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Abstract: Herein, to accurately predict tool wear, we proposed a new deep learning network—that
is, the IE-Bi-LSTM—based on an informer encoder and bi-directional long short-term memory. The
IE-Bi-LSTM uses the encoder part of the informer model to capture connections globally and to
extract long feature sequences with rich information from multichannel sensors. In contrast to
methods using CNN and RNN, this model could achieve remote feature extraction and the parallel
computation of long-sequence-dependent features. The informer encoder adopts the attention
distillation layer to increase computational efficiency, thereby lowering the attention computational
overhead in comparison to that of a transformer encoder. To better collect location information while
maintaining serialization properties, a bi-directional long short-term memory (Bi-LSTM) network
was employed. After the fully connected layer, the tool-wear prediction value was generated. After
data augmentation, the PHM2010 basic dataset was used to check the effectiveness of the model. A
comparison test revealed that the model could learn more full features and had a strong prediction
accuracy after hyperparameter tweaking. An ablation experiment was also carried out to demonstrate
the efficacy of the improved model module.

Keywords: tool-wear prediction; deep learning; informer; bi-directional long short-term memory

1. Introduction

The year 2025 will see the implementation of smart manufacturing; the traditional
manufacturing industry has been gradually upgrading to intelligent manufacturing, and
an increasing number of intelligent machines and pieces of equipment are being used in
the manufacturing industry [1]. Tool-wear condition during machining is an essential
element in guaranteeing the dependability and stability of the manufacturing process [2].
Previous studies have shown that the downtime of a machine tool caused by severe tool
wear accounts for 15–40% of its total downtime, with the actual service time of the tool
only accounting for 60–80% of its full service life [3]. Early warnings of tool wear can
lead to higher production costs, lower profits, and wasted productivity [4]. Nonetheless,
tool-condition monitoring can be expected to reduce machine downtime by up to 75%,
and by simply offering useful tool-usage advice, productivity can be increased by at least
65% [5]. Therefore, it is crucial to accurately predict the tool-wear state in order to ensure
production quality, to cut costs, to boost productivity, and to prevent serious safety incidents.
Widespread interest in the field of tool-condition monitoring research has been sparked by
the advent of data-driven models, made possible by the rapid advancement of artificial
intelligence and big data.

Direct measurement [6] and indirect measurement [7] techniques can be used to
monitor tool wear. Direct measurement methods cannot obtain real-time detection. Conse-
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quently, with the development of advanced sensor technology, most methods today involve
indirect measurements, collecting relevant data through one or more sensors, such as Hall,
acceleration, cutting force, and acoustic emission sensors.

By building an appropriate data-driven model, it is possible to establish the mapping
link between the measurement data and the tool-wear condition. Traditional machine learn-
ing techniques have been employed in past studies to forecast tool wear. Machine learning
techniques can be used to determine the nonlinear mapping relationship between cutting
signals and tool wear. These algorithms comprise the support vector machine (SVM) [8,9],
the hidden Markov model (HMM) [10–12], the artificial neural network (ANN) [13,14], the
random forest, and the Gaussian process regression (GPR) algorithms [15].

For example, support vector machines and the gray wolf optimization algorithm were
used by Liao et al. to predict tool wear [16]. Dong et al. [17] used Bayesian support vector
machines to extract features from force signals for tool-wear forecasts. Wang et al. [18] used
an HMM to monitor tool wear during machining. Palanisamy et al. [19] used regression
mathematics and an ANN to monitor tool wear. However, the extraction of these statistical
traits necessitates expert knowledge and abilities in the relevant domains. In the age of
manufacturing powered by big data, with the ensuing explosive growth in monitoring data,
it has become difficult for engineers to manually extract features from the massive volumes
of raw data. These experience-based feature extraction algorithms are still challenging [20].
Additionally, the traditional method model is small in scale and weak in generalization
ability, making it difficult to adapt to complex and changeable processing scenarios. As a
result of rapid computer science and technology improvements, deep learning methods are
now widely used in many different industries. With a strong generalization ability, deep
learning is suitable for processing massive volumes of original data and can adaptively
extract the relevant features from training data. Therefore, tool-wear state identification
combined with deep learning models has become a hot topic in the industry and has
attracted wide attention.

