total data as the input for the ANN model.

Source of Data
Input Vector
Size (No. of
Parameters)

Measurement
Points

Total of
Samples

Training
Samples (70%)

Validation
Samples (15%)

Testing
Samples (15%)

B1, B2, B3 and B4 24 4 240 168 36 36
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The databank of the ANN’s input for each tested speed, Data, is constructed as follows:

Data =
[
DataH DataM DataC DataR DataBF

]T (9)

In this context, ‘DataH‘ refers to the databank for the healthy condition, ‘DataM’
corresponds to the databank for the misalignment fault condition, ‘DataC’ represents the
databank for the cracked shaft fault condition, ‘DataR‘ is associated with the databank
for the rotor rub fault condition, and ‘DataBF‘ denotes the databank for the bearing fault
condition. Each of these databanks comprises parameters from individual runs. Each
databank is arranged as per Equation (10).

DataH =
[
H1 H2 . . . H40

]T ,
DataM =

[
M1 M2 . . . M40

]T ,
DataC =

[
C1 C2 . . . C80

]T ,
DataR =

[
R1 R2 . . . R40

]T ,
DataBF =

[
BF1 BF2 . . . BF40

]T

(10)

The subscripts 1, 2, 3, and so on denote the machine run or sample numbers, as detailed
in Table 2. For the healthy machine condition, the parameters for each run, which consist
of 24 elements (calculated as 6 parameters per bearing times 4 bearings), are organised
according to the structure provided in Equation (11).

Hi = [ RMSB1z KB1z 1xz 2xB1z 3xB1z SEB1z . . .
RMSB2z . . . SEB2z RMSB2z . . . SEB3z RMSB4z . . . SEB4z ]

(11)

where z is the healthy machine condition’s run number (sample number). Similarly, the
databanks can be arranged for other machine fault conditions. Once the databanks are
prepared, the VML model is applied, as discussed in Section 3.

7. Application of the ANN-Based VML Model and Results

The bearing fault is now included in the ANN-based VML used earlier [19]. The
model in this study is designed to classify the state of the rotor and bearing system into
five distinct conditions: healthy, misalignment, crack, rub, and bearing faults. Selected
input parameters of the ANN are representative of the machine’s dynamic characteristics,
including the RMS and FK of acceleration in the time domain, as well as the 1x, 2x, and 3x
velocity spectra and the SE of velocity in the frequency domain. For a balanced learning
process, we structured the dataset with 70% dedicated to training and the remaining 30%
equally divided for validation and testing.

Upon developing the system at 900 RPM, the ANN-based VML model shows excellent
performance, achieving 100% accuracy in identifying the healthy condition, rotor faults,
and bearing faults (Table 8).

Table 8. Overall performance of the VML model at a rotating speed of 900 RPM (above the first
critical speed).

Target Class

Healthy Misalignment Crack Rub Faulty Bearing

Output Class

Healthy 100 0 0 0 0

Misalignment 0 100 0 0 0

Crack 0 0 100 0 0

Rub 0 0 0 100 0

Faulty Bearing 0 0 0 0 100
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8. Further Validation

To ensure the reliability and applicability of the ANN-based VML model and the
vibration parameters, the model is further tested at two other rotating speeds. These two
speeds are 450 RPM (7.5 Hz), below the experimental rig’s first critical speed, and 1350 RPM
(22.5 Hz), above the second critical speed. The input matrices are constructed using the
same extracted parameters in both the time and frequency domains. The data arrangement
process for the input matrixes is described in Section 6 and is followed in these exercises.
The 100% correct identification of the machine conditions is observed, which is listed in
Tables 9 and 10. The rig dynamics are expected to be significantly different, but the VML
model shows robustness. This is because the vibration parameters are selected based on
the rotodynamic concept.

Table 9. Overall performance of the VML model at a rotating speed of 450 RPM (below the first
critical speed).

Target Class

Healthy Misalignment Crack Rub Faulty Bearing

Output Class

Healthy 100 0 0 0 0

Misalignment 0 100 0 0 0

Crack 0 0 100 0 0

Rub 0 0 0 100 0

Faulty Bearing 0 0 0 0 100

Table 10. Overall performance of the VML model at a rotating speed of 1350 RPM (above the second
critical speed).

Target Class

Healthy Misalignment Crack Rub Faulty Bearing

Output Class

Healthy 100 0 0 0 0

Misalignment 0 100 0 0 0

Crack 0 0 100 0 0

Rub 0 0 0 100 0

Faulty Bearing 0 0 0 0 100

9. Concluding Remarks

The earlier ANN-based VML model and the optimised vibration parameters for only
detecting rotor faults have now been extended to include both rotor and anti-friction
bearing faults. The vibration parameters are revised by extending the frequency range up
to 5000 Hz to cover the bearing-related resonance responses due to defects in the bearing.
The proposed VML method is initially developed and applied to the experimental rig when
rotating at 900 RPM (above the first critical speed). The model yields a 100% accurate
diagnosis of the machine conditions. To further check the usefulness and robustness of the
VML model and the vibration parameters, the proposed method is also tested on the same
experimental rig but at two different speeds. These speeds are 450 RPM and 13,500 RPM,
which are below the first critical speed and above the second critical speed, respectively.
The machine dynamics are significantly different at these two speeds compared to the speed
of 900 RPM. Still, the proposed vibration parameters and the ANN-based VML model gave
a 100% correct diagnosis of the machine conditions. Hence, the model has the potential for
industrial applications.
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