
Citation: Xie, X.; Huang, M.; Liu, Y.;

An, Q. Intelligent Tool-Wear

Prediction Based on Informer

Encoder and Bi-Directional Long

Short-Term Memory. Machines 2023,

11, 94. https://doi.org/10.3390/

machines11010094

Academic Editors: Krzysztof Szwajka

and Kai Cheng

Received: 9 December 2022

Revised: 26 December 2022

Accepted: 10 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Intelligent Tool-Wear Prediction Based on Informer Encoder
and Bi-Directional Long Short-Term Memory
Xingang Xie 1, Min Huang 1,2,*, Yue Liu 2 and Qi An 3

1 School of Mechanical Electronic and Information Engineering, China University of Mining and
Technology (Beijing), Beijing 100083, China

2 Mechanical Electrical Engineering School, Beijing Information Science and Technology University,
Beijing 100192, China

3 Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University,
Beijing 100084, China

* Correspondence: huangmin@bistu.edu.cn

Abstract: Herein, to accurately predict tool wear, we proposed a new deep learning network—that
is, the IE-Bi-LSTM—based on an informer encoder and bi-directional long short-term memory. The
IE-Bi-LSTM uses the encoder part of the informer model to capture connections globally and to
extract long feature sequences with rich information from multichannel sensors. In contrast to
methods using CNN and RNN, this model could achieve remote feature extraction and the parallel
computation of long-sequence-dependent features. The informer encoder adopts the attention
distillation layer to increase computational efficiency, thereby lowering the attention computational
overhead in comparison to that of a transformer encoder. To better collect location information while
maintaining serialization properties, a bi-directional long short-term memory (Bi-LSTM) network
was employed. After the fully connected layer, the tool-wear prediction value was generated. After
data augmentation, the PHM2010 basic dataset was used to check the effectiveness of the model. A
comparison test revealed that the model could learn more full features and had a strong prediction
accuracy after hyperparameter tweaking. An ablation experiment was also carried out to demonstrate
the efficacy of the improved model module.

Keywords: tool-wear prediction; deep learning; informer; bi-directional long short-term memory

1. Introduction

The year 2025 will see the implementation of smart manufacturing; the traditional
manufacturing industry has been gradually upgrading to intelligent manufacturing, and
an increasing number of intelligent machines and pieces of equipment are being used in
the manufacturing industry [1]. Tool-wear condition during machining is an essential
element in guaranteeing the dependability and stability of the manufacturing process [2].
Previous studies have shown that the downtime of a machine tool caused by severe tool
wear accounts for 15–40% of its total downtime, with the actual service time of the tool
only accounting for 60–80% of its full service life [3]. Early warnings of tool wear can
lead to higher production costs, lower profits, and wasted productivity [4]. Nonetheless,
tool-condition monitoring can be expected to reduce machine downtime by up to 75%,
and by simply offering useful tool-usage advice, productivity can be increased by at least
65% [5]. Therefore, it is crucial to accurately predict the tool-wear state in order to ensure
production quality, to cut costs, to boost productivity, and to prevent serious safety incidents.
Widespread interest in the field of tool-condition monitoring research has been sparked by
the advent of data-driven models, made possible by the rapid advancement of artificial
intelligence and big data.

Direct measurement [6] and indirect measurement [7] techniques can be used to
monitor tool wear. Direct measurement methods cannot obtain real-time detection. Conse-

Machines 2023, 11, 94. https://doi.org/10.3390/machines11010094 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11010094
https://doi.org/10.3390/machines11010094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-2653-6332
https://doi.org/10.3390/machines11010094
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11010094?type=check_update&version=1

Machines 2023, 11, 94 2 of 19

quently, with the development of advanced sensor technology, most methods today involve
indirect measurements, collecting relevant data through one or more sensors, such as Hall,
acceleration, cutting force, and acoustic emission sensors.

By building an appropriate data-driven model, it is possible to establish the mapping
link between the measurement data and the tool-wear condition. Traditional machine learn-
ing techniques have been employed in past studies to forecast tool wear. Machine learning
techniques can be used to determine the nonlinear mapping relationship between cutting
signals and tool wear. These algorithms comprise the support vector machine (SVM) [8,9],
the hidden Markov model (HMM) [10–12], the artificial neural network (ANN) [13,14], the
random forest, and the Gaussian process regression (GPR) algorithms [15].

For example, support vector machines and the gray wolf optimization algorithm were
used by Liao et al. to predict tool wear [16]. Dong et al. [17] used Bayesian support vector
machines to extract features from force signals for tool-wear forecasts. Wang et al. [18] used
an HMM to monitor tool wear during machining. Palanisamy et al. [19] used regression
mathematics and an ANN to monitor tool wear. However, the extraction of these statistical
traits necessitates expert knowledge and abilities in the relevant domains. In the age of
manufacturing powered by big data, with the ensuing explosive growth in monitoring data,
it has become difficult for engineers to manually extract features from the massive volumes
of raw data. These experience-based feature extraction algorithms are still challenging [20].
Additionally, the traditional method model is small in scale and weak in generalization
ability, making it difficult to adapt to complex and changeable processing scenarios. As a
result of rapid computer science and technology improvements, deep learning methods are
now widely used in many different industries. With a strong generalization ability, deep
learning is suitable for processing massive volumes of original data and can adaptively
extract the relevant features from training data. Therefore, tool-wear state identification
combined with deep learning models has become a hot topic in the industry and has
attracted wide attention.

Currently, tool-wear status monitoring based on deep learning includes the use of
recurrent neural networks (RNNs) [21], convolutional neural networks (CNNs) [22], and
autoencoders (AEs) [23]. The RNN model uses a shared parameter network in which
all network parameters are shared across all time steps by scanning the input data such
that each time step has access to both the current time’s input and the past time’s output,
enabling the model to successfully use past input information to assist it during the current
time. For example, the long short-term memory network (LSTM) was used by Marani et al.
to track tool-wear status [24]. Zhang et al. used densely connected CNNs and gated RNNs
to monitor tool-wear condition [25]. Using convolution and pooling layers, the CNN
model can extract and screen the sensitive features hidden in an input feature map and
use them to achieve a preset goal. For example, Cao et al. [26] used a two-tree complex
wavelet transform and a CNN to accurately determine the degree of tool wear. Cutting
force and vibration data were used by Huang et al. [27] to extract time-domain, frequency-
domain, and time-frequency domain features and to develop CNNs in order to achieve
tool-wear prediction.

Currently, the combination of CNN- and RNN-based models is the method of choice
in the field of tool-wear monitoring. For example, for the purpose of tool-condition
monitoring, Cheng et al. [28] developed a parallel CNN structure with several layers,
which was then followed by bi-directional long short-term memory (Bi-LSTM). According
to the 1D-CNN and Bi-LSTM models, Bazi et al. [29] used a combination of CNN and
Bi-LSTM models for tool-condition monitoring. Both models showed strong temporal
and spatial feature extraction capabilities, but they still exhibited several shortcomings in
the face of long input-sequence prediction scenarios. Models such as CNN-based models
generally solve the problem of long-distance feature capture by stacking convolutional
layers; however, this approach cannot ensure that the model effectively extracts long-
distance features, and the computational efficiency may suffer from the large number of
model parameters.

Machines 2023, 11, 94 3 of 19

RNN-based models—such as the LSTM and GRU—have achieved good results in sce-
narios with a limited input range, but they are restricted by the RNN’s sequence-dependent
structure, which can make it hard for the RNN to career progression parallel computing
ability. At present, the modification of CNN- and RNN-based models—including the
introduction of residual structures, attention mechanisms, and multi-scale fusion—can
improve their performance to a certain extent, but the characteristics of the network model
limit their ability to establish long-distance time-series features.

In view of the shortcomings of CNN- and RNN-based models, a transformer model
was proposed by Vaswani et al. [30]. The entire network structure of the transformer model
comprises an attention mechanism and a feedforward neural network. The transformer
model has been a great success in natural language processing, effectively solving the
long-sequence prediction problem. As a consequence, it has been employed by numerous
academics in the field of fault diagnosis and prediction. For instance, Liu et al. [31] proposed
a transformer-based model of neural networks for tool-wear monitoring. However, the
transformer was composed of multiple self-attention stacks, too many of which could lead
to too many variables consuming too much memory. In addition, self-attention, one of
the transformer’s essential elements, doubles each layer’s computational difficulty as the
length of the sequence increases via the dot-product operation.