Currently, tool-wear status monitoring based on deep learning includes the use of
recurrent neural networks (RNNs) [21], convolutional neural networks (CNNs) [22], and
autoencoders (AEs) [23]. The RNN model uses a shared parameter network in which
all network parameters are shared across all time steps by scanning the input data such
that each time step has access to both the current time’s input and the past time’s output,
enabling the model to successfully use past input information to assist it during the current
time. For example, the long short-term memory network (LSTM) was used by Marani et al.
to track tool-wear status [24]. Zhang et al. used densely connected CNNs and gated RNNs
to monitor tool-wear condition [25]. Using convolution and pooling layers, the CNN
model can extract and screen the sensitive features hidden in an input feature map and
use them to achieve a preset goal. For example, Cao et al. [26] used a two-tree complex
wavelet transform and a CNN to accurately determine the degree of tool wear. Cutting
force and vibration data were used by Huang et al. [27] to extract time-domain, frequency-
domain, and time-frequency domain features and to develop CNNs in order to achieve
tool-wear prediction.

Currently, the combination of CNN- and RNN-based models is the method of choice
in the field of tool-wear monitoring. For example, for the purpose of tool-condition
monitoring, Cheng et al. [28] developed a parallel CNN structure with several layers,
which was then followed by bi-directional long short-term memory (Bi-LSTM). According
to the 1D-CNN and Bi-LSTM models, Bazi et al. [29] used a combination of CNN and
Bi-LSTM models for tool-condition monitoring. Both models showed strong temporal
and spatial feature extraction capabilities, but they still exhibited several shortcomings in
the face of long input-sequence prediction scenarios. Models such as CNN-based models
generally solve the problem of long-distance feature capture by stacking convolutional
layers; however, this approach cannot ensure that the model effectively extracts long-
distance features, and the computational efficiency may suffer from the large number of
model parameters.
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RNN-based models—such as the LSTM and GRU—have achieved good results in sce-
narios with a limited input range, but they are restricted by the RNN’s sequence-dependent
structure, which can make it hard for the RNN to career progression parallel computing
ability. At present, the modification of CNN- and RNN-based models—including the
introduction of residual structures, attention mechanisms, and multi-scale fusion—can
improve their performance to a certain extent, but the characteristics of the network model
limit their ability to establish long-distance time-series features.

In view of the shortcomings of CNN- and RNN-based models, a transformer model
was proposed by Vaswani et al. [30]. The entire network structure of the transformer model
comprises an attention mechanism and a feedforward neural network. The transformer
model has been a great success in natural language processing, effectively solving the
long-sequence prediction problem. As a consequence, it has been employed by numerous
academics in the field of fault diagnosis and prediction. For instance, Liu et al. [31] proposed
a transformer-based model of neural networks for tool-wear monitoring. However, the
transformer was composed of multiple self-attention stacks, too many of which could lead
to too many variables consuming too much memory. In addition, self-attention, one of
the transformer’s essential elements, doubles each layer’s computational difficulty as the
length of the sequence increases via the dot-product operation.

In response to these problems, Zhou et al. [32] proposed the informer model, which
uses the prob-sparse self-attention mechanism to reduce the complexity of the dot-product
calculation from quadratic to linear growth, thus reducing computational complexity.
Moreover, when the input sequence is long, information may not be very concentrated.
Zhou et al. concentrated on and distilled sparse information to reduce memory usage.
Based on the characteristics of the informer model, long time-series feature extraction in
tool-wear monitoring can be realized using an informer encoder.

To accomplish the global feature extraction of long-sequence monitoring data and the
local feature dependence augmentation of long-distance monitoring data, in this paper, a
deep learning network model (IE-Bi-LSTM) was developed using an informer encoder, and
the Bi-LSTM module was proposed. First, the model was used to extract the long-term
feature sequence with rich information from multichannel sensors before the Bi-LSTM
network was used to enhance the ability to capture location information in order to enhance
the dependence relationship between the long-term features. The experimental findings
demonstrate that the IE-Bi-LSTM model performed well.

This paper’s primary contributions can be summarized as follows:

1. This study proposed a new and effective tool-wear monitoring and evaluation method.
This is the first time that a combination of an informer encoder and the Bi-LSTM
model has been used for tool-wear monitoring. The experimental results show that
this method is superior to other methods in terms of related evaluation indexes.

2. The informer encoder was employed as the global feature extractor for multichannel
long-term feature sequences, and computational efficiency was enhanced by employ-
ing sparse self-attention.

