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Abstract: The problem of the prompt detection of early-stage hollow worn wheels in railway
vehicles via on-board random vibration measurements under normal operation and varying speeds
is investigated. This is achieved based on two unsupervised statistical time series (STS) methods
which are founded on a multiple-model (MM) framework for the representation of healthy vehicle
dynamics. The unsupervised MM power spectral density (U-MM-PSD) method employs Welch-
based PSD estimates for wheel wear detection and the unsupervised MM autoregressive (U-MM-AR)
method for the parameter vectors of multiple AR models. Both methods are assessed via two case
studies using thousands of test cases. The first case study includes Monte Carlo simulations using
a SIMPACK-based detailed railway vehicle model, while the second is based on field tests with an
Athens Metro train. Wheel wear detection is pursued using lateral or vertical vibration signals from
the bogie or the carbody of a trailed vehicle traveling with three different speeds (60, 70, 80 km/h)
using wheels under healthy conditions or with early stage hollow wear. Both methods exhibit
remarkable performance with the U-MM-AR method to achieve the best overall results, reaching
correct detection rates of even 100% with false alarm rates below 5% based on a single accelerometer
either on the carbody or bogie.

Keywords: random vibration; robust unsupervised detection; hollow worn wheels; varying travelling
speeds; data driven statistical time series methods; on-board detection

1. Introduction

The good performance of railway vehicle wheels is an essential requirement for
ensuring that a railway network is kept highly reliable and safe. The current wheel
preventive maintenance schemes are susceptible to unplanned maintenance tasks, which
lead to operational bottlenecks and increased cost due to the need for non-automated and
time-consuming inspections, unscheduled disturbance to the timetable, and potentially
untimely wheel replacement [1]. Railway vehicle wheel efficiency is strongly connected
with the wheel/rail geometric parameters [2], which must remain within standard nominal
ranges. Deviations from these affect the wheel–rail contact forces, which constitute the
main dynamic loading of a railway vehicle, and may lead to passenger discomfort, damage
in the neighboring rolling stock, degradation of the track infrastructure, or, in the worst
case, to derailment [3].

Wheel defects may be classified into four major categories [4]: (i) defects on the wheel
surface, such as wheel flats, spalling and shelling [5–9]; (ii) defects in the wheel profile
(hollow worn wheels, flange wear, etc.); (iii) polygonization, including corrugation, wheels
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eccentricity, out of roundness (OOR) and so on [5,10,11]; and (iv) defects in the wheel
subsurface, such as cracks, hardening and residual stresses [12–14]. The formation and evo-
lution of wheel defects may be attributed to various sources, such as the type of the railway
route, the wheel–rail adhesion conditions, the axle load, the train speed profile, the rail
profile, and the wheel/rail material variability, as well as the occurrence of unexpected
incidents, like payload shifts or the sudden braking of the vehicle. The prompt detec-
tion of wheel defects is necessary in any train prognostic and health management system
(PHM), which operates using evidence-based maintenance strategies and may eliminate
the adverse effects of unplanned maintenance tasks [15]. To this end, on-board condition
monitoring, which is based on data collection from the railway vehicle during its normal
operation, enables the real-time monitoring of rolling stock and especially wheels using
sensors for measurement of vibration signals [16], acoustic emission [17] or strains [18].
However, vibration sensors and related data acquisition units are most commonly used
due to such advantages as their reasonable cost, relatively simple instrumentation, the need
for a limited number of sensors, as well as the fact that vibration signals contain rich
information about the dynamics of the considered system, the proper analysis of which
may lead to effective wheel defect detection [19].

Hollow wear is the most common type of wheel defect in railway vehicles, as it
occurs and evolves gradually during the vehicle’s normal operation with the increase in
the traveling distance, causing a hollow to the center of the wheel tread. Other reasons
that may accelerate wheel hollow wear are the much softer wheel material compared to
the material of the rail head, the contact of the brake shoe for trains with wheel–tread
braking system, or the very small clearance between the wheel and track that allows for
lateral motion of the wheelset on a narrow running surface on the wheel tread [5]. Hollow
wear affects the wheel–rail contact forces and leads to higher wheel–rail interface stresses,
rolling resistance, energy consumption and rail wear [20], implying that its monitoring and
detection at an early stage is very important for all railway operations [3]. Additionally,
severely hollow worn wheels may have detrimental effects on vehicle stability and curve
mitigation that may lead to accidents [21,22].

Currently, the maintenance planning of hollow worn wheels relies mostly on frequent
visual inspections, where measurements of the wheel profile are collected by skilled techni-
cians using special tools with the vehicle being out of normal operation. If the wheel profile
shape parameters are within specific standard limits, the vehicle continues its normal
operation; otherwise, its wheels are reprofiled [23]. A standard measurement is the depth of
the hollow to the center of the wheel tread, which is not allowed to be over ∼3 mm [22,23].

Based on the results of recent studies [24–27], it is evident that the effects of hollow
worn wheels on the dynamics of a vehicle are detectable via on-board vibration measure-
ments. This fact constitutes the motivation for the development of automated condition
monitoring units for railway vehicle wheels that may be incorporated into a broader PHM
system [1]. To this end, the on-board determination of wheel conicity and thus the moni-
toring of potentially hollow worn wheels is attempted in [28] through simulations with
a simplified single wheelset model. The on-board condition monitoring of wheels conic-
ity is also investigated in [16] via a supervised method, which is trained using vibration
acceleration measurements from a railway vehicle with healthy and worn wheels under
normal operation and constant speed. The natural frequency with the largest amplitude
and the corresponding damping ratio are extracted from the vibration signals and used in
a classification scheme for the detection of worn wheels. It is worth mentioning that the
considered worn wheels cause significant increase to the RMS of the bogie frame lateral
acceleration, implying that wheel wear is not at an early stage, while the method’s assess-
ment is based on a limited number of test cases. Alternatively, data before and after wheel
lathing from 52 Fiber Bragg Grating (FBG) strain sensors mounted in the bogie of a high
speed train are used in [18] for the detection of abrupt changes through the determination
of the Bayes factor. The method’s performance is assessed with the train running over
specific track segments with constant speed before and after wheels reprofiling. It is noted
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that due to the significant changes to the measured (in time domain) stresses after wheels
reprofiling, it is obvious that the considered wheels are characterized by significant defects
before reprofiling, while temperature compensation is needed for the measured stresses.

