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Abstract: Due to its superior characteristics, carbon fiber reinforced plastics (CFRP) have been widely
used in aerospace and other fields. However, their effective and economical processing remains
a challenge. The purpose of this paper was to experimentally investigate the influence of several
machining parameters, namely spindle speed, cutting depth, feed rate, and grit size on different
machining performances, i.e., grinding force, and surface roughness through longitudinal-torsional
(L&T) ultrasonic vibration grinding CFRP. The response surface methodology with a Box—Behnken
design was used to create the experiments. The fitting mathematical models of grinding force and
surface roughness were established separately to explore the interaction between the machining
parameters and the impact on machining results. With the purpose of improving the surface quality
and reducing the grinding force, the NSGA-II was used for multi-objective optimization to obtain the
Pareto optimal solution. Compared with the initial experimental parameters, the optimized results
can significantly improve the surface roughness and reduce the cutting force.

Keywords: CFRP; L&T ultrasonic vibration face grinding; multi-objective optimization; grinding
force; surface roughness

1. Introduction

Carbon fiber reinforced plastics (CFRP), as a special type of advanced composite
material, have a wide demand in fields such as aerospace, lightweight vehicles, and high-
end equipment [1,2]. However, due to the anisotropy, high strength, and high temperature
resistance of CFRP materials, the machining of CFRP is considerably more difficult than
the machining of conventional metals. Generally, conventional machining (CM) of CFRP
encounters many issues such as delamination, burrs, splintering, excessive cutting forces,
low machining precision, and short tool life [3–5]; the surface morphology and reliability
of CFRP components have been greatly affected.

In recent years, ultrasonic vibration machining (UVM) has received extensive research,
which can improve machining efficiency, effectively reduce cutting force and temperature,
and greatly improve machining quality. Ultrasonic vibration machining (UVM) is a non-
traditional machining process which is a hybrid process that combines material removal
mechanisms of CM and ultrasonic machining. The cutting tool can oscillate at a high
frequency (typically 20 kHz) [6]. UVM has been considered an excellent machining method
for CFRP materials, which has been studied in mechanical process areas, such as ultrasonic-
assisted cutting [7–9], ultrasonic-assisted drilling [10–12], ultrasonic milling [13,14], and
ultrasonic-assisted grinding [15,16], etc.

Compared to ordinary grinding, L&T ultrasonic vibration face grinding is beneficial
for maintaining the good cutting performance of abrasive particles [17]. The abrasive
particles undertake an approximate spiral motion in three-dimensional space, resulting
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in periodic cutting separation motion between the abrasive particles and the workpiece,
which further refines the chips and is more conducive to obtaining high-precision and
high-quality machining surfaces.

Improving the surface processing accuracy and optimizing the processing technology
of CFRP is an important and arduous task. Scholars have conducted experimental research
on multiple types of machining methods, mechanisms, and processes. The various influ-
encing factors of CFRP surface roughness and cutting force have been analyzed. Exploring
the optimal machining process plan has become a current research hotspot.

GENG et al. [18] studied the processing technology of rotating ultrasonic elliptical
machining of CFRP; the delamination suppression mechanism in this process was analyzed
and verified. Rotating ultrasonic elliptical machining was considered as a competitive and
promising technique for drilling CFRP. CHEN et al. [19] studied the effect of the angle
between the fiber direction and the grinding direction on the grinding force as well as
the surface integrity of ultrasonic vibration-assisted grinding of CFRP. When the included
angle was 45◦, the extraction of fibers and grinding force was effectively reduced. Moreover,
ultrasonic vibration can efficaciously improve the sharpness of the abrasive particles and
reduce the fiber fracture phenomenon. WANG et al. [20] constructed a mathematical model
for the grinding force of two-dimensional elliptical ultrasonic vibration-assisted grinding
of CFRP. The elastic modulus of fiber in the transverse and longitudinal directions was first
calculated. Considering the trajectory of abrasive particles and the mechanism of material
removal, the relationship between the grinding force and the machining parameters was
established. The results indicated that horizontal ultrasonic vibration mainly reduced
the actual contact time between the abrasive particles and the workpiece, while vertical
ultrasonic vibration increased the length of contact time between the abrasive particles and
the workpiece, ultimately leading to a decrease in the grinding force.