3. The Bi-LSTM module was used to enhance the ability to capture the feature depen-
dence of long-distance time series.

The remainder of this essay is structured as follows: The main idea behind the sug-
gested model module is introduced in Section 2. The proposed method is explained in
Section 3. The experimental findings are summarized in Section 4. The pertinent conclu-
sions are summarized in Section 5.

2. Model Theory

To gather pertinent signals for this study, cutting force, vibration, and acoustic emission
sensors are used. Corresponding data-driven models are created to ascertain how these
signals relate to tool wear. Thus, the IE-Bi-LSTM model is proposed, comprising the
informer encoder and Bi-LSTM modules. The following sections introduce the details of
the two modules.
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2.1. Scaled Dot-Product Attention

Figure 1 depicts the scaled dot-product attention structure. Scaled dot-product attention
is the main element of the transformer model proposed by Vaswani et al. [30].
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The scaled dot-product attention can be expressed as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

Assuming that the input node is x, the input will be mapped to a f (x) of the input
embedding before being transformed to the corresponding Q, K, and V values through the
transformation matrices wq, wk, and wv, respectively, where Q, K, and V denote the query,
key, and values, respectively, and d denotes the length of vector K. Finally, the weight of the
corresponding attention can be obtained using Equation (1). However, when the length of
the input sequence increases, the double-dot-product operation, which is the primary flaw
in its capacity for prediction, causes the computational overhead to increase significantly.
This is the primary drawback of its ability to anticipate. Scaled dot-product attention has
a long tail distribution at its output, meaning that only a small subset of dot products
warrants any real consideration.

2.2. Prob-Sparse Self-Attention

To solve the self-attention problem, Zhou et al. [32] proposed using a probabilistic
self-attention method, the structure of which is shown in Figure 2.
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According to Zhou et al., scaled dot-product attention has a long tail distribution at its
output, meaning that only a small subset of dot products warrants any real consideration.
The dissimilarity between the two distributions can be evaluated with the help of Kullback–
Leibler divergence [33], and the main dot-product pairs can be screened out, with the
evaluation of the ith query sparsity being obtained as follows:

M(qi, K) = ln
Lk

∑
j=1

e
qikT

j√
d − 1

LK

LK

∑
j=1

qikT
j√
d

(2)

The first term denotes the log-sum-exp of qi on all keys, with the second term being
their arithmetic mean. To avoid memory bottlenecks caused by traversing all key-value
pairs and potential numerical stability problems in the LSE operations, an empirical ap-
proximation of the maximum mean measurement based on Equation (3) is proposed:

M(qi, K) = maxj

{
qik
>
j√
d

}
− 1

LK

LK

∑
j=1

qik
>
j√
d

(3)

Prob-sparse self-attention can be used for dot-product calculation by randomly sam-
pling log L points instead of selecting the entire L for calculation. The sparsity score M(qi, K)
of each query can then be calculated, with u queries being selected from among all the
sparsity scores. Thus, to determine the outcomes of the attention mechanism, we only need
to compute the dot-product results of the top u query-key pairs. We directly replace the
remaining query-key pairs with the mean M(qi, K) of the input of the self-attention layer.
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This ensures that each prob-sparse self-attention layer has an input and an output sequence
length of L, with the calculation method of u being expressed as follows:

u = c× ln L (4)

where c denotes a constant sampling factor.
Based on the maximum mean measurement, probabilistic self-attention can be achieved

by allowing only u major query vectors to be focused on per key, which is expressed as follows:

Proattention(Q, K, V) = Softmax

(
QK>√

d

)
V (5)

2.3. Informer Encoder

The structure of the informer encoder is shown in Figure 3, comprising a prob-sparse
self-attention module and a distilling module. Among them, the prob-sparse self-attention
module includes the multi-head sparse attention mechanism module, the residual con-
nection, the position feedforward network component (FFN), and layer normalization
(LN) [34], which are followed by each module. The convolution and maximum pooling
layers make up the distillation module. The sections that follow provide descriptions of
the primary modules.
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2.3.1. Multi-Head Attention

