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Abstract: Applying bionic airfoils is essential in enlightening the design of rotating machinery and
flow control. Dynamic mode decomposition was used to reveal the low dimensional flow structure
of Riblets, Seagull, and Teal bionic airfoils at low Reynolds numbers 1 × 105 and is compared with
NACA4412 airfoils. The attack angle of the two-dimensional airfoil is 19◦, and the SST k-ω turbulence
model and ANSYS fluent were used to obtain the transient flow field data. The sparse identification
of nonlinear dynamics reveals the nonlinear correlation between modal coefficients and establishes
manifold dynamics. The results show that the bionic airfoil and NACA4412 airfoil have the same
type of nonlinear correlation, and the dimension and form of the minimum reduced-order model
are consistent. The modal coefficients always appear in the manifold equation in pairs with a phase
difference of 90◦. The dimension of the manifold equation is two-dimensional, and the absolute
value of the coefficient corresponds to the fundamental frequency of airfoil vortex shedding. The
reconstructed flow field based on the manifold equation is highly consistent with the numerical
simulation flow field, which reveals the accuracy of the manifold equation. The relevant conclusions
of this study emphasize the unity of the nonlinear correlation of bionic airfoils.

Keywords: bionic airfoil; nonlinear correlation; dynamic mode decomposition; reduced-order model;
sparse identification of nonlinear dynamics; manifold equation

1. Introduction

Civil or military equipment such as small wind turbines, micro air vehicles, and
un-crewed aerial vehicles are operating at a low Reynolds number of 105 [1–3]. Airfoil
stall and boundary layer separation may occur when the equipment is started at low wind
speed and operated at high wind speed. The airfoil will generate less lift and more drag far
from the separation point [4], and the unstable characteristics of the airfoil wake will cause
structural vibration [5]. These highly nonlinear transient flows will significantly reduce
the aerodynamic performance and even shorten the fatigue life of the equipment [6,7]. The
nonlinear dynamics of airfoil stalls [8] have been a broad concern, and many studies have
been used to delay airfoil stalls [9–11], predict the unstable behavior of separation [12],
and operate under off-design conditions [13]. The ongoing learning and imitation of
human beings from the biological world have promoted the rapid development of bionics,
especially the development of bird wing kinematics. Bionic airfoils are applications of
bionics to airfoils and inspired new ideas in airfoil design and flow control [14]. Therefore,
it is essential to fully understand the nonlinear characteristics of the bionic airfoil stall to
improve the airfoil performance.

Nature provides an endless treasure trove of inspiration for scientists and engineers in
different fields [15–17]. After competition and evolution for survival, many animals have
developed unique and superior flying or swimming skills, such as the silent flight of owls
and the maneuverability of humpback whales. The flow and noise reduction mechanisms
of biomimetic structures (sawtooth [18–20], wavy [21–23], and protuberance [24–26]) have
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been extensively studied. Pereira [27] conducted detailed measurements of the flow field
and pointed out that the serrated trailing edge structure would significantly reduce the
transport velocity of turbulent eddies. The spanwise correlation of wall pressure pulsations
would also be reduced. Wang et al. [28] pointed out that the leading edge sawtooth
bionic airfoil can be reduced by 14.3 dB compared to NACA0012. Li [29] et al. studied the
aerodynamic characteristics of multi-protrusion airfoils and found that when the protrusion
spacing is 0.25 times the chord length, the lift-to-drag ratio can be increased by 5% to 15%.
The spaced and non-spaced double-protrusion airfoils show two-stage and one-side stall
characteristics, respectively. The multi-protrusion airfoil still shows good lift characteristics
at large angles of attack. Huang [30] et al. constructed a bionic airfoil with the leading-edge
shape of the NACA0018 airfoil by imitating the shape of the dolphin head. When the
airfoil attack angle was 16◦ and the deflection angle of the dolphin head was 24◦, the lift
coefficient can be increased by 21.1%, and the drag coefficient can be decreased by 29.8%.