The concept behind on-board methods is that wheel defects cause changes in the
structural dynamics which are reflected on the measured signals (vibration, strain, and
acoustic) and thus they may be detected via proper signal analysis. Yet, similar changes in
the structural dynamics may be also caused by varying operating conditions (OCs), such as
the traveling speed, payload and so on, which may be so significant as to partially or totally
“mask” the changes due to wheel defects, especially if they are at an early stage [29], thus
rendering proper detection highly challenging. The lack of robust methods capable of
overcoming this difficulty, the fact that current methods can tackle detection for only
significant and abrupt wheel wear characterized by clear effects on RMS values, and the
relatively extensive instrumentation required constitute the current technology barriers,
hindering the on-board robust, effective, and automated detection of early-stage hollow
worn wheels on railway vehicles.

The goal of the present study is the introduction and assessment of a framework for
the on-board detection of hollow worn railway vehicle wheels under normal operating
conditions, addressing, for first time, the following issues:

• The unsupervised and robust detection of hollow worn wheels under different traveling
speeds.

• The detection of hollow worn wheels at an early stage, before the standard hollow
wear limit (∼3 mm) is reached and well before wear is evident on the RMS or related
characteristics of acceleration signals on the vehicle bogie or carbody.

• The detection of hollow wheels using a single accelerometer on the vertical or lateral
direction either on the vehicle bogie or carbody, thus keeping instrumentation at an
absolutely minimal level.

The above are pursued via two statistical time series (STS) methods that operate
based on the multiple model (MM) concept [30]: (i) the unsupervised MM power spectral
density (U-MM-PSD) method, which is systematically postulated for the first time in
this study and is founded on multiple Welch-based estimates [31], (pp. 186–187) of the
PSD and a Euclidean distance metric; and (ii) the proper adaptation of the unsupervised
MM autoregressive (U-MM-AR) method for the specific problem, which employs the
parameter vectors of multiple AR models and a Kullback–Leibler divergence-based [32]
distance metric.

These methods are fully data driven, signifying that they are not based on a complex
physics-based model for the detection of wheel wear, which oftentimes needs assumptions
and approximations for various unavailable vehicle parameters, as well as refinements
via time-consuming optimization procedures using a significant number of experiments
with the actual train and signals from many sensors. On the contrary, the above methods
necessitate for their baseline learning phase a number of vibration signals from a single sensor
on the vehicle carbody or bogie—collected while the train with healthy wheels are traveling
on a tangent track at the speeds of interest—for the estimation of compact data-driven
models, much simpler (fewer parameters) than a physics-based model, representing the
partial vehicle dynamics under different speeds. In addition, the postulated methods
operation in the inspection real-time phase for hollow worn wheel detection requires only a
single vibration signal (from either the vehicle carbody or bogie) with the train traveling
on a tangent track at a constant but not necessarily known speed under normal operation
without braking, decelerating or accelerating. The small size of such data-driven models
and the use of measurements from a single sensor lead to fast real-time decisions on the
wheel condition, which do not overcome the few seconds.

Beyond the above-mentioned novelties, a unique performance assessment of the em-
ployed methods via a statistically reliable method based on two case studies and thousands
of inspection phase test cases is undertaken. This is achieved through Monte Carlo sim-
ulations and vibration signals obtained from a detailed 42-DOF railway vehicle model
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developed in the SIMPACK commercial software [33] (Case Study A), as well as through
field experiments with a third-generation Athens Metro vehicle (Case Study B). In both
case studies, lateral and vertical vibration signals are acquired from sensors on the carbody
and bogie frame of the considered vehicle, which operates normally under three different
speeds (60, 70, and 80 km/h) on a tangent track, while the detection of hollow worn wheels
at early stages corresponding to tread depths of ∼1 mm (Case Study A) and ∼2 mm (Case
Study B), which do not affect the RMS values of the vibration signals, is investigated. Fur-
thermore, various comparisons between the two methods, the considered sensor locations
and the measurement directions are also considered using the true/false positive rates
(TPRs/FPRs) that indicate the correct/false detection of the wheel condition (new/healthy
or worn), respectively, and their pictorial representation via scatter type plots, receiver
operating characteristic (ROC) curves [34,35] and area under the ROC (AUC) curve [35] bar
plots. Partial and preliminary results based on specific test cases from the field experiments
and measurements from only the vehicle’s bogie are presented in our recent conference
paper [36].

The rest of the article is organized as follows: A precise problem statement is provided
in Section 2. The description of Case Study A, including the Monte Carlo simulations,
is presented in Section 3, while Case Study B with the field tests with the Athens Metro
vehicle is described in Section 4. The multiple model-based methods for hollow worn
wheel detection are presented in Section 5, while their performance assessment via the
two case studies is shown in Section 6. A critical discussion on the results is presented in
Section 7, and concluding remarks are finally summarized in Section 8.

2. Problem Statement

As mentioned above, the problem which is addressed in this study is the detection
of early-stage hollow worn wheels in railway vehicles when the hollow wear is under a
critical, user-selected (typically ≤ 3) limit. To this end, the framework that is introduced in
the present study operates in two basic phases, the baseline and the inspection phase as it is
also described elaborately in Section 5.

Baseline phase: Given a number n of random N-sample long lateral and/or vertical vibration
response signals (presently accelerations)

yi[t] with i = 1, . . . , n and t = 1, . . . , N

obtained from the railway vehicle running with distinct constant speeds during normal
operation—excluding braking, deceleration or acceleration of the vehicle—over a tangent
track with t designating normalization by the sampling period discrete time, the training of
the framework is performed. These signals may be acquired from a sensor on the vehicle’s
bogie or carbody (see Figure 1a,b) with the vehicle wheels considered under a healthy
condition: hollow wear smaller than the selected critical limit.

Inspection phase: Given a new random vibration signal yu[t] from any of the above sensors’
location at any traveling speed with the vehicle wheels under an unknown condition
(designated by the subscript u), the framework determines whether they are healthy or
worn. This binary decision may be expressed via the following hypothesis testing using
the distance metric D of either framework’s method (see details in Section 5) that should be
under a limit llim

D ≤ llim → Healthy Wheels

Else → Hollow worn wheels
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Figure 1. Detailsof the SIMPACK railway vehicle model and the sensor positions. (a) Side view of the
vehicle, (b) zoomed-in view of the front bogie and the suspensions, (c) bottom view of the vehicle.