The multi-head attention mechanism is introduced to improve the attention layer’s
performance in two areas. To begin, it broadens the model’s capability of concentrating on
a variety of regions. Second, it provides multiple “presentation subspaces” for the attention
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layer. The model can learn information in various presentation subspaces. Figure 4 depicts
the multi-head self-attention module’s construction.
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A linear transformation is initially applied to Q, K, and V in the linear layer. The
self-attention layer is then fed the outcome of the linear transformation. The output values
are connected in series, and then a linear transformation is applied to determine the final
result. The results can be obtained using Equations (6) and (7) as follows:

MultiHead(Q, K, V) = Concat (head1, . . . , headh)WO (6)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, (7)

where WQ
i ∈ Rdmodel ×dk , WK

i ∈ Rdmodel ×dk , and WV
i ∈ Rdmodel ×dv denote the parameter

matrices, and WO ∈ Rhdv×dmodel denotes the weight matrix. dk and dv represent the size of
the Key and Value matrices, respectively. dk = dv = dmodel/h.

2.3.2. Position-Wise Feedforward Networks

Position-wise feedforward networks (FFNs) are fully connected feedforward networks
in which the output of each model passes through the same feedforward neural network
separately. It comprises two linear transformations—that is, two fully connected layers.
The GELU activation function is the activation function of the first fully linked layer [35],
which can be shown as follows:

FFN(R1) = Conv1d(GELU(Conv1d(R))) (8)

where GELU denotes a nonlinear activation function, and R indicates the result of the prior
module [36].

2.3.3. Residual Connections and Layer Normalization

In the informer encoder, each sublayer of each encoder—that is, the self-attention and
FFN layers—has a residual join, followed by a layer standardization operation, as shown
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in Figure 3. The addition of residual connections preserves the original information and
prevents gradient disappearance. The normalization term scales the summed input when
the LN is introduced, increasing the stability of the model during training and inference [37].
It also performs a normalizing role, which aids in accelerating the training process and
accelerating convergence. The issues with vanishing and exploding gradients are also
avoided by using LN layers. The calculation of R2 can be expressed as follows:

R2 = LayerNorm(R1 + FFN(R1)) (9)

2.4. Distilling Layer

When the input sequence is too long, only the top u queries are selected in the above
probability attention for dot-product operation to form Q-K pairs, whereas other Q-K pairs
are set to average values. To solve the problem of information redundancy, a distillation
layer is introduced at the end of the encoder, as shown in Figure 5. The introduction of
a distillation layer highlights the main features, reduces the spatial complexity of long-
sequence inputs, avoids the loss of information, and improves efficiency.
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This module consists of the Conv1d, batch normalization, ELU activation, and the
maximum pooling (MaxPool) operations. The “distillation” from the jth layer to the (j + 1)th
layer can be expressed as follows:

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

[
Xt

j

]
AB

))
(10)

2.5. Bi-Directional Long Short-Term Memory

The problem of gradient vanishing occurs while the RNN is in the process of back
propagation. This problem can cause the RNN to forget what it has learned in a long
sequence, which can cause the RNN to malfunction. However, the primary structure of an
LSTM is very similar to that of an RNN. The main difference is that an additional cell state
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and three gate structures are added to the hidden layer. These gate structures are known as
the forget gate, the input gate, and the output gate. Figure 6 provides an illustration of the
fundamental idea behind the LSTM hidden layer construction.
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Through the forget control gate, the inputs ht−1 and xt are read, and then f (t) is
obtained using the signal function layer. The inputs ht−1 and xt travel through the signal
function layer and the tanh function layer, respectively, in the input control gate to obtain
i(t) and at. In the output control gate, the inputs ht−1 and xt obtain o(t) through the signal
function layer. Then, the precise mathematical procedure can be stated as follows:

f (t) = σ
(

W f ht−1 + U f xt + b f

)
(11)

i(t) = σ(Wiht−1 + Uixt + bi) (12)

a(t) = tanh(Waht−1 + Uaxt + ba) (13)

o(t) = σ(Woht−1 + Uoxt + bo) (14)

tanh(x) =
1− e−2x

1 + e−2x (15)

σ(x) =
1

1 + e−x (16)

W f , Wi, Wo, and Wa indicate the forgetting gate, input gate, and output gate weight
coefficients. U f , Ui, Uo, and Ua are used to express the weight coefficients of the forgetting
gate, input gate, output gate, and feature extraction method, respectively. b f , bi, bo, and ba
represent the offset values of the forgetting gate, input gate, and output gate in the feature
extraction process.