The biomimetic shape of the airfoil has also received extensive attention besides the
derived structures. Liu [31] measured the surface geometry of bird wings of a seagull,
merganser duck, teal, and long-eared owl through a 3D laser scanning system and extracted
geometric characteristics such as arc and thickness distribution, which provided informa-
tion for the development and application of bionic airfoils. The seagull airfoil [32] has a
higher lift-to-drag ratio and improves flow separation, which is more suitable for the blade
design of small wind turbines than the NACA4412 airfoil. Li [33] et al. pointed out that
the bionic airfoil composed of 40% of the cross-section of the long-eared owl slows down
the range of vortex shedding by increasing the distance between the center of the vortex
and the wall [34]. Zargar et al. [35] analyzed flow patterns and aerodynamic performance
with different riblet airfoils in combination with particle image velocimetry. Although the
flow mechanism of bionic airfoils has been reported in detail and many engineering appli-
cations have been implemented, the difference and unity of nonlinear dynamics have yet
to be revealed.

Recently, modal analysis methods such as proper orthogonal decomposition (POD) [36]
and dynamic mode decomposition (DMD) [37] have been used to reveal the low-dimensional
structures of complex flows such as airfoils and to build reduced-order models. For
example, significant success has been achieved in analyzing the dynamic stall
phenomenon of airfoils [38–40]. The mode reflects the low dimensional characteristics of
complex flow in space, and the mode coefficient represents the evolution law of the mode.
Callaham et al. [41] exploited nonlinear correlations in modal coefficients to identify po-
tential attractors and model interpretable dynamical systems. They show that the quasi-
periodic shear cavity flow evolves on the torus produced by two independent Stuart-
Landau oscillators, which is vital for revealing the physics of complex flows. Although
many mechanism studies have been performed on bionic airfoils such as owls and seag-
ulls, there is a lack of perspective to analyze the complex flow of bionic airfoils from the
perspective of modal coefficients.

This study aims to construct an interpretable reduced-order model using the DMD
modal coefficients of the airfoil and compare the differences between the NACA4412,
Riblets, Seagull, and Teal airfoil. The minimum order manifold dynamics are further
established based on the nonlinear correlation between the modal coefficients.

In the second part, the numerical simulation results of the NACA4412 airfoil are
compared with the experiments to verify the accuracy of the numerical method, and the
airfoil flow field data at an attack angle of 19◦ are further obtained. In Section 3, the
DMD is briefly introduced, and the randomized dependence coefficient (RDC) between the
main modes of the airfoil and the modal coefficients are shown. In Section 4, the sparse
identification of nonlinear dynamics (SINDy) proposed by Burunton et al. [42] is briefly
introduced, and a two-dimensional manifold dynamics equation is constructed based on
non-linear correlation. The main conclusions of this study are given in Section 5.
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2. Test Case
2.1. Geometric Construction

This study mainly refers to the study of Liu et al. [31] to construct a biomimetic
airfoil. The profile distribution of the upper and lower surfaces of the bionic airfoil can
be obtained from the mid-arc line Zu and the thickness distribution relationship Zt. The
control equation for the corresponding profile is:

Zu = Zc + Zt
Zd = Zc − Zt

(1)

The relationship between the mid-arc line and the thickness distribution is mainly
determined by the maximum camber Zc,max and the maximum thickness Zt,max of
the airfoil:

Zc
c = Zc,max

c η(1− η)
3
∑

n=1
Sn(2η− 1)

n−1

Zt
c = Zt,max

c

4
∑

n=1
An
(
ηn+1 −√η

) (2)

where η = x/c is the normalized chordwise coordinate. The x and c are the coordinates
and chord length of the airfoil, respectively. The Sn and An are the coefficients describing
the bionic airfoil, as shown in Table 1. The chord length c of the airfoil in this study is
one meter.

Table 1. Coefficient distribution of bionic airfoil.

Coefficient Seagull Teal

S1 3.8735 3.9917
S2 −0.807 −0.3677
S3 0.771 0.0239
A1 −15.246 1.7804
A2 26.482 −13.6875
A3 −18.975 18.276
A4 4.6232 −8.279

The fitting relationship between the maximum camber Zc,max and the maximum
thickness Zt,max of the bionic airfoil is:

Zmax

c
=

a
1 + bχd (3)

where χ is the airfoil aspect ratio. As shown in Table 2, a, b and d are all coefficients
describing the maximum camber and thickness. The subscripts c and t denote the maximum
camber and maximum thickness, respectively.

Table 2. Coefficient distribution for maximum camber and thickness.