In addition to the research on machining mechanisms and process methods, some
scholars have studied the influence of cutting parameters on machining performance
indexes and preferably selected the optimal range of cutting parameters to improve the
machining efficiency, enhance the surface quality, and reduce the cutting force. These
are important for controlling the surface machining accuracy and for seeking reasonable
machining process solutions.

Niu et al. [21] studied multi-objective optimization for longitudinal and torsional
ultrasonic vibration milling of titanium alloys. A multi-objective optimization model
was established to obtain optimization parameters. Based on the optimization results,
a set of milling-validated experiments were developed to optimize the model. Sindhu
et al. [22] studied the effects of tool feed rate, spindle speed, and material removal rate of
surface roughness through rotary ultrasonic vibration machining. Through grey relational
analysis, the results showed that tool feed rate was the most critical parameter affecting
the characteristics of rotary ultrasonic machining, followed by ultrasonic power and tool
speed. Finally, the optimal machining parameters were provided. The optimization
studies [23] were carried out for the ultrasonic machining process with multi-response
characteristics dependent on the multi-criteria decision making methodology (MCDM),
using a technique to order the preference via similarity to the ideal solution (AHP-TOPSIS)
approach as described. Singh and Singhal [24] investigated spindle speed, feed rate, coolant
pressure, and ultrasonic power dominance in different machining performances based on
the feedback of surface roughness and the chipping in alumina-ceramic rotary ultrasonic
machines. Surface method found that the surface roughness value was 0.215 mm and
the chipping thickness was 0.159 mm. Singh et al. [25] proposed the multiple response
optimization of the ultrasonic-assisted electric discharge machining (UAEDM) process
through the Taguchi—Grey relational analysis approach, during machining of a Nimonic
75 superalloy. Kumar et al. [26] selected feed rate, tool rotation speed, and ultrasonic
power as input variables considering the chipping width, taper and material removal
rate (MRR) as output responses. The TOPSIS approach was coupled with the Taguchi
approach for multi-response optimization. Choi et al. [27] conducted experimental research
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on rotary ultrasonic side milling (RUSM) quartz materials based on the response surface
methodology (RSM) with a Box—Behnken design for the experiments. The predicted
equations for the cutting force according to the machining environments and conditions
were proposed and the optimal conditions were obtained.

As per the reported literature, only a few research studies have been conducted on L&T
ultrasonic vibration machining of CFRP that employed the response surface methodology
(RSM) with a view to scheme the experiments and to assess the parameters’ influences
on the process responses. Multi-response optimization of machining characteristics, i.e.,
surface roughness (SR) and grinding force (GF), had also never been attempted before in
L&T ultrasonic vibration face grinding of CFRP. This paper mainly studied the influence
and interaction of longitudinal-torsional (L&T) ultrasonic vibration grinding parameters on
the surface quality of CFRP. Based on the response surface design method, mathematical
models of grinding force and surface roughness were established. The influence of the
grinding parameters on the cutting force and roughness were also analyzed. Moreover, the
significant order of spindle speed, cutting depth, feed rate, and grit size in the experimental
space was obtained for the purpose of improving the surface quality and to reduce the
grinding force. The evolutionary algorithm of the multi-objective optimization problem
(non-dominated sorting genetic algorithm, NSGA-II) was used to explore the complex
relationship between the grinding parameters and the CFRP surface quality and grinding
force. Finally, these optimization results were compared with the experimental results. This
research provides a theoretical basis for the high quality and efficient processing of CFRP
components.

2. Experimental Conditions and Methods
2.1. Experimental Set-Up and Conditions

The end grinding experiments were carried out on a vertical CNC machining center
HAAS VF-2SS, with a spindle power of 11.2 kW and a maximum speed of 20,000 r/min. It
should be emphasized that the original spindle was replaced by the designed ultrasonic
spindle system. The ultrasonic spindle system was composed of a piezoelectric transducer,
a collector ring, a horn, and a diamond grinding unit. Ultrasonic vibration is defined
as high-frequency and low amplitude reciprocal harmonic motion, generated through a
piezoelectric transducer with a sinusoidal voltage signal input from the ultrasonic generator.
Then, the horn amplified the amplitude to 8 µm (longitudinal vibration) and to 4 µm
(torsional vibration) at a frequency of 20 kHz.

The grinding tool adopted a cylindrical electroplated diamond grinding head, with a
particle size of 60/100/120/150/200 mesh # (mesh size). The model characteristics of the
grinding unit are shown in Table 1.