We acquire the final output c(t) using c(t− 1)× f (t), which indicates the discarding
of the rejected information that we confirmed in the old information, and i(t)× a(t), which
indicates the information that needs to be updated. The particular computation procedure
can be stated as follows:

c(t) = c(t− 1)× f (t) + i(t)× a(t) (17)
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The output gate o(t) at the present time can be used to determine the hidden layer
state h(t) at time t as follows:

h(t) = o(t)× tanh(c(t)) (18)

The structural architecture of the Bi-LSTM neural network can be separated into
two independent LSTM networks. The input sequences are processed by the two LSTM
networks to extract features, one in the forwards direction and one in the backwards
direction. The final feature expression of the word can be the word vector created by
splicing the two output vectors. Figure 7 depicts the construction of the Bi-LSTM model.
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The Bi-LSTM model’s goal is to make it possible for the feature data collected at time
t to include information about both the past and the future. Previous experiments have
shown that the efficiency and performance of this neural network structure for text feature
extraction are better than those of a model with a single LSTM structure.

3. Methods: The IE-Bi-LSTM Model

The model proposed in this paper comprises data preprocessing, the IE-Bi-LSTM
model, and a fully connected output layer. Based on the characteristics of the model given
in this study, it is critical to examine the influence of historical information on tool wear.
As a result, the entire initial signal is segmented using the sliding window function and
then divided into training, verification, and test datasets. Three temporal features—the
maximum, average, and variance values—for each channel are collected from each segment.

Figure 8 depicts the network structure and training procedure. The IE-Bi-LSTM model
includes an informer encoder, the Bi-LSTM module, and a transport layer. After data
preprocessing, a two-dimensional tensor is produced, which is utilized as the model’s
input. The model, which is embedded with position coding, is then input into an informer
encoder to extract the long time-series features. The extracted long series features can then
be input into the Bi-LSTM module to enhance the long-distance time feature information,
after which regression is carried out using the full connection layer. During training, the
model weights and biases are updated using back propagation, with the mean square error
serving as the loss function.
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4. Experimental Results
4.1. Dataset Descriptions

To verify the validity of the IE-Bi-LSTM model, the PHM2010 dataset [38] was used
for model training and validation. The PHM2010 tool-wear dataset is available in the
Data Availability Statement at the end of this article. The experimental system structure
is shown in Figure 9. During the experiment, a Kistler quartz three-component platform
dynamometer, a Kistler Piezoelectric acceleration sensor, and a Kistler AE sensor were
used to collect X, Y, Z three-axis cutting force, three-axis vibration signal, and acoustic
emission signal, respectively. The experiment used 6 mm three-flute ball carbide milling
cutters for dry milling along the horizontal direction. The main equipment and process
parameters are shown in Tables 1 and 2. In the experiment, three milling cutters (C1, C4,
and C6) of the same material were used under the same experimental conditions. Each
milling cutter was subjected to 315 experiments under the same working conditions, each
milling experiment took about 4 s, and the signals collected by each sensor were recorded
in datasets. Therefore, about 200,000 measurement signals could be obtained per milling
experiment per tool. Finally, the three cutters, C1, C4, and C6, were measured using a
microscope after each milling, and the wear amount corresponding to each blade of the
milling cutter was flute1-3. The wear measurement accuracy was 10−3 mm.

Table 1. Main equipment of the experimental setup.

Equipment Type

CNC milling machine Roders Tech RFM760
Dynamometer Kistler 9265B

Charge amplifier Kistler 5019A
Acoustic emission sensor Kistler AE sensor

Cutters 3-flute ball carbide milling cutters
Data acquisition card DAQ NI PCI 1200

Abrasion measuring apparatus LEICA MZ12 microscope
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Table 2. Experimental processing parameters.

Parameter Value

Spindle 10,400/(r/min)
Feed rate 1555 (mm/min)

Depth of cut (y direction, radial) 0.125 (mm)
Depth of cut (z direction, axial) 0.2 (mm)

Sampling rate 50 (KHz)
Workpiece material Stainless steel (HRC52)
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4.2. Data Preprocessing

When attempting to improve the model’s generalization capabilities, the deep learning
process might result in a complicated network topology, resulting in a high number of
model hyperparameters that must be trained. Consequently, the training dataset must have
a large sample size. When the sample size is small, the deep learning network is prone
to overfitting. Therefore, to ensure satisfactory training, it was necessary to enhance the
original data of the collected data samples. Here, we introduced the average sampling
enhancement method (ASA) [39], which enhanced the target signal samples by evenly
collecting the signal segment of the target length through a sliding window in the target
signal. After signal preprocessing, each new sample was used as an input to the deep
learning model.