In response to these problems, Zhou et al. [32] proposed the informer model, which
uses the prob-sparse self-attention mechanism to reduce the complexity of the dot-product
calculation from quadratic to linear growth, thus reducing computational complexity.
Moreover, when the input sequence is long, information may not be very concentrated.
Zhou et al. concentrated on and distilled sparse information to reduce memory usage.
Based on the characteristics of the informer model, long time-series feature extraction in
tool-wear monitoring can be realized using an informer encoder.

To accomplish the global feature extraction of long-sequence monitoring data and the
local feature dependence augmentation of long-distance monitoring data, in this paper, a
deep learning network model (IE-Bi-LSTM) was developed using an informer encoder, and
the Bi-LSTM module was proposed. First, the model was used to extract the long-term
feature sequence with rich information from multichannel sensors before the Bi-LSTM
network was used to enhance the ability to capture location information in order to enhance
the dependence relationship between the long-term features. The experimental findings
demonstrate that the IE-Bi-LSTM model performed well.

This paper’s primary contributions can be summarized as follows:

1. This study proposed a new and effective tool-wear monitoring and evaluation method.
This is the first time that a combination of an informer encoder and the Bi-LSTM
model has been used for tool-wear monitoring. The experimental results show that
this method is superior to other methods in terms of related evaluation indexes.

2. The informer encoder was employed as the global feature extractor for multichannel
long-term feature sequences, and computational efficiency was enhanced by employ-
ing sparse self-attention.

3. The Bi-LSTM module was used to enhance the ability to capture the feature depen-
dence of long-distance time series.

The remainder of this essay is structured as follows: The main idea behind the sug-
gested model module is introduced in Section 2. The proposed method is explained in
Section 3. The experimental findings are summarized in Section 4. The pertinent conclu-
sions are summarized in Section 5.

2. Model Theory

To gather pertinent signals for this study, cutting force, vibration, and acoustic emission
sensors are used. Corresponding data-driven models are created to ascertain how these
signals relate to tool wear. Thus, the IE-Bi-LSTM model is proposed, comprising the
informer encoder and Bi-LSTM modules. The following sections introduce the details of
the two modules.

Machines 2023, 11, 94 4 of 19

2.1. Scaled Dot-Product Attention

Figure 1 depicts the scaled dot-product attention structure. Scaled dot-product attention
is the main element of the transformer model proposed by Vaswani et al. [30].

Machines 2023, 11, x FOR PEER REVIEW 4 of 19

To gather pertinent signals for this study, cutting force, vibration, and acoustic emis-
sion sensors are used. Corresponding data-driven models are created to ascertain how
these signals relate to tool wear. Thus, the IE-Bi-LSTM model is proposed, comprising the
informer encoder and Bi-LSTM modules. The following sections introduce the details of
the two modules.

2.1. Scaled Dot-Product Attention
Figure 1 depicts the scaled dot-product attention structure. Scaled dot-product atten-

tion is the main element of the transformer model proposed by Vaswani et al. [30].

M ask

Scale

M atM ul

SoftM ax

M atM ul

Q K V

X
Figure 1. The scaled dot-product attention architecture.

The scaled dot-product attention can be expressed as follows:

(, ,) softmax
T

k

QKAttention Q K V V
d

=

 (1)

Assuming that the input node is x, the input will be mapped to a f(x) of the input
embedding before being transformed to the corresponding Q, K, and V values through the

transformation matrices qw , kw , and vw , respectively, where Q, K, and V denote the

query, key, and values, respectively, and d denotes the length of vector K. Finally, the
weight of the corresponding attention can be obtained using Equation (1). However, when
the length of the input sequence increases, the double-dot-product operation, which is the
primary flaw in its capacity for prediction, causes the computational overhead to increase
significantly. This is the primary drawback of its ability to anticipate. Scaled dot-product
attention has a long tail distribution at its output, meaning that only a small subset of dot
products warrants any real consideration.

2.2. Prob-Sparse Self-Attention

Figure 1. The scaled dot-product attention architecture.

The scaled dot-product attention can be expressed as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

Assuming that the input node is x, the input will be mapped to a f (x) of the input
embedding before being transformed to the corresponding Q, K, and V values through the
transformation matrices wq, wk, and wv, respectively, where Q, K, and V denote the query,
key, and values, respectively, and d denotes the length of vector K. Finally, the weight of the
corresponding attention can be obtained using Equation (1). However, when the length of
the input sequence increases, the double-dot-product operation, which is the primary flaw
in its capacity for prediction, causes the computational overhead to increase significantly.
This is the primary drawback of its ability to anticipate. Scaled dot-product attention has
a long tail distribution at its output, meaning that only a small subset of dot products
warrants any real consideration.

2.2. Prob-Sparse Self-Attention

To solve the self-attention problem, Zhou et al. [32] proposed using a probabilistic
self-attention method, the structure of which is shown in Figure 2.

Machines 2023, 11, 94 5 of 19

Machines 2023, 11, x FOR PEER REVIEW 5 of 19

To solve the self-attention problem, Zhou et al. [32] proposed using a probabilistic
self-attention method, the structure of which is shown in Figure 2.

Radom
Sam pling

Q uery Sparsity
M ax-m ean M easurem ent

Scale

SoftM ax

Set Top-u
queries

M ean

Top-u value
Replacem ent

1S 0S

K Q V

X

O utput S

Figure 2. The prob-sparse self-attention architecture.

According to Zhou et al., scaled dot-product attention has a long tail distribution at
its output, meaning that only a small subset of dot products warrants any real considera-
tion. The dissimilarity between the two distributions can be evaluated with the help of
Kullback–Leibler divergence [33], and the main dot-product pairs can be screened out,
with the evaluation of the ith query sparsity being obtained as follows:

()
1 1

1, ln
T

i jk K
q k TL L

i jd
i

j jK

q k
M q K e

L d= =

= − (2)

The first term denotes the log-sum-exp of iq on all keys, with the second term being
their arithmetic mean. To avoid memory bottlenecks caused by traversing all key-value
pairs and potential numerical stability problems in the LSE operations, an empirical ap-
proximation of the maximum mean measurement based on Equation (3) is proposed:

()
1

1, max
KL

i j i j
i j

jK

M
Ld d=

 = −

qk qk

q K

 (3)

Prob-sparse self-attention can be used for dot-product calculation by randomly sam-
pling log L points instead of selecting the entire L for calculation. The sparsity score

(),iM q K of each query can then be calculated, with u queries being selected from
among all the sparsity scores. Thus, to determine the outcomes of the attention mecha-
nism, we only need to compute the dot-product results of the top u query-key pairs. We

Figure 2. The prob-sparse self-attention architecture.

According to Zhou et al., scaled dot-product attention has a long tail distribution at its
output, meaning that only a small subset of dot products warrants any real consideration.
The dissimilarity between the two distributions can be evaluated with the help of Kullback–
Leibler divergence [33], and the main dot-product pairs can be screened out, with the
evaluation of the ith query sparsity being obtained as follows:

M(qi, K) = ln
Lk

∑
j=1

e
qikT

j√
d − 1

LK

LK

∑
j=1

qikT
j√
d

(2)

The first term denotes the log-sum-exp of qi on all keys, with the second term being
their arithmetic mean. To avoid memory bottlenecks caused by traversing all key-value
pairs and potential numerical stability problems in the LSE operations, an empirical ap-
proximation of the maximum mean measurement based on Equation (3) is proposed:

M(qi, K) = maxj

{
qik
>
j√
d

}
− 1

LK

LK

∑
j=1

qik
>
j√
d

(3)

Prob-sparse self-attention can be used for dot-product calculation by randomly sam-
pling log L points instead of selecting the entire L for calculation. The sparsity score M(qi, K)
of each query can then be calculated, with u queries being selected from among all the
sparsity scores. Thus, to determine the outcomes of the attention mechanism, we only need
to compute the dot-product results of the top u query-key pairs. We directly replace the
remaining query-key pairs with the mean M(qi, K) of the input of the self-attention layer.

Machines 2023, 11, 94 6 of 19

This ensures that each prob-sparse self-attention layer has an input and an output sequence
length of L, with the calculation method of u being expressed as follows:

u = c× ln L (4)

where c denotes a constant sampling factor.
Based on the maximum mean measurement, probabilistic self-attention can be achieved

by allowing only u major query vectors to be focused on per key, which is expressed as follows:

Proattention(Q, K, V) = Softmax

(
QK>√

d

)
V (5)

2.3. Informer Encoder

The structure of the informer encoder is shown in Figure 3, comprising a prob-sparse
self-attention module and a distilling module. Among them, the prob-sparse self-attention
module includes the multi-head sparse attention mechanism module, the residual con-
nection, the position feedforward network component (FFN), and layer normalization
(LN) [34], which are followed by each module. The convolution and maximum pooling
layers make up the distillation module. The sections that follow provide descriptions of
the primary modules.