Table 1. Model characteristics of the grinding unit.

Tool No. Grit Size (mesh #) Diameter of the
Tool Shank

Abrasive Size r
(µm)

Wheel
Diameter D

(mm)

1 60# 6 88 8
2 100# 6 41 8
3 120# 6 30 8
4 150# 6 40 8
5 200# 6 20 8

2.2. Materials

The workpiece material was CFRP T300 multi-layered carbon fiber board (with alter-
nating layers of 0◦/90◦, as shown in Figure 1). The sample size of workpiece was 20 mm ×
5 mm × 5 mm. The material property parameters of the workpiece are shown in Table 2.
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Table 2. Material Properties of Workpiece.

Fiber
Orientations

Fiber
Diameter

Layer
Thickness

Tensile
Strength

Elastic
Modulus Density

0◦/90◦ 6~8 µm 125 µm 3500 MPa 235 GPa 1.78 g/cm3
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2.3. Material Measurement Procedures for Output Variables

The grinding forces generated during the process were measured using a Kistler
9257B piezoelectric grinding dynamometer and a multi-channel charge amplifier (Kistler
5080) connected to the grind table. Data transfer from the piezoelectric dynamometer was
provided via the data acquisition system (DEWE soft SIRIUS). Data transfer was based on
the logic of converting analog signals into digital signals. The average value of the grinding
force was chosen to represent the entire cutting force. The experimental processing site
is shown in Figure 2. The grinding force obtained from the experimental measurement is
shown in Figure 3: for a 1500 rpm spindle speed, it utilized a 0.15 mm cutting depth, a
180 mm/min feed rate, and a 120# grit size. This figure shows the cutting force in the time
domain from 3 s to 7.5 s. It was evident that the grinding force value tended to stabilize
during this time period. The extreme value in the curve was used as the experimental
measurement result of the grinding force.

The surface arithmetic mean deviation Sa was used to evaluate the surface processing
quality of CFRP. It considered all the measurement points on the surface to be measured and
truly reflected the surface condition of the workpiece. The surface roughness measurement
was taken using a VK-X200K laser confocal microscope.

To ensure the accuracy and reliability of the measurement data, the specific measure-
ment method took three positions on the machining surface for measurement, and then
calculated the average value to obtain the surface roughness value.
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2.4. Experimental Design

The Response Surface Methodology (RSM) combines mathematical and statistical
techniques to save costs and time through conducting fewer experiments. It maps the
relationship between the response and the factors into a mathematical model, analyzes the
influence of factors on the response, and obtains the optimal response factor value. When
researchers search for the optimal value of the response, they usually need a model that
includes curvature to approximate the predicted response. In general, the second-order
model form of Equation (1) is adopted.

Y = β0 +
k

∑
i=1

βixi+
k

∑
i=1

βiix2
i
+

k

∑
i<j

βijxixij+ε (1)

where Y represents the output response variable; βi, βii, βij were the constants calcu-
lated using the least square methodology. xi, x2

i
, xixj were the linear, second order and

interaction terms of the process parameters and k represented the number of variables.
The Box—Behnken Design has been widely used in experimental design methodolo-

gies in RSM, which is very suitable for fitting second-order models. The four parameters
utilized in this experiment were spindle speed, cutting depth, feed rate, and grit size (mesh
#). The responses used were grinding force and surface roughness, which have interacted
in this experiment.

The number of center points per block was set to 6. Preliminary experiments were
performed several times to select parameters. Table 3 shows the parameter values corre-
sponding to each level. A total of 30 experiments were conducted. Table 4 presents the
complete experimental design plan along with the values of grinding force and surface
roughness.

Table 3. L&T ultrasonic vibration face grinding parameters with their levels.

Parameters (Code Unit) −1 0 1

Spindle speed (rpm) 500 1500 2500
Cutting depth (mm) 0.05 0.15 0.25
Feed rate (mm/min) 60 180 300

Grit size (mesh#) 60 120 300
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Table 4. Model characteristics of the grinding unit.