Because of the damage to the cutting force signal in the x-direction, data from the other
six channels were used in this experiment. As shown in Figure 10, the data preprocessing
operations were performed sequentially. First, the entire sequence was decomposed using
the sliding window method along the direction of the time dimension. The maximum,
average, and variance values were then extracted from each channel and connected to form
the feature data sample. The size of the feature data sample was R120×18. The model input
xi was then obtained through normalization along the direction of the time series, with
the model converging quickly through the normalization operation. The wear label was
chosen based on the maximum value of the three wear surfaces for safety concerns. After
data preprocessing, the C1 dataset included 57,529 sets of data, the C4 dataset included
58,449 sets of data, and the C6 dataset included 57,485 sets of data. Finally, cross-validation
was used to select two datasets as the training and verification datasets, with the remaining
dataset being the test set. The ratio of the training dataset to the validation dataset was 4:1.
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4.3. Experimental Environment and Hyperparameter Configuration

Personal desktops, with Intel Core i9 11900k CPU, 128 GB of memory, NVIDIA RTX
3090 GPU, and 24 GB of video memory, were used for the experimental platform. For this
study, we built a Pytorch deep learning framework on a Windows 10 operating system.
Python was used to create the program code and call the necessary libraries, including
CUDA and CUDNN, using the software environments CUDA 10.1, CUDNN 7.6, and
Python3.8. In this way, we effectively trained and tested the firefighting robot flame
recognition model.

The deep learning network model effect might be positive or negative, depending on
the hyperparameters used. The batch size, dropout rate, and learning rate were the primary
hyperparameters in the IE-Bi-LSTM model. The number of heads in the multi-head self-
attention mechanism was another important hyperparameter (H). These hyperparameters
were changed based on the model’s performance on the verification dataset, with the
hyperparameter with the lowest loss value chosen as the default parameter. The Adam
optimizer was used during the model training [22]. L2 regularization and discarding,
among other techniques, were used to prevent overfitting during model training. Table 3
lists the specific hyperparameter settings.

Table 3. Hyperparameter settings.

Parameters Learning Rate Epoch Batch Size Dropout

Values 0.001 100 32 0.2
Parameters Warmup FC neurons H Activation

Values 20 64/64/1 3 ReLu
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4.4. Experimental Environment and Hyperparameter Configuration

The IE-Bi-LSTM model’s evaluation indices used in this work were the mean absolute
error (MAE) and the root mean square error (RMSE), whose formulas are as follows:

MAE =
1
n

n

∑
i=1
|yi − fi| (19)

RMSE =

√
1
n

n

∑
i=1

(yi − fi)
2, (20)

where yi denotes the ith predicted value, and fi denotes the ith true value. The smaller
the MAE and RMSE values, the more effective these evaluation indices are in tool-wear
prediction applications. Consequently, we compared these evaluation indices with other
published results.

4.5. Experimental Results and Analysis

In order to make the experiment more objective, each experiment was carried out
10 times under the same conditions, and the average value of the 10 experimental results
was taken as the final result. The IE-Bi-LSTM model obtained good results in terms of the
corresponding evaluation indicators.

The associated experimental findings are shown in Figure 11, together with the pro-
jected and actual tool-wear values, as well as the difference between the two. The projected
tool surface wear curve is essentially compatible with the actual tool surface wear curve,
and the majority of the errors are contained within a narrow range, which supports the
model’s validity.

It can be seen in Figure 11 that the wear amount of the tool increases rapidly at the
initial stage, and then the wear rate slows down. This is because the tool wear process can
be divided into three stages, namely, the initial wear stage, the normal wear stage, and the
sharp wear stage. In the initial wear stage of the tool, the newly sharpened tool has just
been put into use, the actual contact area between the flank and the workpiece is small, the
positive pressure per unit area is relatively large, and the surface roughness of the tool is
rough or the surface structure of the tool is not wear-resistant, so the wear is faster in a
short time when cutting starts. In the normal wear stage of the tool, after the initial wear,
the contact area between the tool flank and the workpiece increases, the pressure on the
unit area gradually decreases, and the microscopic rough surface of the tool flank is ground,
so the wear speed slows down.