Machines 2023, 11, x FOR PEER REVIEW 6 of 19

directly replace the remaining query-key pairs with the mean (),iM q K of the input of
the self-attention layer. This ensures that each prob-sparse self-attention layer has an input
and an output sequence length of L, with the calculation method of u being expressed as
follows:

lnu c L= × (4)

where c denotes a constant sampling factor.
Based on the maximum mean measurement, probabilistic self-attention can be

achieved by allowing only u major query vectors to be focused on per key, which is ex-
pressed as follows:

QK(, ,) SoftmaxProattention
d

=

Q K V V

(5)

2.3. Informer Encoder
The structure of the informer encoder is shown in Figure 3, comprising a prob-sparse

self-attention module and a distilling module. Among them, the prob-sparse self-attention
module includes the multi-head sparse attention mechanism module, the residual con-
nection, the position feedforward network component (FFN), and layer normalization
(LN) [34], which are followed by each module. The convolution and maximum pooling
layers make up the distillation module. The sections that follow provide descriptions of
the primary modules.

Layer N orm alization

Feed-Forward

N etw orks
Feed-Forward
N etw orks

Layer N orm alization

M ulti-head ProbSparse Self-attention

Positional
Encoding

Positional
Encoding

D istilling Layer

O utputO utput

1x 2x
Figure 3. Illustration of the informer encoder. Figure 3. Illustration of the informer encoder.

2.3.1. Multi-Head Attention

The multi-head attention mechanism is introduced to improve the attention layer’s
performance in two areas. To begin, it broadens the model’s capability of concentrating on
a variety of regions. Second, it provides multiple “presentation subspaces” for the attention

Machines 2023, 11, 94 7 of 19

layer. The model can learn information in various presentation subspaces. Figure 4 depicts
the multi-head self-attention module’s construction.

Machines 2023, 11, x FOR PEER REVIEW 7 of 19

2.3.1. Multi-Head Attention
The multi-head attention mechanism is introduced to improve the attention layer’s

performance in two areas. To begin, it broadens the model’s capability of concentrating
on a variety of regions. Second, it provides multiple “presentation subspaces” for the at-
tention layer. The model can learn information in various presentation subspaces. Figure
4 depicts the multi-head self-attention module’s construction.

ProbSpase Scaled Dot-Product
Attention

LinearLinear Linear

Cancat

Linear

Q K V

x

Figure 4. Illustration of the multi-head attention layer.

A linear transformation is initially applied to Q, K, and V in the linear layer. The self-
attention layer is then fed the outcome of the linear transformation. The output values are
connected in series, and then a linear transformation is applied to determine the final re-
sult. The results can be obtained using Equations (6) and (7) as follows:

()1 hMultiHead(, ,) Concat head , , head OQ K V W= …

(6)

()iwherehead i Attention , ,Q K V
i i iQW KW VW= , (7)

where
model kd dQ

iW
×∈

,
model kd dK

iW
×∈

, and
model vd dV

iW
×∈

 denote the parameter

matrices, and model vhd dOW ×∈ denotes the weight matrix. kd and vd represent the

size of the Key and Value matrices, respectively. model /k vd d d h= =
.

2.3.2. Position-Wise Feedforward Networks
Position-wise feedforward networks (FFNs) are fully connected feedforward net-

works in which the output of each model passes through the same feedforward neural
network separately. It comprises two linear transformations—that is, two fully connected
layers. The GELU activation function is the activation function of the first fully linked
layer [35], which can be shown as follows:

Figure 4. Illustration of the multi-head attention layer.

A linear transformation is initially applied to Q, K, and V in the linear layer. The
self-attention layer is then fed the outcome of the linear transformation. The output values
are connected in series, and then a linear transformation is applied to determine the final
result. The results can be obtained using Equations (6) and (7) as follows:

MultiHead(Q, K, V) = Concat (head1, . . . , headh)WO (6)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, (7)

where WQ
i ∈ Rdmodel ×dk , WK

i ∈ Rdmodel ×dk , and WV
i ∈ Rdmodel ×dv denote the parameter

matrices, and WO ∈ Rhdv×dmodel denotes the weight matrix. dk and dv represent the size of
the Key and Value matrices, respectively. dk = dv = dmodel/h.

2.3.2. Position-Wise Feedforward Networks

Position-wise feedforward networks (FFNs) are fully connected feedforward networks
in which the output of each model passes through the same feedforward neural network
separately. It comprises two linear transformations—that is, two fully connected layers.
The GELU activation function is the activation function of the first fully linked layer [35],
which can be shown as follows:

FFN(R1) = Conv1d(GELU(Conv1d(R))) (8)

where GELU denotes a nonlinear activation function, and R indicates the result of the prior
module [36].

2.3.3. Residual Connections and Layer Normalization

In the informer encoder, each sublayer of each encoder—that is, the self-attention and
FFN layers—has a residual join, followed by a layer standardization operation, as shown

Machines 2023, 11, 94 8 of 19

in Figure 3. The addition of residual connections preserves the original information and
prevents gradient disappearance. The normalization term scales the summed input when
the LN is introduced, increasing the stability of the model during training and inference [37].
It also performs a normalizing role, which aids in accelerating the training process and
accelerating convergence. The issues with vanishing and exploding gradients are also
avoided by using LN layers. The calculation of R2 can be expressed as follows:

R2 = LayerNorm(R1 + FFN(R1)) (9)

2.4. Distilling Layer

When the input sequence is too long, only the top u queries are selected in the above
probability attention for dot-product operation to form Q-K pairs, whereas other Q-K pairs
are set to average values. To solve the problem of information redundancy, a distillation
layer is introduced at the end of the encoder, as shown in Figure 5. The introduction of
a distillation layer highlights the main features, reduces the spatial complexity of long-
sequence inputs, avoids the loss of information, and improves efficiency.

Machines 2023, 11, x FOR PEER REVIEW 8 of 19

() ()()()1FFN Conv1 GELU Conv1R Rd d=

(8)

where GELU denotes a nonlinear activation function, and R indicates the result of the
prior module [36].

2.3.3. Residual Connections and Layer Normalization
In the informer encoder, each sublayer of each encoder—that is, the self-attention and

FFN layers—has a residual join, followed by a layer standardization operation, as shown
in Figure 3. The addition of residual connections preserves the original information and
prevents gradient disappearance. The normalization term scales the summed input when
the LN is introduced, increasing the stability of the model during training and inference
[37]. It also performs a normalizing role, which aids in accelerating the training process
and accelerating convergence. The issues with vanishing and exploding gradients are also

avoided by using LN layers. The calculation of 2R can be expressed as follows:

()()2 1 1LayerNorm FFNR R R= +

(9)

2.4. Distilling Layer
When the input sequence is too long, only the top u queries are selected in the above

probability attention for dot-product operation to form Q-K pairs, whereas other Q-K pairs
are set to average values. To solve the problem of information redundancy, a distillation
layer is introduced at the end of the encoder, as shown in Figure 5. The introduction of a
distillation layer highlights the main features, reduces the spatial complexity of long-se-
quence inputs, avoids the loss of information, and improves efficiency.

Sequence L

Feature D

Conv1d

BatchNorm

ELU

MaxPool

Feature D

Sequence L

Output

MaxPool
Kernel size=3

Stride=2
Padding=1

Figure 5. Illustration of the distilling layer.
Figure 5. Illustration of the distilling layer.

This module consists of the Conv1d, batch normalization, ELU activation, and the
maximum pooling (MaxPool) operations. The “distillation” from the jth layer to the (j + 1)th
layer can be expressed as follows:

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

[
Xt

j

]
AB

))
(10)

2.5. Bi-Directional Long Short-Term Memory

The problem of gradient vanishing occurs while the RNN is in the process of back
propagation. This problem can cause the RNN to forget what it has learned in a long
sequence, which can cause the RNN to malfunction. However, the primary structure of an
LSTM is very similar to that of an RNN. The main difference is that an additional cell state

Machines 2023, 11, 94 9 of 19

and three gate structures are added to the hidden layer. These gate structures are known as
the forget gate, the input gate, and the output gate. Figure 6 provides an illustration of the
fundamental idea behind the LSTM hidden layer construction.