Run Order Spindle Speed
(rpm)

Cutting Depth
(mm)

Feed Rate
(mm/min)

Grit Size
(mesh#)

Grinding Force
F (N)

Surface Roughness
(µm)

1 2500 0.15 60 120 68.4 1.43
2 2500 0.05 180 120 68.6 1.13
3 1500 0.15 180 120 25.4 2.55
4 1500 0.05 180 60 27 2.1
5 1500 0.15 300 60 20.1 3.16
6 1500 0.25 60 120 21.8 2.02
7 500 0.15 60 120 4.1 4.94
8 1500 0.15 60 60 24.9 2.28
9 2500 0.25 180 120 66.1 2.23

10 1500 0.15 180 120 25.4 2.55
11 1500 0.15 300 200 27.2 2.74
12 1500 0.05 180 200 28.9 2.02
13 1500 0.15 60 200 21.7 2.04
14 1500 0.25 180 60 24.4 3.42
15 500 0.15 300 120 13.3 6.12
16 1500 0.15 180 120 25.4 2.55
17 1500 0.05 300 120 24.7 1.7
18 2500 0.15 180 60 67.2 2.25
19 1500 0.15 180 120 25.4 2.55
20 2500 0.15 180 200 65.2 1.97
21 500 0.15 180 60 7.7 6.18
22 1500 0.25 180 200 26.3 2.85
23 500 0.15 180 200 13.6 5.81
24 1500 0.15 180 120 25.4 2.55
25 1500 0.05 60 120 27.2 1.44
26 500 0.05 180 120 13.2 5
27 500 0.25 180 120 10.6 6.14
28 2500 0.15 300 120 63.2 1.84
29 1500 0.15 180 120 25.4 2.55
30 1500 0.25 300 120 25 3.35

3. Results and Discussions
3.1. ANOVA

Analysis of variance (ANOVA) testing confirmed the importance and contribution
of each process parameter on the output response. The p-value was the probability of
F < Fα,k,n−k−1 (α was the confidence level, k was the number of fitted model factor terms,
and n was the number of experimental data). When the p-value (<0.0500) corresponded to
a confidence level of over 95%, it was considered that the corresponding source of variance
had a significant impact on the results.

3.1.1. Grinding Force Analysis and Prediction

The regression analysis was carried out on the experimental data and is presented
in Table 4. According to the principles of ANOVA mentioned earlier, significant models
for the grinding force with the insignificant terms removed were created and are listed in
Table 5. In this table, the p-value of this model was less than 0.0001, which indicated that
the established model had a high fitness.

A general second order model for predicting grinding force was generated using the
least square method:

F = 7.15238− 0.002928× ns − 67.29195× ap + 0.03629× as+
0.016084× gs + 0.000013× n2

s + 109.16667× a2
p − 0.000117× a2

s
−0.00003× ns × as − 0.000028× ns × gs + 0.11875× ap × as + 0.00298× as × gs

(2)
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where F was the grinding force, ns was the spindle speed, ap was cutting depth, as was
feeding rate, and gs was the grit size of the grinding unit. The normal probability plot given
in Figure 4 shows that the model for grinding force was consistent with the regression and
that the residues were distributed normally.

Table 5. ANOVA for grinding force.

Source Sum of
Squares DF Mean

Square F-Value p-Value

Model 10,867.88 14 776.28 2240.03 <0.0001
A-Spindle speed 9049.73 1 9049.73 26,113.91 <0.0001
B-Cutting depth 19.25 1 19.25 55.56 <0.0001

C-Feed rate 5.54 1 5.54 15.97 0.0012
D-Grit size 11.21 1 11.21 32.36 <0.0001

AC 51.84 1 51.84 149.59 <0.0001
AD 15.94 1 15.94 45.98 <0.0001
BC 8.12 1 8.12 23.44 0.0002
CD 25.37 1 25.37 73.22 <0.0001
A2 1206.89 1 1206.89 3482.60 <0.0001
B2 8.17 1 8.17 23.58 0.0002
C2 19.43 1 19.43 56.07 <0.0001

Residual 5.20 15 0.3465
Lack of Fit 5.20 10 0.5198
Pure Error 0.0000 5 0.0000
Cor Total 10,873.08 29Machines 2023, 11, 935 8 of 14 
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Based on Table 5, the significant order of spindle speed, cutting depth, feed rate, and
grit size of the grinding unit in the experimental space was obtained as follows: A > B > D
> C (primary term), A2 > AC > CD > C2 > AD > B2 > BC (quadratic term).