3. Case Study A: Monte Carlo Simulations with a SIMPACK Multibody Railway
Vehicle Model
3.1. The Railway Vehicle Model

A detailed 42-DOF multibody model is developed in this case study for the dynam-
ics representation of a trailed metro vehicle using the commercial software SIMPACK
2023 [33,37]. SIMPACK is commonly used in the railway industry and such models are
generally accepted to offer sufficient representation of the train dynamics and used for
various tasks in design, fault diagnosis, vehicle hunting, control and so on [38–41]. This
model includes the vehicle’s carbody, two bogies, four wheelsets and eight axle boxes,
all treated as rigid bodies (Figure 1a). The secondary suspension of the vehicle consists
of a lateral damper and two air springs per bogie, and it connects the carbody with the
bogie frame (Figure 1b). The lateral damper (Figure 1c) is typically simulated as a one-
dimensional damper and the air spring as a linear spring with three-dimensional stiffness
and damping. The primary suspension of the vehicle connects each axle box with the bogie
frame via two rubber springs per axle box with each connection modeled as a single linear
spring with three-dimensional stiffness and damping. The axle boxes are connected to
the wheelset with kinematic constraints, which allow only pitch rotation simulating the
axle bearing. The carbody, bogies and wheelsets allow all relative and absolute translative
and rotational motions. More details about the parameters used in the vehicle’s model are
shown in Appendix A.

According to the developed model, the vehicle runs in each simulation with a constant
speed on a tangent track whose profile follows the UIC60 standard. The track irregularity,
which is the main excitation to the moving vehicle, is modeled according to the ERRI
B176 standard, including track corrugations, sleeper spacing, and rail manufacturing
defects [42,43]. Based on this, low-amplitude vertical, lateral and cross-level irregularities
are applied at wavelengths [0.08–25] m, [3–25] m, [3–25] m, respectively. It is noted that a
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different realization of track irregularity is applied to the vehicle in each simulation for the
methods assessment to different track segments. Wheel–rail contact forces are calculated
using the FASTSIM [44] algorithm, and model integration is achieved using the SODAST2
algorithm with a maximum timestep of 10−3 s.

3.2. Hollow Worn Wheels and Monte Carlo Simulations

Two types of wheels are considered in each simulation, new or hollow worn
wheels (Figure 2). The new wheel profile corresponds to brand new or freshly reprofiled
wheels following the S1002 standard, while the worn profile is characterized by 1 mm
hollow wear (maximum depth) to the wheel tread. It is worth stressing that this hollow
wear is at an early stage and much smaller than the typical critical limit of ∼3 mm [22,23],
which is also adopted by the Athens Metro company.

Figure 2. Case Study A—new (healthy) and hollow worn wheel profiles.

A total of 732 Monte Carlo simulations are performed at three different speeds of
60, 70 and 80 km/h as shown in Table 1. More specifically, a number of 122 simulations
correspond to each considered speed and wheel condition, while vibration signals in the
lateral and vertical direction are acquired from four accelerometers as shown in Figure 1b.
Each accelerometer is designated as Sp

d with p indicating its position (C for carbody or B
for bogie) and d the measurement direction (lateral y or vertical z). Signals with a 50 s
duration of steady-state vehicle running time are obtained in each simulation at a sampling
frequency of 120 Hz. This frequency bandwidth is dominated by the track irregularity,
which is negligible at higher frequencies [42,43]. All signals are normalized by subtracting
their mean and dividing with their standard deviation. It is important to note that the
assessment of the employed methods in Section 6 is performed using the signals from a
single sensor per inspection test case.

Table 1. Case Study A—details of the vibration signals with respect to vehicle speed and wheel
condition (for each sensor).

Vehicle No. of Signals

Speed (km/h) New Wheels Worn Wheels

60 122 122
70 122 122
80 122 122

Total 366 366

Sampling frequency: fs = 120 Hz; operational bandwidth: 0–60 Hz;
signal length: N = 6001 samples (50 s)
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3.3. Effects of the Vehicle Speed and Wheels Condition on the Vibration Signals and the
Vehicle Dynamics

Indicative signals from all sensors and wheel conditions for a single speed are pre-
sented in Figure 3, while the RMS values from all signals per speed and wheel condition
are depicted through typical box plots in Figure 4. According to the latter, it is clear that the
RMS is significantly affected by the varying speed, and more specifically, it takes higher
values with the increase in speed via any of the four sensors on the carbody or bogie. This,
combined with the fact that the RMS corresponding to a low speed and hollow worn wheels
is smaller than its counterpart at a higher speed and new (healthy) wheels, renders the
RMS a non-robust feature for the detection of wheel wear under varying vehicle speeds.
A further observation is that even for a single speed, the effects of the wheels hollow wear to
the RMS are minor with no significant indication for wheel wear via any of the considered
sensors with the exception of SB

y .

Figure 3. Case Study A—indicative vibration signals for vehicle speed of 80 km/h based on sensors:
(a) SC

y , (b) SC
z , (c) SB

y , (d) SB
z .

Figure 4. Case Study A—box plots of vibration signals RMS values for all considered speeds and
wheel conditions based on sensors: (a) SC

y , (b) SC
z , (c) SB

y , (d) SB
z . The top and bottom of each box

are the 25th and 75th percentiles, while the distance between the top and bottom is the interquartile
range. The red line in the middle of each box is the sample median, and the lines extending above
and below each box are the whiskers. These are drawn from the ends of the interquartile range, and
their length is 1.5 times the interquartile range. The red crosses represent observations beyond the
whiskers (outliers).
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The above changes to the vibration signals from the varying vehicle speed imply, as ex-
pected, changes to the vehicle dynamics due to the spatial nature of the track
irregularity [42,43], which is the main vehicle excitation, as well as the wheelbase-filtering
effect [45]. The latter is caused by the repeated rail excitation to the wheelsets with time de-
lays that depend on the vehicle speed and the length of the different wheelbases (distances
between wheelsets) of the railway vehicle, which are shown in Figure 1a. In the following,
the effects of the vehicle speed and worn wheels on the partial (related to sensor location)
vehicle dynamics are explored via Welch-based PSD estimates. The estimation details for
all PSDs are a window length of =512 samples, overlap of =90%, and frequency resolution
of =0.23 Hz.

Indicative PSD envelopes, obtained from all measured signals via the SC
y and SB

y
sensors, are shown in Figure 5, through which the effects of the different speeds on the
lateral dynamics are evident. It is noted that the thickness of each envelope corresponding
to a different speed is due to the railway vehicle running on a different track segment per
simulation as previously mentioned. Similar effects are observed via the measurements of
sensors SC

z and SB
z . Furthermore, some of the wheelbase-filtering frequencies are marked

in Figure 5. For instance, the smaller frequencies (∼1 Hz) in Figure 5a correspond to the
wheelbase-filtering effect due to the first–third and second–fourth pairs of wheelsets, which
have the same wheelbase, while the higher frequencies, which also characterize the sharp
valleys of Figure 5b, are due to the wheelsets of the bogies (see details in [45]).

Figure 5. Case Study A—effects of speed variability on Welch-based PSD estimates corresponding
to new wheels using vibration signals from sensors: (a) SC

y , (b) SB
y (122 signals per vehicle speed).

The indicated frequencies correspond to the periodic wheelbase-filtering effect per speed.