Machines 2023, 11, x FOR PEER REVIEW 9 of 19

This module consists of the Conv1d, batch normalization, ELU activation, and the
maximum pooling (MaxPool) operations. The “distillation” from the jth layer to the (j+1)th
layer can be expressed as follows:

()()1 MaxPool Conv1t t
j j AB

X ELU d X+ =
(10)

2.5. Bi-Directional Long Short-Term Memory
The problem of gradient vanishing occurs while the RNN is in the process of back

propagation. This problem can cause the RNN to forget what it has learned in a long se-
quence, which can cause the RNN to malfunction. However, the primary structure of an
LSTM is very similar to that of an RNN. The main difference is that an additional cell state
and three gate structures are added to the hidden layer. These gate structures are known
as the forget gate, the input gate, and the output gate. Figure 6 provides an illustration of
the fundamental idea behind the LSTM hidden layer construction.

tanh

tanh

σσσ

tC1tC−

th

th1th −

tx

()tf ()ti ()ta
()to

Figure 6. Graphical illustration of the LSTM.

Through the forget control gate, the inputs 1th − and tx are read, and then ()f t

is obtained using the signal function layer. The inputs 1th − and tx travel through the
signal function layer and the tanh function layer, respectively, in the input control gate to

obtain ()i t and ta . In the output control gate, the inputs 1th − and tx obtain ()o t
through the signal function layer. Then, the precise mathematical procedure can be stated
as follows:

()1() f t f t ff t W h U x bσ −= + + (11)

()1() i t i t ii t Wh U x bσ −= + + (12)

()1() tanh a t a t aa t W h U x b−= + + (13)

()1() o t o t oo t W h U x bσ −= + + (14)

Figure 6. Graphical illustration of the LSTM.

Through the forget control gate, the inputs ht−1 and xt are read, and then f (t) is
obtained using the signal function layer. The inputs ht−1 and xt travel through the signal
function layer and the tanh function layer, respectively, in the input control gate to obtain
i(t) and at. In the output control gate, the inputs ht−1 and xt obtain o(t) through the signal
function layer. Then, the precise mathematical procedure can be stated as follows:

f (t) = σ
(

W f ht−1 + U f xt + b f

)
(11)

i(t) = σ(Wiht−1 + Uixt + bi) (12)

a(t) = tanh(Waht−1 + Uaxt + ba) (13)

o(t) = σ(Woht−1 + Uoxt + bo) (14)

tanh(x) =
1− e−2x

1 + e−2x (15)

σ(x) =
1

1 + e−x (16)

W f , Wi, Wo, and Wa indicate the forgetting gate, input gate, and output gate weight
coefficients. U f , Ui, Uo, and Ua are used to express the weight coefficients of the forgetting
gate, input gate, output gate, and feature extraction method, respectively. b f , bi, bo, and ba
represent the offset values of the forgetting gate, input gate, and output gate in the feature
extraction process.

We acquire the final output c(t) using c(t− 1)× f (t), which indicates the discarding
of the rejected information that we confirmed in the old information, and i(t)× a(t), which
indicates the information that needs to be updated. The particular computation procedure
can be stated as follows:

c(t) = c(t− 1)× f (t) + i(t)× a(t) (17)

Machines 2023, 11, 94 10 of 19

The output gate o(t) at the present time can be used to determine the hidden layer
state h(t) at time t as follows:

h(t) = o(t)× tanh(c(t)) (18)

The structural architecture of the Bi-LSTM neural network can be separated into
two independent LSTM networks. The input sequences are processed by the two LSTM
networks to extract features, one in the forwards direction and one in the backwards
direction. The final feature expression of the word can be the word vector created by
splicing the two output vectors. Figure 7 depicts the construction of the Bi-LSTM model.

Machines 2023, 11, x FOR PEER REVIEW 10 of 19

2

2
1tanh()
1

x

x

ex
e

−

−

−=
+

 (15)

1()
1 xx
e

σ −=
+

 (16)

fW , iW , oW , and aW indicate the forgetting gate, input gate, and output gate weight

coefficients. fU , iU , oU , and aU are used to express the weight coefficients of the for-

getting gate, input gate, output gate, and feature extraction method, respectively. fb ,

ib , ob , and ab represent the offset values of the forgetting gate, input gate, and output
gate in the feature extraction process.

We acquire the final output ()c t using (1) * ()c t f t− , which indicates the discard-
ing of the rejected information that we confirmed in the old information, and ()* ()i t a t ,
which indicates the information that needs to be updated. The particular computation
procedure can be stated as follows:

() (1) * () () * ()c t c t f t i t a t= − + (17)

The output gate ()o t at the present time can be used to determine the hidden layer
state ()h t at time t as follows:

() () * tanh(())h t o t c t= (18)

The structural architecture of the Bi-LSTM neural network can be separated into two
independent LSTM networks. The input sequences are processed by the two LSTM net-
works to extract features, one in the forwards direction and one in the backwards direc-
tion. The final feature expression of the word can be the word vector created by splicing
the two output vectors. Figure 7 depicts the construction of the Bi-LSTM model.

Figure 7. Graphical illustration of the Bi-LSTM layers used in the IE-Bi-LSTM model.

The Bi-LSTM model’s goal is to make it possible for the feature data collected at time
t to include information about both the past and the future. Previous experiments have
shown that the efficiency and performance of this neural network structure for text feature
extraction are better than those of a model with a single LSTM structure.

3. Methods: The IE-Bi-LSTM Model

Figure 7. Graphical illustration of the Bi-LSTM layers used in the IE-Bi-LSTM model.

The Bi-LSTM model’s goal is to make it possible for the feature data collected at time
t to include information about both the past and the future. Previous experiments have
shown that the efficiency and performance of this neural network structure for text feature
extraction are better than those of a model with a single LSTM structure.

3. Methods: The IE-Bi-LSTM Model

The model proposed in this paper comprises data preprocessing, the IE-Bi-LSTM
model, and a fully connected output layer. Based on the characteristics of the model given
in this study, it is critical to examine the influence of historical information on tool wear.
As a result, the entire initial signal is segmented using the sliding window function and
then divided into training, verification, and test datasets. Three temporal features—the
maximum, average, and variance values—for each channel are collected from each segment.

Figure 8 depicts the network structure and training procedure. The IE-Bi-LSTM model
includes an informer encoder, the Bi-LSTM module, and a transport layer. After data
preprocessing, a two-dimensional tensor is produced, which is utilized as the model’s
input. The model, which is embedded with position coding, is then input into an informer
encoder to extract the long time-series features. The extracted long series features can then
be input into the Bi-LSTM module to enhance the long-distance time feature information,
after which regression is carried out using the full connection layer. During training, the
model weights and biases are updated using back propagation, with the mean square error
serving as the loss function.

Machines 2023, 11, 94 11 of 19

Machines 2023, 11, x FOR PEER REVIEW 11 of 19

The model proposed in this paper comprises data preprocessing, the IE-Bi-LSTM
model, and a fully connected output layer. Based on the characteristics of the model given
in this study, it is critical to examine the influence of historical information on tool wear.
As a result, the entire initial signal is segmented using the sliding window function and
then divided into training, verification, and test datasets. Three temporal features—the
maximum, average, and variance values—for each channel are collected from each seg-
ment.

Figure 8 depicts the network structure and training procedure. The IE-Bi-LSTM
model includes an informer encoder, the Bi-LSTM module, and a transport layer. After
data preprocessing, a two-dimensional tensor is produced, which is utilized as the
model’s input. The model, which is embedded with position coding, is then input into an
informer encoder to extract the long time-series features. The extracted long series features
can then be input into the Bi-LSTM module to enhance the long-distance time feature in-
formation, after which regression is carried out using the full connection layer. During
training, the model weights and biases are updated using back propagation, with the
mean square error serving as the loss function.

Layer N orm alization

FFN FFN

Layer N orm alization

M ulti-head ProbSparse Self-attention

D istilling Layer

Positional
Encoding

Positional
Encoding

Inform er Encoder

LST
M

LST
M

LST
M

Stacked Bi-LSTM M odel

O utput Layer

Predicted
W ear V alue

H idden Layers input Layer

IE-BiLSTM M odel Training

Concat

x1 x2

M ulti-layer FC network

LST
M

LST
M

LST
M

LST
M

LST
M

LST
M

LST
M

LST
M

LST
M

BP

Figure 8. Illustration of the proposed method.