Figure 5 shows the response surface with the most significant interaction between
the grinding parameters and the grinding force. From Figure 5, it can be concluded that
the spindle speed was the most influential parameter that impacted the grinding force.
The grinding force was significantly increased with the increased spindle speed, and
the influence of cutting depth, grit size, and feed rate on the grinding force decreased
in sequence.
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3.1.2. Surface Roughness Analysis and Prediction

The regression analysis was carried out on the experimental data and is presented in
Table 4. According to the principles of ANOVA mentioned earlier, significant models for
the surface roughness with the insignificant terms removed are listed in Table 6. In this
table, the p-value of this model was less than 0.0001, which indicated that the established
model had a high fitness. A general second order model for predicting surface roughness
was generated using the least square method:

Sa = 6.89675− 0.005476× ns + 9.51871× ap + 0.008836× as − 0.012256× gs + 1.265× 10(−6) × n2
s

−19× a2
p − 0.000016× a2

s + 0.000054× g2
s − 0.0001× ns × ap − 1.60417× 10−6 × ns × as

+3.22148× 10−7 × ns × gs + 0.022292× ap × as − 0.01755× ap × gs − 5.3132× 10−6 × as × gs

(3)

where, Sa was the surface roughness. The normal probability plot given in Figure 6 shows
that the model for surface roughness was consistent with the regression and the residues
were distributed normally.

Based on Table 6, the significant order of spindle speed, cutting depth, feed rate, and
grit size of the grinding unit in the experimental space was obtained as follows: A > B > C
> D (primary term), A2 > D2 > C2 > BC > B2 > AC > BD > CD > AD >AB (quadratic term).

Figure 7 shows the response surface with the most significant interaction between
the grinding parameters and the surface roughness. From Figure 7, it can be concluded
that the influence of spindle speed on roughness was the most significant. Roughness
decreased significantly by increasing the spindle speed, while as cutting thickness and feed
speed increase, the roughness also increased. The effect of grit size on the roughness was
relatively weak.
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Table 6. ANOVA for surface roughness.

Source Sum of
Squares DF Mean

Square F-Value p-Value

Model 64.80 14 4.63 5.785 × 105 <0.0001
A-Spindle speed 44.11 1 44.11 5.513 × 106 <0.0001
B-Cutting depth 3.41 1 3.41 4.258 × 105 <0.0001

C-Feed rate 1.80 1 1.80 2.249 × 105 <0.0001
D-Grit size 0.3201 1 0.3201 40,009.21 <0.0001

AB 0.0004 1 0.0004 49.99 <0.0001
AC 0.1482 1 0.1482 18,524.67 <0.0001
AD 0.0021 1 0.0021 257.67 <0.0001
BC 0.2862 1 0.2862 35,771.46 <0.0001
BD 0.0612 1 0.0612 7647.60 <0.0001
CD 0.0081 1 0.0081 1009.32 <0.0001
A2 10.97 1 10.97 1.371 × 106 <0.0001
B2 0.2475 1 0.2475 30,937.09 <0.0001
C2 0.3707 1 0.3707 46,325.29 <0.0001
D2 0.4611 1 0.4611 57,631.92 <0.0001

Residual 0.0001 15 8.001 × 10−6

Lack of Fit 0.0001 10 0.0000
Pure Error 0.0000 5 0.0000
Cor Total 64.80 29
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3.2. Multi-Objective Optimization via NSGA-II

For industrial applications, obtaining the processing skills that can simultaneously
optimize multiple objectives has become very urgent. This paper optimized the objective
functions F(ns, ap, as, gs) and Sa(ns, ap, as, gs) yet did not achieve the minimum simulta-
neously; there was no solution that optimized both objectives simultaneously, only a Pareto
optimal solution set that balanced the two optimization objectives.

Based on the quadratic polynomial model established via RSM, NSGA-II was used to
optimize the parameters of ultrasonic vibration grinding. Therefore, the optimal design of
L&T ultrasonic vibration face grinding of CFRP was divided into the two following steps.