Similarly, indicative PSD envelopes corresponding to new and worn wheels and
measurements from all sensors with vehicle speed equal to 60 km/h are shown in Figure 6.
The effects of worn wheels are more noticeable in the lateral dynamics for both the carbody
(Figure 6a) and bogie frame (Figure 6c), and especially in low frequencies up to 10 Hz.
On the other hand, the vertical dynamics is significantly less affected by the considered
early-stage wheel hollow wear according to Figure 6b,d. This is expected, as hollow worn
wheels affect the lateral dynamics of a railway vehicle to a greater degree.

Finally, Figure 7 depicts the PSD envelopes based on all sensors and for all considered
speeds and wheel conditions, from which it is confirmed that the vehicle lateral dynamics
is more sensitive to hollow worn wheels, as well as that the effects of the varying speed on
the dynamics may “mask” the effects of hollow worn wheels and set a highly challenging
detection problem.
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Figure 6. Case Study A—Welch-based PSD estimates corresponding to vehicle with new and hollow
worn wheels that travels at a speed of 60 km/h using vibration signals from sensors: (a) SC

y , (b) SC
z ,

(c) SB
y , (d) SB

z (122 signals per wheel condition).

Figure 7. Case Study A—effects of speed variability (60, 70, and 80 km/h) and wheel condition on
Welch-based PSD envelopes using all measured vibration signals from sensors: (a) SC

y , (b) SC
z , (c) SB

y ,
(d) SB

z .

4. Case Study B: Field Tests with an Athens Metro Train
4.1. The Train and the Measurement Set-Up

The field tests are performed with a typical 3rd generation Athens Metro train, manu-
factured by Hyundai–Rotem–Hanwha. This is a 6-car train that consists of two motorcars
with a driver cab, two motorcars without a driver cab and two trailing cars (Figure 8).
The train is 106 m long and has a total tare weight of 182 tons. It is powered by 16 AC
asynchronous motors of 175 kW each, with two motors per bogie and has a maximum
operational speed of 80 km/h. The tested train first went into operation in 2014, covering
approximately 80.000 km/year. Two uniaxial accelerometers are mounted at two different
locations on the bogie frame of one of the two trailing cars (Figure 8) in order to measure
vertical and lateral acceleration, while one triaxial accelerometer is additionally mounted
in the carbody over the air spring as shown in Figure 8. The vertical and lateral vibration
signals from all sensors are collected through a portable high-fidelity data acquisition PXI
unit from National Instruments. For notational simplicity, the symbol Sp

d is used for each
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employed sensor as in Case Study A, with d indicating the measurement direction and p
the sensor position.

Figure 8. Case Study B—photo of the Athens Metro vehicle and the installed sensors. Two uniaxial
accelerometers used for SB

y and SB
y (left) and one tri-axial accelerometer for SC

y and SC
z (right).

4.2. Operating Conditions and Random Vibrations Signals

Vibration measurements are collected from the trailing car before and after the wheel
reprofiling. The wheel hollow wear was ∼2 mm before reprofiling, and as in Case Study
A, the wheels are referred to as new or worn. Field tests are carried out with new and
worn wheels on a tangent track under three different and constant speeds (60, 70, and
80 km/h ± 3 km/h) without passengers on board.

Random vibration measurements are acquired with a sampling frequency of fs = 980 Hz
via SC

y , SC
z , SB

y , and SB
z (Figure 8) and high-pass filtered using a Chebyshev type II filter

of order 18 and cut-off frequency fc = 2 Hz in order to eliminate noise effects at lower
frequencies due to the employed accelerometer specifications. Signal segments affected by
vehicle abrupt acceleration or deceleration, braking and rail crossings are removed, while
the operational frequency bandwidth is selected as [0–60] Hz for direct comparisons with
the previous case study. The vibration signals are normalized by subtraction of their mean
and division with their standard deviation. Details on the acquired vertical and lateral
signals are shown in Table 2.

Table 2. Case Study B—details on the vibration signals with respect to vehicle speed and wheel
condition (for each sensor).

Vehicle No. of Signals

Speed (km/h) New Wheels Worn Wheels

60 59 17
70 38 16
80 30 12

Total 127 45

Sampling frequency: fs = 980 Hz; operational bandwidth: 2–60 Hz,
signal length: N = 10,000 samples (∼10.20 s)
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4.3. Effects of the Vehicle Speed and Worn Wheels on the Vibration Signals and the
Vehicle Dynamics

Indicative signal segments from the field tests via all considered sensors, with new
and worn wheels, are shown in Figure 9. It is noted that all measurements were acquired
from a typical Athens Metro train with potential slight fatigue to the wheels, suspensions
and other mechanical parts that affect the amplitude of the acceleration measurements, and
the train was traveling on a track that has been used by many trains and for several years,
with the expectation of significantly more abrasive track irregularity than the one used
in Case Study A. This non-ideal condition of the employed train and track is confirmed
through the comparison of the acceleration signals of Figure 3 with the signals in Figure 9,
with the max amplitude in the latter being significantly higher.

Figure 9. Case Study B—indicative vibration signals for vehicle speed 80 km/h based on sensors:
(a) SC

y , (b) SC
z , (c) SB

y , (d) SB
z .

The RMS values of the vibration signals from all vehicle speeds and wheel conditions
and from all sensors are, as in the previous case study, shown in Figure 10. The evidence
that the RMS increases with the increase in the vehicle speed is confirmed. Yet, in this case
study, there is no clear discrimination between new and worn wheels based on the RMS
values and any sensor, even if a single speed is considered. This indicates that the RMS is a
non-robust feature for worn wheel detection when delicate types of wheels wear, such as
that to the hollow of the wheel tread, are investigated.

Figure 11 includes indicative envelopes of Welch–based PSD estimates (estimation
details: Window length = 2048 samples, overlap = 90%, frequency resolution = 0.48 Hz)
using lateral vibration signals from the carbody and bogie for the three considered traveling
speeds. As expected, the effects of the varying speed on the vehicle dynamics are evident at
various frequencies of the PSD envelopes. It is worth noting that some of the running speed
induced changes to the bogie PSD envelopes correspond to the wheels rotation frequency,
that is 6.39 Hz for speed of 60 km/h, 7.46 Hz for speed of 70 km/h and 8.52 Hz for speed of
80 km/h as shown in Figure 11b, and its 4th harmonic (25.56, 29.83, 34.09 Hz for 60, 70 and
80 km/h, respectively). Additionally, the wheelbase-filtering effect is not noticeable in this
case study, as the obtained measurements include far more complex dynamics compared to
Case Study A, due to vehicle excitation from various sources, other than track irregularity,
such as the interaction among the wheelsets of the six vehicles, the motors in four vehicles
of the train, air condition compressors, and so on.
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Figure 10. Case Study B—box plots of vibration signals RMS values for all considered speeds and
wheel conditions based on sensors: (a) SC

y , (b) SC
z , (c) SB

y , and (d) SB
z . The top and bottom of each box

are the 25th and 75th percentiles, while the distance between the top and bottom is the interquartile
range. The red line in the middle of each box is the sample median, and the lines extending above
and below each box are the whiskers. These are drawn from the ends of the interquartile range, and
their length is 1.5 times the interquartile range. The red crosses represent observations beyond the
whiskers (outliers).