4. Experimental Results
4.1. Dataset Descriptions

To verify the validity of the IE-Bi-LSTM model, the PHM2010 dataset [38] was used
for model training and validation. The PHM2010 tool-wear dataset is available in the Data
Availability Statement at the end of this article. The experimental system structure is
shown in Figure 9. During the experiment, a Kistler quartz three-component platform dy-
namometer, a Kistler Piezoelectric acceleration sensor, and a Kistler AE sensor were used
to collect X, Y, Z three-axis cutting force, three-axis vibration signal, and acoustic emission
signal, respectively. The experiment used 6 mm three-flute ball carbide milling cutters for
dry milling along the horizontal direction. The main equipment and process parameters
are shown in Tables 1 and 2. In the experiment, three milling cutters (C1, C4, and C6) of
the same material were used under the same experimental conditions. Each milling cutter
was subjected to 315 experiments under the same working conditions, each milling exper-
iment took about 4 s, and the signals collected by each sensor were recorded in datasets.
Therefore, about 200,000 measurement signals could be obtained per milling experiment

Figure 8. Illustration of the proposed method.

4. Experimental Results
4.1. Dataset Descriptions

To verify the validity of the IE-Bi-LSTM model, the PHM2010 dataset [38] was used
for model training and validation. The PHM2010 tool-wear dataset is available in the
Data Availability Statement at the end of this article. The experimental system structure
is shown in Figure 9. During the experiment, a Kistler quartz three-component platform
dynamometer, a Kistler Piezoelectric acceleration sensor, and a Kistler AE sensor were
used to collect X, Y, Z three-axis cutting force, three-axis vibration signal, and acoustic
emission signal, respectively. The experiment used 6 mm three-flute ball carbide milling
cutters for dry milling along the horizontal direction. The main equipment and process
parameters are shown in Tables 1 and 2. In the experiment, three milling cutters (C1, C4,
and C6) of the same material were used under the same experimental conditions. Each
milling cutter was subjected to 315 experiments under the same working conditions, each
milling experiment took about 4 s, and the signals collected by each sensor were recorded
in datasets. Therefore, about 200,000 measurement signals could be obtained per milling
experiment per tool. Finally, the three cutters, C1, C4, and C6, were measured using a
microscope after each milling, and the wear amount corresponding to each blade of the
milling cutter was flute1-3. The wear measurement accuracy was 10−3 mm.

Table 1. Main equipment of the experimental setup.

Equipment Type

CNC milling machine Roders Tech RFM760
Dynamometer Kistler 9265B

Charge amplifier Kistler 5019A
Acoustic emission sensor Kistler AE sensor

Cutters 3-flute ball carbide milling cutters
Data acquisition card DAQ NI PCI 1200

Abrasion measuring apparatus LEICA MZ12 microscope

Machines 2023, 11, 94 12 of 19

Table 2. Experimental processing parameters.

Parameter Value

Spindle 10,400/(r/min)
Feed rate 1555 (mm/min)

Depth of cut (y direction, radial) 0.125 (mm)
Depth of cut (z direction, axial) 0.2 (mm)

Sampling rate 50 (KHz)
Workpiece material Stainless steel (HRC52)

Machines 2023, 11, x FOR PEER REVIEW 12 of 19

per tool. Finally, the three cutters, C1, C4, and C6, were measured using a microscope after
each milling, and the wear amount corresponding to each blade of the milling cutter was
flute1-3. The wear measurement accuracy was 10−3 mm.

High Speed Mlilling Machine Röders
Tech RFM 760

3-flute
ball nose cutter

Workpiece

Accelerometers

AE Sensors

Dynamometer

Microscope LEICA MZ12

Offline Measurement

NI DAQ
Modules

Charge
Amplifiers

In-process Measurement

PCFlank Wear
VB Values

Force Vibration
AE signals

X
Y

Z

Figure 9. Illustration of the experimental setup.

Table 1. Main equipment of the experimental setup.

Table 2. Experimental processing parameters.

Parameter Value
Spindle 10,400/(r/min)

Feed rate 1555(mm/min)
Depth of cut (y direction, radial) 0.125(mm)
Depth of cut (z direction, axial) 0.2(mm)

Sampling rate 50(KHz)
Workpiece material Stainless steel (HRC52)

4.2. Data Preprocessing
When attempting to improve the model’s generalization capabilities, the deep learn-

ing process might result in a complicated network topology, resulting in a high number
of model hyperparameters that must be trained. Consequently, the training dataset must
have a large sample size. When the sample size is small, the deep learning network is
prone to overfitting. Therefore, to ensure satisfactory training, it was necessary to enhance
the original data of the collected data samples. Here, we introduced the average sampling
enhancement method (ASA) [39], which enhanced the target signal samples by evenly
collecting the signal segment of the target length through a sliding window in the target

Equipment Type
CNC milling machine Roders Tech RFM760

Dynamometer Kistler 9265B
Charge amplifier Kistler 5019A

Acoustic emission sensor Kistler AE sensor
Cutters 3-flute ball carbide milling cutters

Data acquisition card DAQ NI PCI 1200
Abrasion measuring apparatus LEICA MZ12 microscope

Figure 9. Illustration of the experimental setup.

4.2. Data Preprocessing

When attempting to improve the model’s generalization capabilities, the deep learning
process might result in a complicated network topology, resulting in a high number of
model hyperparameters that must be trained. Consequently, the training dataset must have
a large sample size. When the sample size is small, the deep learning network is prone
to overfitting. Therefore, to ensure satisfactory training, it was necessary to enhance the
original data of the collected data samples. Here, we introduced the average sampling
enhancement method (ASA) [39], which enhanced the target signal samples by evenly
collecting the signal segment of the target length through a sliding window in the target
signal. After signal preprocessing, each new sample was used as an input to the deep
learning model.

Because of the damage to the cutting force signal in the x-direction, data from the other
six channels were used in this experiment. As shown in Figure 10, the data preprocessing
operations were performed sequentially. First, the entire sequence was decomposed using
the sliding window method along the direction of the time dimension. The maximum,
average, and variance values were then extracted from each channel and connected to form
the feature data sample. The size of the feature data sample was R120×18. The model input
xi was then obtained through normalization along the direction of the time series, with
the model converging quickly through the normalization operation. The wear label was
chosen based on the maximum value of the three wear surfaces for safety concerns. After
data preprocessing, the C1 dataset included 57,529 sets of data, the C4 dataset included
58,449 sets of data, and the C6 dataset included 57,485 sets of data. Finally, cross-validation
was used to select two datasets as the training and verification datasets, with the remaining
dataset being the test set. The ratio of the training dataset to the validation dataset was 4:1.

Machines 2023, 11, 94 13 of 19

Machines 2023, 11, x FOR PEER REVIEW 13 of 19

signal. After signal preprocessing, each new sample was used as an input to the deep
learning model.

Because of the damage to the cutting force signal in the x-direction, data from the
other six channels were used in this experiment. As shown in Figure 10, the data prepro-
cessing operations were performed sequentially. First, the entire sequence was decom-
posed using the sliding window method along the direction of the time dimension. The
maximum, average, and variance values were then extracted from each channel and con-
nected to form the feature data sample. The size of the feature data sample was 120 18× .

The model input ix was then obtained through normalization along the direction of the
time series, with the model converging quickly through the normalization operation. The
wear label was chosen based on the maximum value of the three wear surfaces for safety
concerns. After data preprocessing, the C1 dataset included 57,529 sets of data, the C4
dataset included 58,449 sets of data, and the C6 dataset included 57,485 sets of data. Finally,
cross-validation was used to select two datasets as the training and verification datasets,
with the remaining dataset being the test set. The ratio of the training dataset to the vali-
dation dataset was 4:1.

Max Mean Variance

l1 l2 l3 ljlj-1………

① Data Segmentation

②Temporal Feature Extraction

③
 Z-score N

orm

④ Dataset split
Cross-validation

Train &Val Test

C6

C4

C1

C1+C4

C1+C6

C4+C6

l 1
l 2

l 3

…
…
…

l j

In
pu

t S
eq

ue
nc

e

Feature Dimension

Model Input

d1 d2 d3 ………

Figure 10. Data preprocessing program.

4.3. Experimental Environment and Hyperparameter Configuration
Personal desktops, with Intel Core i9 11900k CPU, 128 GB of memory, NVIDIA RTX

3090 GPU, and 24 GB of video memory, were used for the experimental platform. For this
study, we built a Pytorch deep learning framework on a Windows 10 operating system.
Python was used to create the program code and call the necessary libraries, including
CUDA and CUDNN, using the software environments CUDA 10.1, CUDNN 7.6, and Py-
thon3.8. In this way, we effectively trained and tested the firefighting robot flame recog-
nition model.

The deep learning network model effect might be positive or negative, depending on
the hyperparameters used. The batch size, dropout rate, and learning rate were the pri-
mary hyperparameters in the IE-Bi-LSTM model. The number of heads in the multi-head

Figure 10. Data preprocessing program.