Coefficient Seagull Teal

ac 0.14 0.11
at 0.1 0.05
bc 1.33 4
bt 3.54 4
dc 1.4 1.4
dt 1.4 1.4

The 40% spanwise direction of the bionic airfoil was selected, and the shape of the
bionic airfoil obtained by coefficients such as mid-arc and thickness is shown in Figure 1.
The shapes of the three airfoils are pretty different, with the NACA4412 airfoil looking fat,
the seagull airfoil being curved, and the teal airfoil being thin.
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Figure 1. The geometry of the bionic airfoil (NACA4412, Riblets, Teal, and Seagull).

In addition to comparing the unity of airfoil ROMs with different geometric structures,
this study also emphasizes the unity of the nonlinear correlation of riblet micromachined
surfaces on airfoils. Figure 1 shows the riblets of the NACA4412 airfoil. Riblet micro
serrations with a height of 0.1 mm and a width of 0.1 mm are uniformly distributed on the
upper airfoil surface within the range of 0.7 c.

2.2. Numerical Method and Experimental Verification

In order to minimize the influence of the leading edge by the fluid disturbance at
the inlet boundary and satisfy the flight state of real birds, the widely used C-shaped
computational domain structure [43–45] was adopted. The airfoil chord length c in this
study is 1 m. As shown in Figure 2, the first half of the computational domain is a semicircle
(10 times the chord distance), and the downstream part is a rectangle (20 times the chord
distance). The Reynolds number Re, Strouhal number St, and lift coefficient CL of an airfoil
is defined as follows:

Re = ρUc/µ
St = fc/U
CL = 2FL/

(
ρU2c

) (4)

where ρ, U and c are the density of the fluid, the incoming velocity, and the airfoil chord
length, respectively. The µ, f and FL are the dynamic viscosity of the fluid, the vortex
shedding frequency, and the surface lift of the airfoil, respectively.

The airfoil in this study operates at a low Reynolds number, the corresponding density
is constant, and the governing equation is an incompressible Reynolds averaged Navier-
Stokes (RANS) equation:

∂ui
∂xi

= 0
∂(ρui)

∂t +
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂

∂xj

(
µ ∂ui

∂xj
− ρui

′uj
′
) (5)

where ui and uj are the velocity components. µ, p, and −ρui
′uj
′ are the dynamic viscosity,

average pressure, and Reynolds stresses, respectively.
The airfoil grid was generated by the commercial software ANSYS Icem, which adopts

the division method of a structural or unstructured grid. The large number of tiny serrations
on riblets are tricky to construct geometrically and challenging to grid. This study used
a fine unstructured grid near the tiny serrations, and the boundary layer was drawn on
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the rest of the airfoil surface. The NACA4412, Teal, and Seagull airfoil were divided
into structural grids. The low-dimensional structure of the airfoil vortex shedding was
considered, and the mesh around the airfoil was sufficiently refined. The height of the first
grid on the airfoil wall is 0.05 mm, and the grid growth rate is 1.03.

The commercial software ANSYS Fluent 2022 R1 and CFD-POST were used to solve
unsteady flow and statistical flow field data. Python was used for further dynamic mode
decomposition to obtain main modes and analyze nonlinear correlation. The fluid medium
is air (density 1.225 kg/m3, dynamic viscosity 1.7894 × 10−5 Pa·s). Figure 2 shows the
unified boundary conditions and different grid details. The inlet and outlet of the airfoil
basin are the velocity inlet and zero pressure outlet. The direction of inlet velocity matches
the airfoil angle of attack, and the turbulence intensity and viscosity are 5% and 10%,
respectively. The airfoil and riblets are non-slip walls, and the turbulence model is the
SST k-ω turbulence model [46]. The pressure-velocity coupling scheme is SIMPLE, and
under-relaxation factors are Pressure = 0.3, Density = 1, Body Forces = 1, Momentum = 0.7,
Turbulent Kinetic Energy = 0.8, Specific Dissipation Rate = 0.8, and Turbulent Viscosity = 1.
The Gradient is least squares cell-based, and the Pressure interpolation scheme is second
order. The second-order upwind and central difference schemes are used for the advective
and diffusive fluxes in the governing equations discretized, respectively. The Transient
Formulation is second-order implicit. The residual of continuity, x-velocity, y-velocity, k,
andω is 10−6.
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Figure 2. Computational Domains and Grids.