Figure 11. Case Study B—effects of speed variability on Welch-based PSD envelopes corresponding
to new wheels using vibration signals from sensors: (a) SC

y , (b) SB
y (all available signals per vehicle

speed). The indicated frequencies correspond to the respective wheel harmonics.

Similarly, the effects of the worn wheels on the vehicle dynamics are shown in the
PSD envelopes of Figure 12 for vehicle speed of 70 km/h. Based on this, it is again
observed that the wheel hollow wear has more significant effects on the lateral dynamics
(see Figure 12a,c), and especially on the bogie measurements. The red arrows in this
figure indicate peaks of worn wheel frequencies that match wheel out-of-roundness (OOR)
orders [10], which herein are observable up to the order of seven. These frequencies are
harmonics of the fundamental wheel rotation frequency fw = v/(πDm), with v designating
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vehicle speed and Dm ≈ 830 mm wheel diameter. When the train travels with 80 km/h, the
seventh harmonic corresponds to 59.65 Hz, indicating the appropriateness of the selected
operational bandwidth up to 60 Hz. It is referred [46] that in metro vehicles, OOR may
evolve along with wheel hollow wear [26].

Figure 12. Case Study B—Welch-based PSD envelopes corresponding to vehicle with new and
hollow worn wheels that travels with speed of 70 km/h from sensors: (a) SC

y , (b) SC
z , (c) SB

y , (d) SB
z

(all available signals per speed and wheel condition). The indicated frequencies correspond to the
respective wheel harmonics, attributed to potential wheel out-of-roundness.

Finally, the almost completely overlapped PSD envelopes in Figure 13 using signals
from any sensor with new or worn wheels, indicate, as in the previous case study, the gener-
ally highly challenging problem of robust wheel wear detection under varying train speed
that is investigated in this study. It should be stressed that the problem is severely aggra-
vated when on-board measurements from actual trains are used, as these are significantly
affected by various other factors as mentioned above.

Figure 13. Case Study B—effects of speed variability (60, 70, and 80 km/h) and wheel condition on
Welch-based PSD envelopes using all measured vibration signals from sensors: (a) SC

y , (b) SC
z , (c) SB

y ,
(d) SB

z .

5. The Wheel Wear Detection Methods

Two robust (with respect to the varying OCs) statistical time series (STS) methods are
employed in the introduced framework for wheel wear detection, which operate based
on the general concept of using multiple models (MMs) for the representation of system
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dynamics under various conditions [30]. The first method, abbreviated as U-MM-PSD, is
unsupervised and is founded on multiple nonparametric representations (models), each one
corresponding to the PSD obtained from vibration signals which are acquired under differ-
ent OCs. The second unsupervised method, abbreviated as U-MM-AR [30], is alternatively
based on multiple parametric autoregressive (AR) models for the dynamics representation.
Both methods have a baseline (learning) phase, where their training is performed using
vibration signals from the vehicle with healthy wheels under various speeds in the range
of interest, and an inspection phase, where the wheel monitoring is performed in real time
with the train under normal operation based exclusively on the measured vibration signals.
The distinct steps of each method are presented in the following.

5.1. The U-MM-PSD Method

Step 1: Multiple model representation (baseline phase). The MM representation of the
railway vehicle dynamics is constructed in this step based on the n signals of
the baseline phase (also see Section 2); the use of the same number of signals
per speed is preferred. Thus, the MM representation in this method consists of
n Welch-based [31] (pp. 186–187) PSD estimates. The obtained values of the
PSD constitute the method’s feature vector—the complete or part of the measured
frequency bandwidth may be used (the PSD in the 2–60 Hz frequency range is
herein suggested for the detection of early-stage wheel hollow wear)—while the
PSD estimate from a single (from the n) signal corresponds to a single model
Mo,i from the set of models Mo = {Mo,i, i = 1, 2, . . . , n} that compose the MM
representation.

Step 2: Feature vector reduction (baseline phase). The reduction in the feature vector di-
mensionality is performed in this step in order to remove frequencies with high
sensitivity to the varying OCs (presently, the vehicle’s speed). Thus, the PSD sam-
ple variance per frequency is obtained, and the frequencies are reordered in the
feature vector from the one with the minimum variance to that with the maximum.
The first k frequencies are retained in the feature vector, with k being user defined.

Step 3: Inspection phase. Once a fresh vibration signal is obtained in real time from the
vehicle with wheels of unknown condition, the objective in this step is to decide
whether or not the current vehicle dynamics belongs to the MM representation
Mo. If it does, then the wheels are indicated as healthy, and otherwise as worn.
To this end, a new PSD estimate, Mu, is obtained based on the measurements of
this phase (also see Section 2), and the method’s feature vector is formulated in
order to include the PSD values of the frequencies selected to the previous step.
Then, the following distance metric D is utilized for the decision making:

D := min
i

d(Mo,i, Mu) (1)

with d(Mo,i, Mu) designating the Euclidean distance. The detection of worn wheels
is then declared if and only if D > llim, with llim determined based on the values of
the D metric in the baseline phase.

5.2. The U-MM-AR Method

Step 1: Multiple model representation (baseline phase). As for the previous method,
this step includes the construction of the MM representation of the railway vehi-
cle dynamics based on the n signals of the baseline phase; the same number of
signals per speed is also suggested for this method. Thus, the MM representation
Mo = {Mo,i, i = 1, 2, . . . , n} in this method consists of n AR models (each one
estimated using a single vibration signal) of the form [30]

yi[t] +
na

∑
j=1

aj · yi[t− j] = ei[t], ei[t] ∼ NID(0, σ2
ei
) (2)
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with na designating the model order, aj the j-th AR parameter, and ei[t] the
model residual that should be a white Gaussian zero-mean sequence with variance
σ2

ei
. NID stands for normally independently distributed with the indicated mean

and variance. The method’s feature vector for worn wheels damage detection is the
AR model parameter vector (bold-face upper-/lower-case symbols: matrix/column
vector quantities; T : matrix transposition) aaao,i = [a1 . . . ana]T which is obtained
along with its covariance ΣΣΣo,i for each AR model based on standard identification
procedures [31] (pp. 318–320), using the ratio of the model residual sum of squares
to signal sum of squares (RSS/SSS %), the Bayesian information criterion (BIC) and
the samples per estimated parameter (SPP) for the model order selection.
It is noted that once the parameters of the multiple AR models have been estimated,
these may be considered surrogate models based on the fact that they may represent
the vehicle partial (with respect to the employed sensor location) dynamics under
different traveling speeds. Such a model may also provide predictions of the
vehicle acceleration response at the sensor location using the time history of the
measurements at that point.