4.3. Experimental Environment and Hyperparameter Configuration

Personal desktops, with Intel Core i9 11900k CPU, 128 GB of memory, NVIDIA RTX
3090 GPU, and 24 GB of video memory, were used for the experimental platform. For this
study, we built a Pytorch deep learning framework on a Windows 10 operating system.
Python was used to create the program code and call the necessary libraries, including
CUDA and CUDNN, using the software environments CUDA 10.1, CUDNN 7.6, and
Python3.8. In this way, we effectively trained and tested the firefighting robot flame
recognition model.

The deep learning network model effect might be positive or negative, depending on
the hyperparameters used. The batch size, dropout rate, and learning rate were the primary
hyperparameters in the IE-Bi-LSTM model. The number of heads in the multi-head self-
attention mechanism was another important hyperparameter (H). These hyperparameters
were changed based on the model’s performance on the verification dataset, with the
hyperparameter with the lowest loss value chosen as the default parameter. The Adam
optimizer was used during the model training [22]. L2 regularization and discarding,
among other techniques, were used to prevent overfitting during model training. Table 3
lists the specific hyperparameter settings.

Table 3. Hyperparameter settings.

Parameters Learning Rate Epoch Batch Size Dropout

Values 0.001 100 32 0.2
Parameters Warmup FC neurons H Activation

Values 20 64/64/1 3 ReLu

Machines 2023, 11, 94 14 of 19

4.4. Experimental Environment and Hyperparameter Configuration

The IE-Bi-LSTM model’s evaluation indices used in this work were the mean absolute
error (MAE) and the root mean square error (RMSE), whose formulas are as follows:

MAE =
1
n

n

∑
i=1
|yi − fi| (19)

RMSE =

√
1
n

n

∑
i=1

(yi − fi)
2, (20)

where yi denotes the ith predicted value, and fi denotes the ith true value. The smaller
the MAE and RMSE values, the more effective these evaluation indices are in tool-wear
prediction applications. Consequently, we compared these evaluation indices with other
published results.

4.5. Experimental Results and Analysis

In order to make the experiment more objective, each experiment was carried out
10 times under the same conditions, and the average value of the 10 experimental results
was taken as the final result. The IE-Bi-LSTM model obtained good results in terms of the
corresponding evaluation indicators.

The associated experimental findings are shown in Figure 11, together with the pro-
jected and actual tool-wear values, as well as the difference between the two. The projected
tool surface wear curve is essentially compatible with the actual tool surface wear curve,
and the majority of the errors are contained within a narrow range, which supports the
model’s validity.

It can be seen in Figure 11 that the wear amount of the tool increases rapidly at the
initial stage, and then the wear rate slows down. This is because the tool wear process can
be divided into three stages, namely, the initial wear stage, the normal wear stage, and the
sharp wear stage. In the initial wear stage of the tool, the newly sharpened tool has just
been put into use, the actual contact area between the flank and the workpiece is small, the
positive pressure per unit area is relatively large, and the surface roughness of the tool is
rough or the surface structure of the tool is not wear-resistant, so the wear is faster in a
short time when cutting starts. In the normal wear stage of the tool, after the initial wear,
the contact area between the tool flank and the workpiece increases, the pressure on the
unit area gradually decreases, and the microscopic rough surface of the tool flank is ground,
so the wear speed slows down.

It can also be seen in Figure 11 that, in the initial stage, the error between the predicted
value and the real value is large. This is because, in the early stage, the tool wear amount is
small, and the IE-Bi-LSTM model learns fewer features. As the amount of wear increases,
more features are learned by the IE-Bi-LSTM model, so the error between the predicted
value and the real value decreases. In the final stage of increased tool wear, the error between
the predicted value and the real value increases, because the signal collected by the sensor
includes more noise, which affects the accuracy of the IE-Bi-LSTM model prediction.

This study compared the results of the IE-Bi-LSTM model with those of several classical
methods and contemporary methods using the same dataset to further demonstrate the
model’s usefulness and superiority. The MAE and RMSE values for the three tools used
with these models are listed in Table 4.

As is evident in Table 4, the proposed model achieves optimal results in comparison
with the other models, indicating that the IE-Bi-LSTM model performs well on the PHM2010
dataset, proving the effectiveness of the model.

Machines 2023, 11, 94 15 of 19

Machines 2023, 11, x FOR PEER REVIEW 15 of 19

increases, more features are learned by the IE-Bi-LSTM model, so the error between the
predicted value and the real value decreases. In the final stage of increased tool wear, the
error between the predicted value and the real value increases, because the signal col-
lected by the sensor includes more noise, which affects the accuracy of the IE-Bi-LSTM
model prediction.

(a)

(b)

(c)

Figure 11. Comparisons between the predicted tool wear and the ground-truth tool wear: (a) C1
cutter, (b) C4 cutter, and (c) C6 cutter.

Figure 11. Comparisons between the predicted tool wear and the ground-truth tool wear: (a) C1
cutter, (b) C4 cutter, and (c) C6 cutter.

Machines 2023, 11, 94 16 of 19

Table 4. Performance comparisons with other models.

Models Datasets

C1 C4 C6
MAE RMSE MAE RMSE MAE RMSE

RNN [21] 13.1 15.6 16.7 20 25.5 32.91
Bi-LSTM [40] 12.8 14.6 10.9 14.2 14.7 17.7

CNN-LSTM [41] 11.18 13.77 9.39 11.85 11.34 14.33
Deep-LSTM [21] 8.3 12.1 8.7 10.2 15.2 18.9

HLLSTM [40] 6.6 8 6 7.5 7.1 8.8
TBNN [31] 4.294 6.116 / / 7.772 9.553
CTNN [42] 3.634 5.358 / / 7.531 9.209

LF-GRU [43] 4.2 5.4 6.9 8.3 5.8 8.2
DH-GRU [44] 3.7 4.66 7.07 8.73 5.08 6.94

IE-SBIGRU [36] 3.694 5.056 5.189 6.884 3.398 4.527
Proposed model 2.68 3.23 3.09 3.91 3.37 4.27

4.6. Model Module Analysis

Because the IE-Bi-LSTM model improved based on its integration of the informer
model, to understand the performance of the modules in the IE-Bi-LSTM model, a com-
parative test was conducted. We designed three models with an architecture similar to
that of the proposed model, all of which had similar hyperparameters. Scaled dot-product
attention was utilized in Model 1 in place of prob-sparse self-attention, and the distillation
layer was eliminated in Model 2. As a result of Model 2, the encoder had a fixed sequence
length. The Bi-LSTM layer was deleted in Model 3. The comparison results are shown in
Figure 12.

In terms of the key performance measures, the comparative results in Figure 12 reveal
that the IE-Bi-LSTM model outperforms the other three models. Compared with Model
1, the IE-Bi-LSTM model with the integrated prob-sparse self-attention method achieves
the best results in terms of the MAE and RMSE values. Because dot-product attention
necessitates the calculation of all key-value pairs, the model’s computational cost rises.
Similarly, in the actual tool-wear application scenario, this calculation method can lead to
the retention of a large volume of redundant information. These factors make the model
ineffective for extracting tool-wear features. The addition of the distillation layer increases
the model’s computational efficiency and prediction accuracy when compared to those
of Model 2. Compared with Model 3, it is evident that the single-informer model cannot
effectively predict tool wear, and its prediction ability is limited.

Machines 2023, 11, x FOR PEER REVIEW 16 of 19

This study compared the results of the IE-Bi-LSTM model with those of several clas-
sical methods and contemporary methods using the same dataset to further demonstrate
the model’s usefulness and superiority. The MAE and RMSE values for the three tools
used with these models are listed in Table 4.

Table 4. Performance comparisons with other models.

Models Datasets
 C1 C4 C6
 MAE RMSE MAE RMSE MAE RMSE

RNN [21] 13.1 15.6 16.7 20 25.5 32.91
Bi-LSTM [40] 12.8 14.6 10.9 14.2 14.7 17.7

CNN-LSTM [41] 11.18 13.77 9.39 11.85 11.34 14.33
Deep-LSTM [21] 8.3 12.1 8.7 10.2 15.2 18.9

HLLSTM [40] 6.6 8 6 7.5 7.1 8.8
TBNN [31] 4.294 6.116 / / 7.772 9.553
CTNN [42] 3.634 5.358 / / 7.531 9.209

LF-GRU [43] 4.2 5.4 6.9 8.3 5.8 8.2
DH-GRU [44] 3.7 4.66 7.07 8.73 5.08 6.94

IE-SBIGRU [36] 3.694 5.056 5.189 6.884 3.398 4.527
Proposed model 2.68 3.23 3.09 3.91 3.37 4.27

As is evident in Table 4, the proposed model achieves optimal results in comparison
with the other models, indicating that the IE-Bi-LSTM model performs well on the
PHM2010 dataset, proving the effectiveness of the model.