The stall characteristics at a large attack angle of 19◦ under a low Reynolds num-
ber of 1 × 105 were studied. The time step is 0.001 s. After the lift coefficient fluctuates
periodically, the calculated data of each time step is saved and used as the snapshot
data of the DMD. Four different grid numbers are used for grid-independent verifica-
tion to ensure the validity of the grid. Figure 3a shows that for NACA4412, Teal, and
Seagull when the grid number is more than 0.2 million, the fluctuation range of St is
within 0.5%. Figure 3b shows that when the grid number of ridged airfoils is more than
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0.7 million, the fluctuation of St can be ignored. Considering the details of the flow field
and mode, the grids of NACA4412, Teal, Seagull, and Riblets airfoil are 0.39, 0.35, 0.39, and
1.54 million, respectively.
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The effect of different time steps ∆t on the St of the Teal airfoil is further studied
because the vortex shedding period of the Teal airfoil is the smallest. Figure 4 shows that
the influence of four different time steps on the St of the canard airfoil can be ignored.
The main reason is that there are still 100 calculation steps in a vortex shedding cycle
corresponding to the maximum time step. Due to the low consumption of two-dimensional
computing resources, the time step in this study is 0.001 s.
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Figure 4. Independence verification of time step ∆t.

Figure 5 compares the lift coefficients of the NACA4412, Riblets, Seagull, and Teal.
The lift coefficient of the Seagull bionic airfoil has enormous improvement. Table 3 shows
the vortex shedding frequencies for the four airfoils, where the angular frequencyω = 2f.
Many micro serrations on the Riblets airfoil surface did not significantly change the vortex
shedding frequency of NACA4412, and the lift coefficient decreased slightly. The Seagull
airfoils vortex shedding frequency and lift coefficient are significantly higher than the other
three airfoils.
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Table 3. Vortex shedding angular frequency and St number.

Coefficient NACA4412 Riblets Seagull Teal

ω (rad/s) 5.446 5.364 6.878 2.518
St 0.593 0.584 0.749 0.274

The static stall characteristics of the NACA4412 airfoil at a Reynolds number of
1.52 × 106 are simulated to verify the effectiveness of the numerical method. Figure 6 com-
pares the numerical simulation and experimental results of Coles [47] and Pinkerton [48].
The numerical simulation results are in good agreement with the experimental results (lift
coefficient CL), which proves that the numerical simulation of the two-dimensional airfoil
in this study is compelling and reliable.
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According to Noack et al. [49] and Loiseau et al. [50] adopting a layered approach,
decomposing the velocity u into the average velocity (u) and the fluctuation velocity (u′)
can better reflect the nonlinear correlation between the velocity [30]. In the follow-up
research, the dynamic mode decomposition of the fluctuation velocity field of the airfoil is
mainly carried out.
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3. Nonlinear Dependence of Modal Coefficients
3.1. Dynamic Mode Decomposition

Dynamic modal decomposition can reduce the dimension of the flow field and show
the evolution of these modes with time (modal coefficients). Measuring the mode evolution
with time is imperative in building the reduced order model. Although the flow field of an
airfoil is highly nonlinear, DMD, similar to the Koopman operator [51], is often used for
flow field reduction and mechanism analysis. DMD is wholly based on data measurement
and does not need any knowledge of control equations. The combination of DMD and
modal analysis, such as POD, has also been extensively studied. DMD has good predictive
capabilities and is also used in applications such as bearing fault diagnosis [52]. This study
gives a brief introduction to DMD modes and modal coefficients.

The snapshot data of the airfoil can be divided into two matrices: X = [x(t1), x(t2), . . . ,
x(tm−1)] and X′ = [x(t2), x(t3), . . . , x(tm)]. The DMD seeks the best fitting linear operator
A for these two matrices: X′ = AX. It is not easy to directly calculate operator A, whose
dimension is the square of the airfoil flow field dimension. Therefore, the singular value
decomposition (SVD) of matrix X is required in advance.

(1) Calculate the SVD of the data matrix X:

X ≈ ŨΣ̃Ṽ
∗

Ũ
∗
Ũ = Ṽ

∗
Ṽ = I

Ũ ∈ Cn×r, Σ̃ ∈ Cr×r, Ṽ ∈ Cm×r
(6)

where the selection of low-rank r depends on the accuracy of low-dimensional modal
reconstruction. The low-rank r in this study was chosen as twenty because the first twenty
modes can accurately represent the entire physical field. The matrix Ũ and Ṽ are left
singular matrices and the right singular value matrix. The matrices Ũ and Ṽ are unitary
matrices, and each column is orthogonal. Each element on the main diagonal of matrix Σ̃ is
a singular value of matrix X.