Step 2: Inspection phase. As for the previous method, once a fresh vibration signal is
obtained in real time from the vehicle under unknown speed and wheel condition,
a new AR model Mu of the same order as those in Mo with parameter vector
aaau is estimated, and a distance metric, such as that in Equation (1), is used for the
detection of the worn wheels, with d(Mo,i, Mu) designating in this method the
Kullback–Leibler divergence [32] between the models Mo,i and Mu:

d(Mo,i, Mu) :=
1
2

[
tr
(

ΣΣΣ−1
o,i ΣΣΣu

)
+ (aaao,i − αααu)

TΣΣΣ−1
o,i (αααo,i − αααu)− 1− ln

(
det ΣΣΣu

det ΣΣΣo,i

)]
(3)

where tr(·) is the trace and det(·) the determinant of the indicated matrix. As pre-
viously, if D exceeds a user-defined critical limit—which is set in the baseline phase
based on signals from the vehicle with the healthy wheels—then the unknown
wheels condition is declared as worn, and otherwise as healthy.

6. Performance Assessment of the Wheel Wear Detection Methods
6.1. Assessment Procedure

The performance assessment of both detection methods is based on an iterative “rota-
tion” procedure of the set of signals, which are used in the baseline phase according to the
S-fold cross validation [47] (p. 33). Based on this, the potential dependence of the methods
learning, and thus their performance, on specific sets of signals is eliminated, ensuring
statistically more reliable results. So, let there be h and f signals from new and worn wheels,
respectively. From the h signals, a randomly selected set of b signals, equally distributed
per speed (60, 70 and 80 km/h), is used for the methods’ Step 1 (also see Section 5) in
the first iteration of the rotation procedure. The remaining signals from the vehicle with
new wheels, say hr = h− b, and the f signals from the vehicle with worn wheels, that is
i = hr + f , are considered as being originated from unknown health states and are used in
the inspection phase for testing the methods’ performance. The procedure continues with
a next rotation that begins with a different set of b signals. Once a number q of rotations
that leads to an adequate number of aggregated inspection test cases q× i are completed,
the procedure stops. In this study, 3360 test cases for Case Study A (see Table 3) and 5600
for Case Study B (see Table 4) are deemed adequate for testing the methods’ performance.

The performance of the wheels wear detection methods is presented via receiver oper-
ating characteristic (ROC) curves, each presenting the true positive rate (TPR) (probability of
correct wear detection), versus the false positive rate (FPR) (probability of false alarm) for
varying decision thresholds [34]. In addition, scatter-type plots, including the methods’
distance metric D, are used.
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Table 3. Case Study A—details on the rotation assessment procedure. Number of new wheel
signals per speed used in the baseline phase (b), new wheel signals used in the inspection phase (hr),
worn wheel signals used in the inspection phase ( f ), and aggregated inspection test cases after the
implemented rotations (q× i). The same numbers are used for all sensors.

Vehicle Baseline Inspection Inspection Aggregated Inspection
Speed (New Wheels) (New Wheels) (Worn Wheels) Test Cases
(km/h) (b) (hr) ( f ) (q × i) *

60 20 102 122 1120
70 20 102 122 1120
80 20 102 122 1120

Total 60 306 366 3360

* q number of rotations: 5, inspection cases: i = hr + f .

Table 4. Case Study B—details on the rotation assessment procedure. Number of new wheel signals
per speed used in the baseline phase (b), new wheel signals used in the inspection phase (hr),
worn wheel signals used in the inspection phase ( f ), and aggregated inspection test cases after the
implemented rotations (q× i). The same numbers are used for all sensors.

Vehicle Baseline Inspection Inspection Aggregated Inspection
Speed (New Wheels) (New Wheels) (Worn Wheels) Test Cases
(km/h) (b) (hr) ( f ) (q × i) *

60 20 39 17 2800
70 20 18 16 1700
80 20 10 12 1000

Total 60 67 45 5600

* q number of rotations: 50, inspection cases: i = hr + f .

6.2. Performance Assessment of the U-MM-PSD Method

Case Study A. Welch-based PSD estimates are obtained using n = 60 vibration signals
(20 per speed) in Step 1 of the baseline phase for each rotation (also see Table 3) and for each
of the considered sensors. All details about the method per employed sensor are shown in
Table 5, while the method’s distance metric D plot and the corresponding ROC curves are
illustrated in Figures 14 and 15, respectively. Based on these, the method’s performance is
characterized as follows.

• Perfect based on sensor SC
y with 100% TPR for 0% FPR (see Figures 14a and 15a).

• Poor based on sensor SC
z with 24.48% TPR for 5% FPR (see Figures 14b and 15b).

• Very good based on sensor SB
y with 99.89% TPR for 2.2% FPR (see Figures 14c and 15a).

• Moderate to poor based on sensor SB
z with 64.54% TPR for 5% FPR (see

Figures 14d and 15b).

Table 5. Case Study A—details on the wheels wear detection methods.

Method Feature Feature Vector Length Distance
Per Sensor SC

y /SC
z /SB

y /SB
z Metric

U-MM-PSD * PSD vector 167/218/200/80 Euclidean
U-MM-AR ** AR parameter vector 84/84/66/68 Kullback–Leibler

* Welch-based estimation: segment length: 1024 samples, overlap: 90%, freq. resolution: 0.96 Hz.
** RSS/SSS (%) = 0.57/1.30/14.09/22.28, BIC = −10.18/−9.03/−6.22/−5.07, SPP = 71/71/91/88.

According to the results of this case study, it is evident that the method’s performance
is far better using lateral vibration measurements.
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Figure 14. Case Study A—distance metric plot for the U-MM-PSD method based on sensors (a) SC
y ,

(b) SC
z , (c) SB

y , (d) SB
z (3360 inspection test cases).

Figure 15. Case Study A—worn wheels detection performance assessment for the U-MM-PSD and
U-MM-AR methods via ROC curves based on sensors (a) SC

y , SB
y , and (b) SC

z , SB
z (3360 inspection

test cases).