4.6. Model Module Analysis
Because the IE-Bi-LSTM model improved based on its integration of the informer

model, to understand the performance of the modules in the IE-Bi-LSTM model, a com-
parative test was conducted. We designed three models with an architecture similar to
that of the proposed model, all of which had similar hyperparameters. Scaled dot-product
attention was utilized in Model 1 in place of prob-sparse self-attention, and the distillation
layer was eliminated in Model 2. As a result of Model 2, the encoder had a fixed sequence
length. The Bi-LSTM layer was deleted in Model 3. The comparison results are shown in
Figure 12.

Figure 12. Cont.

Machines 2023, 11, 94 17 of 19Machines 2023, 11, x FOR PEER REVIEW 17 of 19

Figure 12. Estimation performance of different models using the PHM2010 testing dataset.

In terms of the key performance measures, the comparative results in Figure 12 reveal
that the IE-Bi-LSTM model outperforms the other three models. Compared with Model 1,
the IE-Bi-LSTM model with the integrated prob-sparse self-attention method achieves the
best results in terms of the MAE and RMSE values. Because dot-product attention neces-
sitates the calculation of all key-value pairs, the model’s computational cost rises. Simi-
larly, in the actual tool-wear application scenario, this calculation method can lead to the
retention of a large volume of redundant information. These factors make the model inef-
fective for extracting tool-wear features. The addition of the distillation layer increases the
model’s computational efficiency and prediction accuracy when compared to those of
Model 2. Compared with Model 3, it is evident that the single-informer model cannot ef-
fectively predict tool wear, and its prediction ability is limited.

The introduction of the Bi-LSTM module effectively enhances the model’s ability to
capture the position relationship between long-distance features and improves its predic-
tion ability, proving the effectiveness of the improvements introduced in this study.

5. Conclusions and Future Work
To make more precise tool-wear predictions, a new model based on an informer

model was developed in this work. The proposed model makes two major contributions
to the literature. First, it combined the informer model with the Bi-LSTM model for the
first time, making relevant improvements for specific tool-wear prediction scenarios. For
example, prob-sparse self-attention was used to reduce the computational complexity of
the model to O(LlogL) , and it was introduced to enhance the position relationship be-
tween long-distance features. Furthermore, the efficacy of the suggested model was
demonstrated in experiments using the PHM2010 dataset. Additionally, ablation experi-
ments were conducted to study the effectiveness of each improved module in predicting
tool wear.

Future research could examine how different spindle and feed mechanisms in CNC
machine tools affect tool wear, combined with several factors of various other systems to
further improve the predictive performance of tool wear. Moreover, we could further
study the practical applications of a multitask method in tool-wear prediction.

Author Contributions: The manuscript was heavily influenced by all of the contributors. X.X. made
important contributions to the study design, algorithm implementation, data management, chart
production, and manuscript writing. M.H. provided project support for the study and made im-
portant contributions to the idea of the study, as well as the writing and review of the manuscript.

Figure 12. Estimation performance of different models using the PHM2010 testing dataset.

The introduction of the Bi-LSTM module effectively enhances the model’s ability to
capture the position relationship between long-distance features and improves its prediction
ability, proving the effectiveness of the improvements introduced in this study.

5. Conclusions and Future Work

To make more precise tool-wear predictions, a new model based on an informer model
was developed in this work. The proposed model makes two major contributions to the
literature. First, it combined the informer model with the Bi-LSTM model for the first time,
making relevant improvements for specific tool-wear prediction scenarios. For example,
prob-sparse self-attention was used to reduce the computational complexity of the model
to O(LlogL), and it was introduced to enhance the position relationship between long-
distance features. Furthermore, the efficacy of the suggested model was demonstrated
in experiments using the PHM2010 dataset. Additionally, ablation experiments were
conducted to study the effectiveness of each improved module in predicting tool wear.

Future research could examine how different spindle and feed mechanisms in CNC
machine tools affect tool wear, combined with several factors of various other systems to
further improve the predictive performance of tool wear. Moreover, we could further study
the practical applications of a multitask method in tool-wear prediction.

Author Contributions: The manuscript was heavily influenced by all of the contributors. X.X.
made important contributions to the study design, algorithm implementation, data management,
chart production, and manuscript writing. M.H. provided project support for the study and made
important contributions to the idea of the study, as well as the writing and review of the manuscript.
Y.L. and Q.A. made important contributions to the research literature search, data acquisition, and
data analysis. All authors have read and agreed to the published version of the manuscript.

Funding: The Ministry of Industry and Information Technology of the People’s Republic of China’s
2021 High-end CNC System and Servo Motor Project provided financial support for this research to
develop and demonstrate an intelligent monitoring method for the study of the tool-wear status of
CNC machine tools (Grant No. TC210H03A-05).

Institutional Review Board Statement: Both humans and animals were excluded from the research.

Informed Consent Statement: The research did not include any participants of the human or ani-
mal variety.

Data Availability Statement: The data that are presented in this study can be obtained from https:
//phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/ (accessed on
31 December 2022) and from “GitHub-muxi324/Experiments-using-PHM2010dataset”.

https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/
https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/

Machines 2023, 11, 94 18 of 19

Acknowledgments: We appreciate the reviewers, who chose to remain anonymous, for their insight-
ful criticisms and pointers for improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baroroh, D.K.; Chu, C.; Wang, L. Systematic literature review on augmented reality in smart manufacturing: Collaboration

between human and computational intelligence. J. Manuf. Syst. 2021, 61, 696–711. [CrossRef]
2. Yu, H.; Wang, K.; Zhang, R.; Wu, X.; Tong, Y.; Wang, R.; He, D. An improved tool wear monitoring method using local image and

fractal dimension of workpiece. Math. Probl. Eng. 2021, 2021, 9913581. [CrossRef]
3. Kurada, S.; Bradley, C. A review of machine vision sensors for tool condition monitoring. Comput. Ind. 1997, 34, 55–72. [CrossRef]
4. Li, Y.; Liu, C.; Hua, J.; Gao, J.; Maropoulos, P. A novel method for accurately monitoring and predicting tool wear under varying

cutting conditions based on meta-learning. CIRP Ann. 2019, 68, 487–490. [CrossRef]
5. Duan, J.; Zhang, X.; Shi, T. A hybrid attention-based paralleled deep learning model for tool wear prediction. Expert Syst. Appl.

2023, 211, 118548. [CrossRef]
6. Lins, R.G.; de Araujo, P.R.M.; Corazzim, M. In-process machine vision monitoring of tool wear for Cyber-Physical Production

Systems. Robot. Comput.-Integr. Manuf. 2020, 61, 101859. [CrossRef]
7. Wang, J.; Xie, J.; Zhao, R.; Zhang, L.; Duan, L. Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing.

Robot. Comput.-Integr. Manuf. 2017, 45, 47–58. [CrossRef]
8. Zhang, C.; Zhang, H. Modelling and prediction of tool wear using LS-SVM in milling operation. Int. J. Comput. Integr. Manuf.

2016, 29, 76–91. [CrossRef]
9. Shi, D.; Gindy, N.N. Tool wear predictive model based on least squares support vector machines. Mech. Syst. Signal Process. 2007,

21, 1799–1814. [CrossRef]
10. Atlas, L.; Ostendorf, M.; Bernard, G.D. Hidden Markov models for monitoring machining tool-wear. In Proceedings of the 2000

IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 5–9 June 2000; (Cat. No. 00CH37100).
pp. 3887–3890.