1. Find the Pareto optimal solution set.
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2. Compare the evaluation results of all elements in the Pareto optimal solution set
and select the best solution that is closest to the optimal level (with two objectives
simultaneously optimal).
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3.2.1. Models of Multi-Objective Optimization

Quadratic models from RSM were used as objective functions for multi-objective
optimization, and spindle speed ns, cutting depth ap, feed rate as, and grit size gs served
as design parameters. The mathematical model and constraints for the multi-objective
optimization design of the ultrasonic technology were expressed as

minF(ns, ap, as, gs)
minSa(ns, ap, as, gs)

s.t
{

ns ∈ [500, 2500]r/ min, ap ∈ [0.05, 0.25]mm, as ∈ [60, 300]mm/ min, gs ∈ [60, 200]#,
}
 (4)

The NSGA-II algorithm initialized a population size of 50 and had an evolution
iteration count of 200. The obtained Pareto optimal solution set is shown in Figure 8, with
the X axis and Y axis representing F and Sa, respectively. As shown in Figure 8, at the
Pareto front, when one response changed, the other response also changed. It was obvious
that as grinding force increased, the corresponding surface roughness also decreased.

In Figure 8, the surface roughness in region A decreased rapidly, while the grinding
force increased less, indicating a decline in grinding force. In the C region, the grinding force
increased rapidly, while the surface roughness had a relatively small decrease, belonging to
the surface roughness growth zone. In the B region, lower surface roughness was achieved
while also achieving satisfactory grinding force values. Therefore, using region B as the
optimization region balanced the surface roughness and grinding force. The Pareto solution
set for the optimization region is shown in Table 7.
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Table 7. Some Pareto optimal solutions for optimization.

Run Order Spindle Speed
(rpm)

Cutting Depth
(mm)

Feed Rate
(mm/min)

Grit Size
(mesh#)

Grinding Force
F (N)

Surface Roughness
(µm)

Center point
level 1500 0.15 180 120 25.4 2.55

1 1600 0.055 60 80 47.868 1.527
2 1360 0.055 60 80 39.673 1.960
3 1600 0.055 60 100 50.870 1.460
4 1360 0.055 60 60 36.536 2.071
5 1220 0.055 60 60 32.369 2.392
6 1280 0.055 60 70 35.683 2.188
7 1220 0.055 60 70 33.976 2.331
8 1500 0.055 60 80 44.271 1.690
9 1600 0.055 60 60 44.866 1.636
10 1500 0.055 60 60 41.213 1.800
11 1120 0.055 60 70 31.340 2.591
12 1810 0.055 60 60 53.383 1.374
13 1500 0.055 60 60 41.213 1.800
14 1120 0.055 60 70 31.340 2.591

It should be noted that there may be slight differences in the results of each run due
to the characteristics of the algorithm. Suitable grinding parameter combinations can be
selected according to actual needs. For example, when the specified grinding force cannot
exceed 80 N, the minimum surface roughness that can be achieved is 1.374 µm.

3.2.2. Optimization Results Discussion

In order to verify the effectiveness of multi-objective optimization, the parameter
combination at the center point level of the experiment (ns = 1500 rpm, ap = 0.15 mm,
as = 180 mm/min, gs = 120) was used as the initial parameter combination and was
compared with some Pareto optimal solutions. The results are shown in Table 7. It can
be seen that when the 12th group of experimental parameters in Table 7 was taken, the
predicted grinding force was 52.383 N, surface roughness was 1.374 µm, grinding force
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increased by 106.23%, while surface roughness decreased by 47.18%. Therefore, within the
allowable range of the grinding force, the application of this optimization model effectively
reduced the surface roughness and obtained increased surface quality.

4. Conclusions

In this study, longitudinal-torsion ultrasonic vibration was composited to the grinding
of CFRP. L&T ultrasonic vibration face grinding experiments were proposed to evaluate
the influence of the machining parameters on grinding force and surface roughness. Multi-
objective optimization was carried out with the goal of analyzing grinding force and surface
roughness. The conclusions of this study can be summarized as follows.

1. Using the Box—Behnken design method in RSM to analyze the influence of various
cutting parameters on the machining results, it was concluded that the spindle speed
had a marked impact on the cutting force and the surface roughness. The influence
of the cutting depth, grit size and feed rate on the machining results decreased in
sequence.

2. Regression equations obtained through general full factorial design of parameters
affecting the surface roughness and the cutting forces were obtained. A statistical
mathematical model with high predictive power was created, which effectively pre-
dicted the grinding force and surface roughness during the L&T ultrasonic vibration
face grinding process.

3. With the purpose of minimizing the grinding force and surface roughness, the NSGA-
II algorithm was used for multi-objective optimization. Compared with the initial
experimental parameters, the optimized results significantly improved surface rough-
ness and reduced cutting force. Moreover, this optimization model has a high level of
accuracy and application value, and can provide optimization solutions for different
industrial requirements.
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