Case Study B. As in the previous case study, the method is applied using n = 60 vibration
signals (20 per speed) from each of the considered sensors in the baseline phase and for
each rotation (also see Table 4). The details of the method’s operation per employed sensor
are shown in Table 6. The method’s distance metric D plots and the corresponding ROC
curves are presented in Figure 16 and Figure 17, respectively. Based on these, the method’s
performance is characterized as follows.

• Poor based on sensor SC
y with 52.36% TPR for 2% FPR (see Figures 16a and 17a).

• Poor based on sensor SC
z with 56.18% TPR for 5% FPR (see Figures 16b and 17b).

• Very good based on sensor SB
y with 96.71% TPR for 2.2% FPR (see Figures 16c and 17a).

• Good based on sensor SB
z with 76.9% TPR for 5% FPR (see Figures 16d and 17b).
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Figure 16. Case Study B – distance metric plot for the U-MM-PSD method based on sensors (a) SC
y ,

(b) SC
z , (c) SB

y , (d) SB
z (5600 inspection test cases).

Figure 17. Case Study B – worn wheel detection performance assessment for the U-MM-PSD and
U-MM-AR methods via ROC curves based on sensors (a) SC

y , SB
y , and (b) SC

z , SB
z (5600 inspection

test cases).

Table 6. Case Study B—details on the wheel wear detection methods.

Method Feature Feature Vector Length Distance
Per Sensor SC

y /SC
z /SB

y /SB
z Metric

U-MM-PSD * PSD vector 113/4/117/42 Euclidean
U-MM-AR ** AR parameter vector 140/150/110/90 Kullback–Leibler

* Welch-based estimation: segment length: 512 samples, overlap: 90%, freq. resolution: 0.23 Hz.
** RSS/SSS (%) = 0.022/0.013/0.021/0.014, BIC = −8.96/−9.89/−9.25/−10.13, SPP = 71/67/91/111.

As in the previous case study, the results from the field tests indicate that measure-
ments at the lateral direction and especially from the bogie frame may lead to remarkable
detection of hollow worn wheels.
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6.3. Performance Assessment of the U-MM-AR Method

Case Study A. Twenty signals (also see Table 3) per speed (60/70/80 km/h) are used in
the baseline phase for the estimation of a corresponding number of AR models per sensor.
The order (equal to parameter vector dimensionality) of each of the obtained AR models
per sensor and related details are shown in Table 5, while the scatter-type plots of the
method’s distance metric D and the corresponding ROC curves are illustrated in Figure 15
and Figure 18, respectively. Based on these, the method’s performance is characterized
as follows:

• Perfect based on sensor SC
y with 100% TPR for 0% FPR (see Figures 15a and 18a).

• Poor based on sensor SC
z with 46.23% TPR for 5% FPR (see Figures 15b and 18b).

• Perfect based on sensor SB
y with 100% TPR for 0% FPR (see Figures 15a and 18c).

• Very good based on sensor SB
z with 90.50% TPR for 5% FPR (see Figures 15b and 18d).

The above results indicate that the U-MM-AR method achieves slightly better perfor-
mance compared to the U-MM-PSD based on lateral measurements, while it is capable of
detecting hollow worn wheels with vertical measurement to the bogie with quite high TPR.

Figure 18. Case Study A—distance metric plot for the U-MM-AR method based on sensors (a) SC
y ,

(b) SC
z , (c) SB

y , (d) SB
z (3360 inspection test cases).

Case Study B. The signals are filtered with a low-pass filter (Chebyshev type II filter of
order 14 and cut-off frequency of 60 Hz). Details about the number of signals used in the
baseline and inspection phases are in Table 4, and the AR model orders (feature vector
dimensions) in Table 6.

The performance of the U-MM-AR method is again assessed by scatter plots and ROC
curves, which are displayed in Figure 19 and Figure 17, respectively. Based on these, the
methods’ performance is characterized as follows:

• Excellent based on sensor SC
y —100% TPR for 0.6% FPR (Figure 17a)

• Excellent based on sensor SC
z —100% TPR for 0.3% FPR (Figure 17b)

• Excellent based on sensor SB
y —100% TPR for 3.8% FPR (Figure 17a)

• Excellent based on sensor SB
z —100% TPR for 3.3% FPR (Figure 17b)

It is remarkable, that for all sensor measurements, the U-MM-AR method achieves
100% TPR for false alarm rates under 5%.
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Figure 19. Case Study B—distance metric plot for the U-MM-AR method based on sensors (a) SC
y ,

(b) SC
z , (c) SB

y , (d) SB
z (5600 inspection test cases).

7. Critical Discussion on the Results

Based on the results of Section 6, the best detection performance in Case Study A is
achieved by both methods when the lateral carbody measurements (SC

y ) are used; 100%
TPR for 0% FPR. However, only the U-MM-AR method achieves the same performance
using the bogie lateral measurements (SB

y ). In Case Study B, the U-MM-AR method detects
hollow worn wheels with almost perfect performance in all test cases, with the best results
achieved when carbody vertical measurements (SC

z ) are used: 100% TPR for 0.3% FPR.
In the same case study, the U-MM-PSD achieves its best performance using lateral bogie
measurements: 96.71% TPR for 2.2% FPR.

Summary detection results for both methods are illustrated in Figure 20 through a
variant of the area under the ROC curve (AUC) [35]. The typical AUC may range from 0 to 1
with values approaching 1 indicating excellent detection performance (TPR = 100%), while
includes AUC values for higher FPR than 5%. The “local AUC” that is used in this study
indicates the method’s TPR for FPR values within the range of 0–5%, which is reasonable
for practical applications, where high FPR values render a detection method unreliable.
The “local AUC” is normalized within the 0–1 range in order to be interpreted as the typical
AUC with the best performance indicated by values close to 1.

U-MM-PSD. The method achieves very good performance with lateral bogie mea-
surements, while its performance is generally poor when vertical vibration signals are used
due to the fact that hollow worn wheels affect mostly the lateral vehicle dynamics. It is
worth noting that one of the important characteristics of this method is its simplicity and
the need for low user expertise for its operation. However, the selection of the user-defined
parameter k—number of frequencies with the minimum variance in the feature vector—
needs user familiarization with the investigated system dynamics, while a starting point
may be a k value, including the 80% (±5%) of the frequencies with the lower PSD sample
variance that leads to optimal or near optimal detection performance.

U-MM-AR. This method has overall better detection performance than the U-MM-PSD,
achieving excellent detection results in all considered field test cases (Case Study B), even
using vertical vibration signals (Figure 20) from either the bogie or the carbody. This is
due to the detailed parametric modeling of the vehicle healthy dynamics via the multiple
AR models, which leads to the detection of additional, subtle, effects on the dynamics
caused by the potential wheel OOR that frequently occurs together with wheel hollow wear
(this applies only to Case Study B, where the wheels may potentially include additional
defects) and primarily affects the vertical vehicle dynamics, as well as other minor effects
of the wheel hollow wear of the vertical measurements. Nevertheless, caution and user
expertise are necessary for the AR modeling for the best detection performance of the
U-MM-AR method.
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Figure 20. Summary of hollow worn wheel detection results based on the U-MM-PSD and U-MM-AR
methods via the “local AUC”: (a) Case Study A, (b) Case Study B.