It can also be seen in Figure 11 that, in the initial stage, the error between the predicted
value and the real value is large. This is because, in the early stage, the tool wear amount is
small, and the IE-Bi-LSTM model learns fewer features. As the amount of wear increases,
more features are learned by the IE-Bi-LSTM model, so the error between the predicted
value and the real value decreases. In the final stage of increased tool wear, the error between
the predicted value and the real value increases, because the signal collected by the sensor
includes more noise, which affects the accuracy of the IE-Bi-LSTM model prediction.

This study compared the results of the IE-Bi-LSTM model with those of several classical
methods and contemporary methods using the same dataset to further demonstrate the
model’s usefulness and superiority. The MAE and RMSE values for the three tools used
with these models are listed in Table 4.

As is evident in Table 4, the proposed model achieves optimal results in comparison
with the other models, indicating that the IE-Bi-LSTM model performs well on the PHM2010
dataset, proving the effectiveness of the model.
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Table 4. Performance comparisons with other models.

Models Datasets

C1 C4 C6
MAE RMSE MAE RMSE MAE RMSE

RNN [21] 13.1 15.6 16.7 20 25.5 32.91
Bi-LSTM [40] 12.8 14.6 10.9 14.2 14.7 17.7

CNN-LSTM [41] 11.18 13.77 9.39 11.85 11.34 14.33
Deep-LSTM [21] 8.3 12.1 8.7 10.2 15.2 18.9

HLLSTM [40] 6.6 8 6 7.5 7.1 8.8
TBNN [31] 4.294 6.116 / / 7.772 9.553
CTNN [42] 3.634 5.358 / / 7.531 9.209

LF-GRU [43] 4.2 5.4 6.9 8.3 5.8 8.2
DH-GRU [44] 3.7 4.66 7.07 8.73 5.08 6.94

IE-SBIGRU [36] 3.694 5.056 5.189 6.884 3.398 4.527
Proposed model 2.68 3.23 3.09 3.91 3.37 4.27

4.6. Model Module Analysis

Because the IE-Bi-LSTM model improved based on its integration of the informer
model, to understand the performance of the modules in the IE-Bi-LSTM model, a com-
parative test was conducted. We designed three models with an architecture similar to
that of the proposed model, all of which had similar hyperparameters. Scaled dot-product
attention was utilized in Model 1 in place of prob-sparse self-attention, and the distillation
layer was eliminated in Model 2. As a result of Model 2, the encoder had a fixed sequence
length. The Bi-LSTM layer was deleted in Model 3. The comparison results are shown in
Figure 12.

In terms of the key performance measures, the comparative results in Figure 12 reveal
that the IE-Bi-LSTM model outperforms the other three models. Compared with Model
1, the IE-Bi-LSTM model with the integrated prob-sparse self-attention method achieves
the best results in terms of the MAE and RMSE values. Because dot-product attention
necessitates the calculation of all key-value pairs, the model’s computational cost rises.
Similarly, in the actual tool-wear application scenario, this calculation method can lead to
the retention of a large volume of redundant information. These factors make the model
ineffective for extracting tool-wear features. The addition of the distillation layer increases
the model’s computational efficiency and prediction accuracy when compared to those
of Model 2. Compared with Model 3, it is evident that the single-informer model cannot
effectively predict tool wear, and its prediction ability is limited.
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5. Conclusions and Future Work

To make more precise tool-wear predictions, a new model based on an informer model
was developed in this work. The proposed model makes two major contributions to the
literature. First, it combined the informer model with the Bi-LSTM model for the first time,
making relevant improvements for specific tool-wear prediction scenarios. For example,
prob-sparse self-attention was used to reduce the computational complexity of the model
to O(LlogL), and it was introduced to enhance the position relationship between long-
distance features. Furthermore, the efficacy of the suggested model was demonstrated
in experiments using the PHM2010 dataset. Additionally, ablation experiments were
conducted to study the effectiveness of each improved module in predicting tool wear.

Future research could examine how different spindle and feed mechanisms in CNC
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further improve the predictive performance of tool wear. Moreover, we could further study
the practical applications of a multitask method in tool-wear prediction.
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