11. Zhu, K.; San Wong, Y.; Hong, G.S. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models.
Mech. Syst. Signal Process. 2009, 23, 547–560. [CrossRef]

12. Ertunc, H.M.; Loparo, K.A.; Ocak, H. Tool wear condition monitoring in drilling operations using hidden Markov models
(HMMs). Int. J. Mach. Tools Manuf. 2001, 41, 1363–1384. [CrossRef]

13. Sick, B. On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of
research. Mech. Syst. Signal Process. 2002, 16, 487–546. [CrossRef]

14. Ezugwu, E.O.; Arthur, S.J.; Hines, E.L. Tool-wear prediction using artificial neural networks. J. Mater. Process. Technol. 1995, 49,
255–264. [CrossRef]

15. Zhang, C.; Wang, W.; Li, H. Tool wear prediction method based on symmetrized dot pattern and multi-covariance Gaussian
process regression. Measurement 2022, 189, 110466. [CrossRef]

16. Liao, X.; Zhou, G.; Zhang, Z.; Lu, J.; Ma, J. Tool wear state recognition based on GWO–SVM with feature selection of genetic
algorithm. Int. J. Adv. Manuf. Technol. 2019, 104, 1051–1063. [CrossRef]

17. Dong, J.; Subrahmanyam, K.; Wong, Y.S.; Hong, G.S.; Mohanty, A.R. Bayesian-inference-based neural networks for tool wear
estimation. Int. J. Adv. Manuf. Technol. 2006, 30, 797–807. [CrossRef]

18. Wang, L.; Mehrabi, M.G.; Kannatey-Asibu, E., Jr. Hidden Markov model-based tool wear monitoring in turning. J. Manuf. Sci.
Eng. 2002, 124, 651–658. [CrossRef]

19. Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. Prediction of tool wear using regression and ANN models in end-milling
operation. Int. J. Adv. Manuf. Technol. 2008, 37, 29–41. [CrossRef]

20. Sun, H.; Zhang, J.; Mo, R.; Zhang, X. In-process tool condition forecasting based on a deep learning method. Robot. Comput.-Integr.
Manuf. 2020, 64, 101924. [CrossRef]

21. Zhao, R.; Wang, J.; Yan, R.; Mao, K. Machine health monitoring with LSTM networks. In Proceedings of the 2016 10th International
Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016; pp. 1–6.

22. Duan, J.; Duan, J.; Zhou, H.; Zhan, X.; Li, T.; Shi, T. Multi-frequency-band deep CNN model for tool wear prediction. Meas. Sci.
Technol. 2021, 32, 65009. [CrossRef]

23. Sun, C.; Ma, M.; Zhao, Z.; Tian, S.; Yan, R.; Chen, X. Deep transfer learning based on sparse autoencoder for remaining useful life
prediction of tool in manufacturing. IEEE Trans. Ind. Inform. 2018, 15, 2416–2425. [CrossRef]

24. Marani, M.; Zeinali, M.; Songmene, V.; Mechefske, C.K. Tool wear prediction in high-speed turning of a steel alloy using long
short-term memory modelling. Measurement 2021, 177, 109329. [CrossRef]

25. Liu, X.; Zhang, B.; Li, X.; Liu, S.; Yue, C.; Liang, S.Y. An approach for tool wear prediction using customized DenseNet and GRU
integrated model based on multi-sensor feature fusion. J. Intell. Manuf. 2022, 1–18. [CrossRef]

26. Cao, X.; Chen, B.; Yao, B.; He, W. Combining translation-invariant wavelet frames and convolutional neural network for intelligent
tool wear state identification. Comput. Ind. 2019, 106, 71–84. [CrossRef]

http://doi.org/10.1016/j.jmsy.2020.10.017
http://doi.org/10.1155/2021/9913581
http://doi.org/10.1016/S0166-3615(96)00075-9
http://doi.org/10.1016/j.cirp.2019.03.010
http://doi.org/10.1016/j.eswa.2022.118548
http://doi.org/10.1016/j.rcim.2019.101859
http://doi.org/10.1016/j.rcim.2016.05.010
http://doi.org/10.1080/0951192X.2014.1003408
http://doi.org/10.1016/j.ymssp.2006.07.016
http://doi.org/10.1016/j.ymssp.2008.04.010
http://doi.org/10.1016/S0890-6955(00)00112-7
http://doi.org/10.1006/mssp.2001.1460
http://doi.org/10.1016/0924-0136(94)01351-Z
http://doi.org/10.1016/j.measurement.2021.110466
http://doi.org/10.1007/s00170-019-03906-9
http://doi.org/10.1007/s00170-005-0124-8
http://doi.org/10.1115/1.1475320
http://doi.org/10.1007/s00170-007-0948-5
http://doi.org/10.1016/j.rcim.2019.101924
http://doi.org/10.1088/1361-6501/abb7a0
http://doi.org/10.1109/TII.2018.2881543
http://doi.org/10.1016/j.measurement.2021.109329
http://doi.org/10.1007/s10845-022-01954-9
http://doi.org/10.1016/j.compind.2018.12.018

Machines 2023, 11, 94 19 of 19

27. Huang, Z.; Zhu, J.; Lei, J.; Li, X.; Tian, F. Tool wear predicting based on multi-domain feature fusion by deep convolutional neural
network in milling operations. J. Intell. Manuf. 2020, 31, 953–966. [CrossRef]

28. Cheng, M.; Jiao, L.; Yan, P.; Jiang, H.; Wang, R.; Qiu, T.; Wang, X. Intelligent tool wear monitoring and multi-step prediction based
on deep learning model. J. Manuf. Syst. 2022, 62, 286–300. [CrossRef]

29. Bazi, R.; Benkedjouh, T.; Habbouche, H.; Rechak, S.; Zerhouni, N. A hybrid CNN-BiLSTM approach-based variational mode
decomposition for tool wear monitoring. Int. J. Adv. Manuf. Technol. 2022, 119, 3803–3817. [CrossRef]

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, A.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

31. Liu, H.; Liu, Z.; Jia, W.; Lin, X.; Zhang, S. A novel transformer-based neural network model for tool wear estimation. Meas. Sci.
Technol. 2020, 31, 65106. [CrossRef]

32. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence
time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [CrossRef]

33. Zong, C.; Nie, J.; Zhao, D.; Feng, Y. Natural language processing and Chinese computing. Commun. Comput. Inf. Sci. 2012, 333,
262–273.

34. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
35. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
36. Li, W.; Fu, H.; Han, Z.; Zhang, X.; Jin, H. Intelligent tool wear prediction based on Informer encoder and stacked bidirectional

gated recurrent unit. Robot. Comput.-Integr. Manuf. 2022, 77, 102368. [CrossRef]
37. Li, J.; Wang, T.; Zhang, W. An improved Chinese named entity recognition method with TB-LSTM-CRF. In Proceedings of the

2020 2nd Symposium on Signal Processing Systems, Guangzhou China, 11–13 July 2020; pp. 96–100.
38. PHM Society: 2010 PHM Society Conference Data Challenge. Available online: https://www.phmsociety.org/competition/phm/10

(accessed on 31 December 2022).
39. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans.

Ind. Electron. 2017, 65, 5990–5998. [CrossRef]
40. Chan, Y.; Kang, T.; Yang, C.; Chang, C.; Huang, S.; Tsai, Y. Tool wear prediction using convolutional bidirectional LSTM networks.

J. Supercomput. 2022, 78, 810–832. [CrossRef]
41. Qiao, H.; Wang, T.; Wang, P.; Qiao, S.; Zhang, L. A time-distributed spatiotemporal feature learning method for machine health

monitoring with multi-sensor time series. Sensors 2018, 18, 2932. [CrossRef]
42. Liu, H.; Liu, Z.; Jia, W.; Zhang, D.; Wang, Q.; Tan, J. Tool wear estimation using a CNN-transformer model with semi-supervised

learning. Meas. Sci. Technol. 2021, 32, 125010. [CrossRef]
43. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based gated recurrent unit

networks. IEEE Trans. Ind. Electron. 2017, 65, 1539–1548. [CrossRef]
44. Wang, J.; Yan, J.; Li, C.; Gao, R.X.; Zhao, R. Deep heterogeneous GRU model for predictive analytics in smart manufacturing:

Application to tool wear prediction. Comput. Ind. 2019, 111, 1–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10845-019-01488-7
http://doi.org/10.1016/j.jmsy.2021.12.002
http://doi.org/10.1007/s00170-021-08448-7
http://doi.org/10.1088/1361-6501/ab7282
http://doi.org/10.1609/aaai.v35i12.17325
http://doi.org/10.1016/j.rcim.2022.102368
https://www.phmsociety.org/competition/phm/10
http://doi.org/10.1109/TIE.2017.2774777
http://doi.org/10.1007/s11227-021-03903-4
http://doi.org/10.3390/s18092932
http://doi.org/10.1088/1361-6501/ac22ee
http://doi.org/10.1109/TIE.2017.2733438
http://doi.org/10.1016/j.compind.2019.06.001

	Introduction
	Model Theory
	Scaled Dot-Product Attention
	Prob-Sparse Self-Attention
	Informer Encoder
	Multi-Head Attention
	Position-Wise Feedforward Networks
	Residual Connections and Layer Normalization

	Distilling Layer
	Bi-Directional Long Short-Term Memory

	Methods: The IE-Bi-LSTM Model
	Experimental Results
	Dataset Descriptions
	Data Preprocessing
	Experimental Environment and Hyperparameter Configuration
	Experimental Environment and Hyperparameter Configuration
	Experimental Results and Analysis
	Model Module Analysis

	Conclusions and Future Work
	References