(2) The reduction linear operator Ã is obtained by the matrices Ũ, Ṽ, X′, and singular
value matrix Σ̃:

Ã = Ũ
∗
AŨ = Ũ

∗
x′ṼΣ̃

−1
(7)

(3) The spectral decomposition of the matrix Ã is calculated:

ÃW = WΛ (8)

where W and the diagonal entries µj of the diagonal matrix Λ are the eigenvector and
eigenvalues of the approximate matrix Ã. The eigenvalues λj of the DMD modes can be
obtained from µj and sampling time ∆t:

λj = lgµj/∆t (9)

The real and imaginary parts of λj correspond to the mode growth or decay rate and
frequency, respectively.

(4) The mode Φ according to the matrix W and X′ is obtained:

Φ = µ−1x′ṼΣ̃
−1

W (10)

The reconstructed flow field x(t) is:

x(t) =
r

∑
j=1

fje
λjtbj =

r

∑
j=1

fjβj(t) (11)
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where βj(t) is the DMD modal coefficient, the accuracy of the reduced-order model con-
structed in this study mainly depends on the accuracy of the modal coefficient reconstruc-
tion. bj is the amplitude of the mode:

b = (WΛ)−1x(t1) (12)

Five thousand snapshots (Total time t = 5 s) were collected for the airfoil DMD. The
sampling interval is two times the time step (sampling frequency = 500 Hz). Since the
vortex shedding structure of the airfoil is focused on, and to save memory and reduce
mode decomposition time, the velocity around the airfoil (−c ≤ x ≤ 5c, −2c ≤ y ≤ 2c) was
sampled. In particular, since the Riblets airfoil has many tiny serrations, it is necessary to
extract more effective numerical velocity fields to ensure the details of the flow field near
the serrations.

The spatial dimension of the DMD decomposition matrix corresponds to the number
of grids in the sampling area. The modes are ordered according to the increasing frequency
of the modes, mainly to obtain a unified nonlinear correlation. From the following research
results, if the energy-decreasing order of modes is adopted, the frequency distribution
of the Teal airfoil is chaotic (2ω, 4ω, ω, 6ω, 8ω, 3ω, 10ω, 5ω, 12ω, 7ω), which is not
conducive to unifying nonlinear correlation.

The spatial distribution of airfoil modes shown in Figure 7 is consistent with the
research of Naderi et al. [38], Moreover, the other modes are pure harmonics of the primary
mode (corresponding to the mode of vortex shedding fundamental frequency). The modes
of airfoils are antisymmetric vortex-shedding structures. The NACA4412, Riblets, and
Seagull airfoil modes are similar to a certain extent. Under a large number of tiny serrations,
the vortex-shedding structure in the middle of the upper surface of the Riblets airfoil
disappears, and the high-frequency trailing edge vortex-shedding structure is different
from the NACA4412 airfoil. For NACA4412, Riblets, and Teal airfoil modes, laminar
separation bubbles (LSB) at the leading edge can be observed, and the Teal airfoil is the
most obvious. The modes of the trailing edge of the four airfoils have obvious boundaries,
indicating that the trailing edge vortex shedding is related to the shear layer near the
trailing edge [53].

The mode of Seagull airfoil mainly reflects the trailing edge vortex shedding, and no
leading-edge LSB leads to a significant increase in lift coefficient CL. The modal of the Teal
airfoil is different from the other three airfoils. The vortex shedding distribution range
of the high-frequency trailing edge is higher than that of other airfoils. The frequency of
the four airfoil modes is highly consistent with the frequency of the lift coefficient CL in
Figure 5, indicating that the stall of the four airfoils is related to the shedding process of the
Karman vortex [14].

The modal coefficients of these four airfoils are not explicitly shown in this study
because the flow field of the airfoil is periodic, and the modal evolution over time is purely
oscillatory. The difference between modal coefficients is mainly reflected in amplitude and
phase. Therefore, the evolution of the airfoil flow field is periodic, with pure oscillation
and dual frequency.
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The flow field with fewer dimensions and simple nonlinear correlation can be realized
by keeping the appropriate number of modes. When the number of reserved modes is 20,
we can accurately express the velocity field of the airfoil using the modes. Figure 8 shows
the accuracy of the flow field reconstruction of the first 20-order airfoils. The fluctuating
velocity distribution is consistent with the CFD. The angular frequencies corresponding to
the 20 modes of the airfoil are (ω, 2ω, . . . , 10ω), and the frequencies are multiples.
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3.2. Nonlinear Correlation