8. Conclusions

The on-board robust detection of hollow worn railway vehicle wheels under normal
operating conditions and varying traveling speeds is accomplished in the present study
within a multiple model framework via two unsupervised statistical time series (STS)
methods. The detection is achieved at an early stage before the standard wheel hollow
wear limit is reached, and the acquired vibration signals’ RMS values indicate hollow worn
wheels. Both methods operate using vibration signals from a single accelerometer on the
vertical or lateral direction of the bogie or the carbody, and their assessment and comparison
are performed through a statistical reliable procedure, including two case studies and
thousands of test cases. The first case study is based on Monte Carlo simulations and
vibration signals obtained from a detailed 42-DOF railway vehicle model developed in
SIMPACK, while the second is based on field experiments with an Athens Metro train.
The U-MM-AR method presents the best overall performance, achieving the maximum
correct detection rate (TPR) of 100% for a false alarm rate (FPR) of 0.3% with the following
U-MM-PSD reaching a TPR of 99.89% for FPR equal to 2.2%.

In addition, the main lessons learned from the study are as follows:

• The detection of early-stage hollow worn wheels is a highly challenging problem, as
the measured dynamics via vibration signals is significantly affected by the traveling
speed and effects due to hollow wear potentially being fully “masked” by the effects
due to speed variation.

• The lateral direction measurements of acceleration on the vehicle carbody and espe-
cially on the bogie are, as expected, more sensitive to wheel hollow wear, yet signals
on the vertical direction may be used complementarily for the detection of other types
of wheel defects.

• Advanced data-driven methods may effectively tackle the problem of railway vehicle
worn wheels under different speeds using on-board random vibration measurements
from even a single sensor. The prerequisite of such methods is their training via an
adequate number of vibration signal batches from the vehicle traveling at normal
operation speeds with healthy wheels.

Future plans include the assessment of the methods with other types of wheel defects,
such as conicity and polygonization, as well as additional varying OCs, such as payload
and track irregularity.
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Appendix A. Details of the SIMPACK Railway Vehicle Model (Case Study A)

(a)

(b)
Figure A1. The railway vehicle model (Case Study A): (a) side view, (b) top view.

Table A1. Railway vehicle model parameters (Case Study A).

Parameter Description Value Unit

mc Carbody mass 19,529 [kg]
mb Bogie frame mass 2049 [kg]
mW Wheelset mass 2132 [kg]
Max Axle box mass 30 [kg]
ICxx Carbody roll moment of inertia 55,953 [kg m2]
ICyy Carbody pitch moment of inertia 1,311,322 [kg m2]
ICzz Carbody yaw moment of inertia 1,309,593 [kg m2]
IBxx Bogie roll moment of inertia 1314 [kg m2]
IByy Bogie pitch moment of inertia 1470 [kg m2]
IBzz Bogie yaw moment of inertia 2660 [kg m2]
IWxx Wheelset roll moment of inertia 474 [kg m2]
IWyy Wheelset pitch moment of inertia 30 [kg m2]
IWzz Wheelset yaw moment of inertia 474 [kg m2]
wc Carbody width 2 [m]
lc Carbody length 17 [m]
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Table A1. Cont.

Parameter Description Value Unit

lcg Distance between center of gravity (c.g.) of carbody
and c.g. of bogie 5.75 [m]

lwb Distance between wheelsets in a bogie (wheelbase) 2.2 [m]
Dm Wheel rolling circle diameter 860 [mm]

Rail inclination 1:20
Wheel profile S1002
Rail profile UIC54

k1x Prim.Sups. Longitudinal Stiffness 3.186 kN/mm
k1y Prim.Sups. Lateral Stiffness 2.186 kN/mm
k1z Prim.Sups. Longitudinal Stiffness 0.750 kN/mm
c1x Prim.Sups. Longitudinal Damping 20 kN·s/m
c1y Prim.Sups. Lateral Damping 15 kN·s/m
c1z Prim.Sups. Vertical Damping 12 kN·s/m
k2x Sec.Sups. Longitudinal Stiffness 0.115 kN/mm
k2y Sec.Sups. Lateral Stiffness 0.115 kN/mm
k2z Sec.Sups. Longitudinal Stiffness 0.250 kN/mm
c2x Sec.Sups. Longitudinal Damping 10 kN·s/m
c2y Sec.Sups. Lateral Damping 10 kN·s/m
c2z Sec.Sups. Vertical Damping 10 kN·s/m
clat Lateral Damper Damping 50 kN·s/m
v Vehicle Speed 60/70/80 km/h

Appendix B. Important Symbols and Acronyms

Important Symbols Acronyms

aj j-th AR (scalar) parameter AR Autoregressive (model)
d(Mo,i, Mu) distance between the models Mo,i and Mu BIC Bayesian Information Criterion
D distance metric used in the MM methods AUC Area Under the ROC Curve
na AR model order
Dm railway vehicle wheel diameter OCs Operating Conditions
ei[t] i-th AR model residual signal TPR True Positive Rate
fs sampling frequency FPR False Positive Rate
fc cut-off frequency MM Multiple Model
fw wheel rotation frequency NID Normally Independently

Distributed

k number of frequencies retained in OOR Out-Of-Roundness
the U-MM-PSD method

SC
y /SC

z carbody lateral/vertical vibration measurements PHM Prognostics and Health
SB

y /SB
z bogie lateral/vertical vibration measurements Management

n MM dimensionality PSD Power Spectral Density

Mo,i
i-th model representing the vehicle dynamics RMS Root Mean Square
corresponding to healthy wheels

Mu
model representing the vehicle dynamics RSS Residual Sum of Squares
under unknown speed and wheels condition

N vibration signal length (samples) SSS Series Sum of Squares

[t] normalized by the sampling period SPP Samples Per Parameter
discrete time

yu[t]
vibration response signal from the vehicle STS Statistical Time Series
under unknown speed and wheels condition

aaao,i
i-th AR model parameter vector corresponding
to Mo,i model

U-MM-AR
Unsupervised Multiple Model

ΣΣΣo,i covariance matrix of aaao,i Autoregressive parameter
based method

aaau
AR model parameter vector corresponding

U-MM-PSD
Unsupervised Multiple Model

to Mu model Power Spectral Density
ΣΣΣu covariance matrix of aaau based method
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