The randomized dependence coefficient (RDC) proposed by Lopez-Paz et al. [54]
was used to measure the nonlinear correlation between the modal coefficients βj(t). The
RDC algorithm is simple and computationally inexpensive, and extending to nonlinear
correlations between modal coefficients is easy. Figure 9 shows the Lissajous orbits and
RDC for the first 20 modal coefficients of the NACA4412 airfoils. Since a modal coefficient
is a complex number, and a pair of modal coefficients of the DMD are complex conjugates:

β1 = α1 + iα2,β2 = α1 − iα2
β3 = α3 + iα4,β4 = α3 − iα4
β5 = α5 + iα6,β6 = α5 − iα6
β7 = α7 + iα8,β8 = α7 − iα8

(13)
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Four different airfoils have similar Lissajous orbits and RDC distributions. The main
reason is the multiple relationships between frequency and the periodicity of flow. The
modal coefficients are linearly uncorrelated, which does not mean there is no nonlinear
correlation. Figure 9 shows that Lissajous orbits between each pair of modal coefficients
are circular, indicating that the phase difference between a pair of modal coefficients is 90◦.
The nonlinear correlation between modal coefficients is very complex, but Lissajous orbits
are ordered, and the distribution of RDC is sparse. This combination of order and sparsity
is conducive to building specific functional relationships of nonlinear correlation.

4. Construction of the Minimum Reduced-Order Model
4.1. The Sparse Identification of Nonlinear Dynamics

Although RDC and Lissajous orbits show the nonlinear correlation between modal
coefficients, the key to building a ROM is to use specific functional expressions to reflect the
nonlinear correlation. The sparse identification of nonlinear dynamics (SINDy) proposed
by Brunton et al. [42] plays a vital role in discovering control equations [55] in various
fields, implementation of active control, construction of manifold equations, and other
applications. Here is a brief introduction to SINDy.

A large number of nonlinear dynamic systems can be written as:

d
dt

x = f(x) (14)

f(x) is approximated:

f(x) ≈
p

∑
k=1

θk(x)ξk = Θ(x)Ξ (15)

where matrix Θ(x) and ξ are the nonlinear function library and sparse matrix, the compo-
nents of SINDy are similar to the DMD modes and modal coefficients. The sparse matrix ξ
represents the sparsity of the function library rather than the evolution law of the nonlinear
function library Θ(x). The more sparse the matrix means fewer dominant items in the
function library (the more straightforward the nonlinear dynamic system). The key to
SINDy is to build a function library Θ(x) and solve a sparse matrix ξ. The construction of a
function library can give full play to the subjective initiative. The function library can be a
polynomial, trigonometric, or exponential function:

Θ(X) =
[
1, X, X2, · · · , Xd, · · · , sin(X), cos(X), . . . , eX, e2X, . . .

]
(16)

The X consists of the series data X = [α(t1), α(t2), . . . , α(tm)]T.
Solving the sparse matrix Ξ is the core given the library Θ(x). The forward regression

orthogonal least squares (FROLS) algorithm proposed by Loiseau et al. [56] was used
to solve the sparse matrix Ξ in evaluating the nonlinear correlation and constructing
manifold dynamics. Callaham et al. [41] used the nonlinear correlation between the modal
coefficients to classify the modes into active and slaved modes. A set of active modalities can
represent passive modalities. Active modes always appear in pairs, and the corresponding
RDC values are generally high. Finding the active mode and constructing the nonlinear
correlation is tough. Figure 10 shows how to use the hierarchical method to gradually build
the nonlinear correlation and find the final active mode.
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In the first layer, the functional relationship between most modes and a small part of
modes is first constructed. This study found that all modal coefficients of these four airfoils
can be represented by second-order polynomial functions of modal coefficients (α1, α2, α3,
α4, α7, α8, α15, α16). The angular frequency corresponding to the active mode coefficient
in the first layer is (ω, 2ω, 4ω, 8ω). When the second order is selected, the corresponding
frequency of all modes can be covered. For the frequency relationship between the Seagull
airfoil combined with the active mode coefficients and the Lissajous orbits, it is not difficult
to see that the four pairs of active modes satisfy the following functional relationship:

α1 ± iα2µexp(±iωt)
α3 ± iα4µexp(±2iωt)
α7 ± iα8µexp(±4iωt)
α15 ± iα16µexp(±8iωt)

(17)

when the second order is selected, the corresponding frequency of all modes can be covered.
The nonlinear correlation between the active modal coefficients is constructed in the

second layer. In this study, there is only one pair of final active mode coefficients in airfoils,
and the corresponding is the fundamental frequency of vortex shedding. Through the
nonlinear correlation constructed by these two layers, the remaining modal coefficients can
be accurately described by active modes (α1, α2). The nonlinear correlation between modal
coefficients maps the frequency relationship between modes.

4.2. Manifold Dynamics and Flow Field Reconstruction

The nonlinear correlation of NACA4412, Ridged, Teal, and Seagull airfoils shows only
one pair of active modes. The evolution of the modes of turbulent airfoils over time can be
highly simplified as the modal coefficients of two degrees of freedom. The two-dimensional
ordinary differential equations can approximate airfoil infinite-dimensional partial differ-
ential equations (ODEs, manifold equation). The manifold equation of Equation (13) was
constructed based on SINDy, the one-order polynomial function library, and the FROLS.
The four airfoils can construct the following two-dimensional manifold equation:

dα1

dt
= −ωα2;

dα2

dt
= ωα1 (18)
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Whether a bionic airfoil or a NACA4412 airfoil, the constructed manifold equation
has a unified form. The coefficients of the manifold equation correspond to the angular
frequency of airfoil vortex shedding. The coefficients are opposite and the Lissajous orbit
cycle indicates that the phase difference between the pair of modal coefficients is 90◦.

The accuracy of flow field reconstruction is an essential criterion for verifying the
accuracy of manifold equations. The active modal coefficients are first reconstructed using
the manifold Equation (18). The remaining 18 modal coefficients are reconstructed from
the nonlinear correlation (Figure 10). The modal and reconstructed modal coefficients are
used for the final flow field reconstruction.

Figure 11 shows the effect of the reconstruction of the airfoil velocity field. The
reconstructed velocity field based on the manifold equation at different times is highly
consistent with the numerically simulated velocity field. The accuracy of the manifold
equation and the fact that the minimum ROM is two-dimensional are revealed.
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5. Conclusions

This study thoroughly explores the nonlinear correlation between the modal coeffi-
cients of Riblets, Seagull, and Teal airfoils and compares them with NACA4412. Based on
the nonlinear correlation, a two-dimensional minimum ROM of the airfoil at an angle of
attack of 19◦ was successfully constructed. The main conclusions are as follows:

(1) The Seagull airfoil in the bionic airfoil has a more significant lift coefficient, while
the Riblets has the smallest lift coefficient. The modes of airfoils are antisymmetric
vortex-shedding structures. Under a large number of tiny serrations, the vortex-
shedding structure in the middle of the upper surface of the Riblets airfoil disappears,
and the high-frequency trailing edge vortex-shedding structure is different from the
NACA4412 airfoil. The lift coefficient of the Teal airfoil is similar to the NACA4412
airfoil, but the vortex shedding frequency is significantly higher than the Seagull
airfoil and the NACA4412 airfoil. The NACA4412, Riblets, and Seagull airfoil are
mainly dominated by the trailing edge shedding vortex, while the Teal airfoil also
includes the leading-edge LSB.



Machines 2023, 11, 88 15 of 17

(2) The first twenty DMD modes of the three airfoils are sufficient to ensure the accuracy
of the velocity field reconstruction, and the spatial distribution of the modes is very
similar. The mode frequency is multiple when the modal system is sorted by frequency.
The relationship between the modal coefficients of the four airfoils is pure harmonic,
and the shape is pure oscillation. The difference between modal coefficients is the
difference between amplitude and phase. The phase difference between the paired
modal coefficients is 90◦, and the order of Lissajous orbits is conducive to building
the specific function expression of nonlinear correlation.

(3) The NACA4412, Riblets, Seagull, and Teal airfoil modal coefficients have the same
type of nonlinear correlation, which is related to the frequency corresponding to the
mode. The active mode has only a pair of active modes corresponding to the funda-
mental frequency. The rest of the modal coefficients can be represented by the active
modes’ polynomial functions. The two-dimensional manifold equations constructed
by the four airfoils are consistent, and the absolute value of the coefficient corresponds
to the fundamental frequency of the airfoil vortex shedding. The flow field recon-
structed based on manifold dynamics is in high agreement with the numerical simula-
tion results, validating the accuracy of the simple, compact, and interpretable flow
field equations.
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